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Summary

The effect of a heterogeneous distribution of the temperature noise on the MTC

estimation by noise analysis is investigated. This investigation relies on the 2-group

diffusion theory, and all the calculations are performed in a 2-D realistic heterogeneous

core. It is shown, similarly to the 1-D case, that the main reason of the MTC

underestimation by noise analysis compared to its design-predicted value lies with the

fact that the temperature noise might not be homogeneous in the core, and therefore

using the local temperature noise in the MTC noise estimation gives erroneous results. A

new MTC estimator, which was previously proposed for 1-D 1-group homogeneous

cases and which is able to take this heterogeneity into account, was extended to 2-D 2-

group heterogeneous cases. It was proven that this new estimator is always able to give a

correct MTC estimation with an accuracy of 4%. This small discrepancy comes from the

fact that the reactor does not behave in a point-kinetic way, contrary to the assumptions

used in the noise estimators. This discrepancy is however quite small.

One quantitative result of the present work is a measure of the underestimation of

the traditional method as a function of the correlation length of the temperature

fluctuations. It is found that the underestimation is larger in 2-D for the same correlation

length as in the 1-D case. An underestimation with a factor 5 in the present model is

obtained with a radial correlation length of 150 cm. Comparisons with measurements

will be possible to make in measurements to be performed in Ringhals.

Sammanfattning

Inverkan av den inhomogena rumsfördelningen av temperaturfluktuationerna för

bestämningen av MTK (moderatortemperaturkoefficienten) med brusanalys har

undersökts och rapporterats. Undersökningen i detta arbete är baserad på tvågrupps-

diffusionsteori. Alla beräkningar har gjorts i en 2-D realistisk reaktorhärd. Liksom i en

tidigare undersökning i 1-D finner vi, att den huvudsakliga anledningen till att den

traditionella brusmetoden underskattar moderatortemperturkoefficienten är inhomogeni-

teten av temperaturfluktuationerna, varför användning av ett lokalt värde på

temperaturfluktuationerna ger felaktigt resultat. Den nya så kallade estimatorn, det vill

säga en algoritm för bestämning av MTK, som nyligen har föreslagits och testats av oss i

1-D, har nu utvidgats till att omfatta 2-D 2-gruppsteorin. Undersökningarna som

rapporteras här visar, att den nya estimatorn skattar den verkliga temperaturkoefficienten

med en noggrannhet på 4 %. Det jämförelsevis lilla felet härrör från reaktorresponsens

avvikelse från punktkinetik, eftersom även den nya algoritmen förutsätter att reaktorns

beteende är punktkinetiskt. Denna avvikelse är dock ganska liten.

Ett resultat av föreliggande arbete är det kvantitativa sambandet mellan

underskattning av MTK med den traditionella brusmetoden och korrelationslängden av

temperaturfluktuationerna. Vi fann att underskattningen i 2-D vid en viss korrela-

tionslängd är större än i 1-D. En underskattning med en faktor 5 erhålls i föreliggande

arbete vid en korrelationslängd på 150 cm. Jämförelse med mätningar från Ringhals

kommer att göras.
-5-



1. Introduction
There have been many attempts in the past few years to monitor the Moderator Temper-

ature Coefficient of reactivity (MTC) by noise analysis in Pressurized Water Reactors

(PWRs). In these experimental investigations, the MTC is inferred from the signals deliv-

ered by an in-core neutron detector and a core-exit thermocouple located in the same fuel

channel or in two neighbouring fuel channels. The measured neutron noise and tempera-

ture noise contain some information about the dynamics of the reactor, and in particular

on the MTC, while the reactor is still at its normal and steady-state operating conditions.

This noise technique is therefore very well suited to monitor the MTC at full power, since

unlike the traditional measurement techniques such as the boron dilution method or the

control rod swap, the reactor does not need to be perturbed.

Due to the reactor transient that the traditional measurement techniques induce and

their relatively large uncertainty on the MTC estimation, it was considered that

measuring the at-power MTC could be avoided, since core calculations were believed to

give an accurate estimation of the at-power MTC. Thus a more and more common

practice was to measure the MTC at Beginning of Cycle (BOC) and Hot Zero Power

(HZP), a measurement which is accurate and relatively easy to perform, and then to rely

completely on core calculations for the variation of the MTC with burnup. Nevertheless,

this at-power MTC calculation was never benchmarked. Furthermore, with the use of

high burnup or Mixed Oxide (MOX) fuel assemblies, the MTC might become positive at

BOC. For the high burnup fuel bundles, the positive contribution is due to the high boron

concentration necessary to compensate for the reactivity excess of the fuel. For the MOX

fuel, the positive contribution is due to the 0.3 eV resonance of Pu-239. Therefore being

able to monitor the MTC throughout the whole fuel cycle could become again of great

interest in the near future. The noise technique is very interesting in this respect, since

such a measurement can be carried out at any time during the fuel cycle without

disturbing the reactor operation.

Nevertheless, all the experimental work revealed that the MTC was systematically

underestimated by a factor of two to five compared to its design-predicted value (see

(Demazière, 2000) for a complete list of References in this matter). This underestimation

was found to be constant during a fuel cycle, and even between several fuel cycles as

long as the same pair of detectors is used for the estimation. Many factors could

influence the accuracy of the MTC noise estimation. Several of them were investigated

in the past. Although correction factors were proposed accordingly, either the correction

factors are negligible, or they cannot be estimated easily in practice. A new aspect which

could explain the underestimation of the noise analysis technique was considered

recently (Pázsit et al, 2000), (Demazière and Pázsit, 2002), namely the spatially

heterogeneous distribution of the temperature noise throughout the core. It was found

that the main reason of the MTC underestimation might be due to the fact that the

temperature noise was measured in one-point of the reactor, whereas the MTC relies on

the core average temperature noise and that this temperature noise is most likely strongly

spatially heterogeneous. The spatial inhomogeneity of the temperature noise has actually

been confirmed in recent measurements (Demazière et al, 2000a). On the other hand, the

resulting deviation of the reactor response from point-kinetics, an approximation on

which the MTC noise estimator relies, was found to be negligible with respect to the
-6-



MTC estimation. Consequently, one new MTC noise estimator that allows taking the

spatial structure of the temperature noise into account was proposed by us recently and

was proven to give an accurate MTC estimation (Pázsit et al, 2000), (Demazière and

Pázsit, 2002).

This above mentioned study only investigated 1-D one-group homogeneous

systems in the diffusion approximation. In this report, the investigation is extended to

2-D two-group heterogeneous systems in the diffusion approximation. The main goals of

the work were as follows:

1. To extend the definition of the average temperature to a 2-group case (this is not triv-

ial); with the definition, give a new biased estimator for the determination of the

MTC which is only biased with the deviation of the reactor response from point

kinetics;

2. To elaborate calculational methods for the investigation of the performance of the tra-

ditional and the new estimators in 2-D 2-group theory;

3. To verify that the qualitative conclusions of the 1-D investigation regarding the reason

of the underestimation of the MTC by the traditional method are similar in 2-D;

4. To investigate quantitatively the dependence of the magnitude of the MTC underesti-

mation by the traditional noise method as a function of the correlation length of the

temperature fluctuations.

The first part of the report is devoted to the models used in the simulation. The

second part deals with the derivation of the MTC noise estimate for 2-D 2-group

heterogeneous systems, which is slightly different from the 1-D 1-group homogeneous

systems. Finally, the results of the calculations are presented in more detail. It was found

that the new MTC estimator was always able to give a correct MTC estimation. This

finding further confirms that the deviation of the reactor response from point-kinetics

does not play a significant role for the MTC estimation, whereas the spatial

inhomogeneity of the temperature noise has a very decisive effect. The usual MTC noise

estimator was found to underestimate the MTC more significantly than for the 1-D one-

group homogeneous cases.

A nomenclature explaining all the abbreviations used in this report can be found at

the end (see Section 7).

2. Calculation of the static flux, the adjoint
flux, and the reactor transfer function

The traditional MTC noise estimator, i.e. the one that was used in all the experimental

work so far, is based on the measurement of the temperature noise, the induced neutron

noise, and the static flux. As will be described in more detail in Section 3, the new MTC

noise estimator in addition relies also on the adjoint flux, which is needed for the calcula-

tion of the core average temperature noise. Consequently, a static core simulator, an ad-

joint core simulator, and a noise simulator are required for the theoretical investigation of

the MTC estimation by noise analysis.
-7-



2.1. Description of the core
A realistic heterogeneous system was chosen for this investigation, namely the Ringhals-

4 PWR with the operational conditions as of May 5th, 1999. At that date, the at-power

MTC was measured by using the boron dilution method. This measurement was per-

formed a few months before the expected EOC of the fuel cycle 16, more precisely at a

core average burnup of 8.767 GWd/tHM. This measurement, which is required by the

Swedish safety authorities, is intended to verify that the magnitude of the MTC will not

exceed a given value for the remaining part of the cycle, therefore preventing from the

consequences of a reactivity transient, induced by an incidental cooldown event. During

this measurement, the MTC was found to be equal to -58.12 pcm/ C 11.68 pcm/ C

(Demazière et al, 2000b). The MTC was also directly calculated by SIMULATE-3 (Um-

barger and DiGiovine, 1992) by simply increasing the coolant inlet temperature by +5 F

(2.78 C), all the other parameters remaining constant. It was found that:

(1)

This value will be considered in the following as the reference and target value1 of the

MTC for the noise analysis technique.

As will be seen in the following, the 2-D 2-group material data and the point-kinetic

parameters of the core are required for the calculation of the induced neutron noise via

the noise simulator. Furthermore, the static flux and the adjoint flux are also required in

this 2-D and 2-group derivation. The static flux is needed for the neutron noise simulator

itself and the MTC estimation in the noise analysis technique, whereas the adjoint flux is

used (together with the static flux) for calculating the core average temperature noise.

One could use SIMULATE-3 to provide all these quantities. Nevertheless, the static and

adjoint fluxes need to be recalculated via a simulator using the same spatial discretisation

scheme as the one used in the neutron noise simulator. Otherwise, using the static and

adjoint fluxes directly from SIMULATE-3 is equivalent to make the system non-

critical2. Another simpler approach could have been to modify the cross-sections in each

node (while keeping the static and adjoint fluxes from SIMULATE-3) so that the balance

equations were fulfilled for the same spatial discretisation scheme as the one used in the

noise simulator. This approach was tested in the present case but showed that some

cross-sections became negative.

Hence, the 2-group cross-sections provided by SIMULATE-3 for each node were

homogenised from 3-D to 2-D in order to be used by the 2-D simulators. The

homogenization was naturally carried out by using the static fluxes as weighting

functions so that the reaction rates were preserved:

1. Only the ratios between the MTC noise estimators and the actual value of the MTC are investi-

gated in this study. The MTC is only evaluated in relative terms, therefore the actual MTC value

does not really matter since the MTC noise estimators can be scaled to any value (see Section

3.2).

2. The static and adjoint fluxes (and their associated eigenvalues) are nevertheless used in the

static and adjoint core simulators as a starting guess in the power iteration method.

° ± °

°
°

MTC 45.882 pcm/°C–=
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(2)

and

(3)

with having a broad meaning, i.e. being , , , or . All the other

symbols have their usual meaning with representing the volume of the node

(I,J,K). G is the group index ( for the fast group, and for the thermal

group). Similarly, the adjoint fluxes were homogenised as follows:

(4)

Although this way of averaging the material data and the fluxes preserves the

reaction rates, the 2-D system which is thus obtained will have a much higher eigenvalue

than the 3-D system since the leakage in the axial direction was eliminated (a 2-D system

is in fact assumed to be infinite in the third direction). Therefore, if one wants results

compatible with the actual 3-D core, one has to take the axial leakage into account in the

2-D system. This can be done by increasing the absorption cross-section in each group

by an artificial leakage cross-section in the same group, which allows having the correct

leakage rate when multiplied by the corresponding group flux. For that purpose, one

needs to evaluate the axial leakage rate in each node for the 3-D system. Since this

leakage rate is not given by SIMULATE-3, the finite difference scheme is used instead

(this finite difference scheme is also used in the static core simulator, the adjoint core

simulator, and the neutron noise simulator). In the “box-scheme” approximation, this

reads as (Nakamura, 1977):

(5)

X SG I J, ,

XSG I J K, , , φG I J K, , , V I J K, ,
K
∑

φG I J K, , , V I J K, ,
K
∑

------------------------------------------------------------------------=

φG I J, ,

φG I J K, , , V I J K, ,
K
∑

V I J K, ,
K
∑

---------------------------------------------=

X SG DG Σa G, Σrem νΣ f G,
V I J K, ,

G 1= G 2=

φG I J, ,
+

φG I J K, , ,
+

V I J K, ,
K
∑

V I J K, ,
K
∑

---------------------------------------------=

leakage rate in group G and node I J K, ,( )

1

∆z
------ aG I J K, , ,

z φG I J K, , , bG I J K, , ,
z φG I J K 1+, , , cG I J K, , ,

z φG I J K 1–, , ,+ +[ ]–

LRG I J K, , ,

=

=
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with the coefficients , , and  given by the following Table 1:

The corresponding “leakage” cross-sections are thus given by:

(6)

so that the absorption cross-sections are modified in the following way:

(7)

Then the homogenization is carried out as described before, i.e. according to Eq. (2).

Concerning the noise calculation described in Section 2.4, one has to select also the

frequency at which the evaluation has to be performed. In the MTC investigation by

noise analysis, it is common practice to determine the MTC in the frequency range 0.1 -

1.0 Hz. The lower frequency bound allows using in the MTC noise estimators the zero-

power reactor transfer function instead of the at-power reactor transfer function (which is

unknown since it contains the MTC). This substitution is valid because the cut-off

frequency corresponding to the heat transfer between coolant and fuel is lower than 0.1

Hz. The upper bound is due to the damping of the temperature fluctuations travelling

from the in-core neutron detector to the core-exit thermocouple, if the traditional noise

Table 1: Coupling coefficients in the z direction.

if the

node

K-1
does not

exist

0

if the

nodes

K-1 and

K+1
both

exist

if the

node

K+1
does not

exist

0

aG I J K, , ,
z

bG I J K, , ,
z

cG I J K, , ,
z

aG I J K, , ,
z

bG I J K, , ,
z

cG I J K, , ,
z

2DG I J K, , , DG I J K 1+, , ,
∆z DG I J K, , , DG I, J K 1+, ,+( )
------------------------------------------------------------------------

2DG I J K, , ,
∆z

--------------------------+

2DG I J K, , , DG I J K 1+, , ,
∆z DG I J K, , , DG I J K 1+, , ,+( )
------------------------------------------------------------------------–

2DG I J K, , , DG I J K 1+, , ,
∆z DG I J K, , , DG I J K 1+, , ,+( )
------------------------------------------------------------------------

2DG I J, , DG I J K 1–, , ,
∆z DG I J K, , , DG I J K 1–, , ,+( )
-----------------------------------------------------------------------+

2DG I J K, , , DG I J K 1+, , ,
∆z DG I J K, , , DG I J K 1+, , ,+( )
------------------------------------------------------------------------–

2DG I J K, , , DG I J K 1–, , ,
∆z DG I J K, , , DG I J K 1–, , ,+( )
-----------------------------------------------------------------------–

2DG I J K, , ,
∆z

--------------------------

2DG I J K, , , DG I J K 1–, , ,
∆z DG I J K, , , DG I J K 1–, , ,+( )
-----------------------------------------------------------------------+

2DG I J K, , , DG I J K 1–, , ,
∆z DG I J K, , , DG I J K 1–, , ,+( )
-----------------------------------------------------------------------–

LG I J K, , ,
LRG I J K, , ,
φG I J K, , ,

-------------------------–=

Σa G I J K, , , ,
* Σa G I J K, , , , LG I J K, , ,+=
-10-



estimator is used. In our case, the axial direction is disregarded, so that the upper limit

has no significance. It was therefore decided to perform all the noise calculations at that

frequency, i.e. 1 Hz.

2.2. Description of the static core simulator
As described previously, the static flux is needed in this theoretical investigation for three

main reasons. First of all, the static flux is required for the calculation of the neutron noise,

since the noise source strength is always proportional to the static flux (see Section 2.4).

Second, the static flux is used in the MTC noise estimators, since only the neutron noise

relative to its mean value is of interest (see Section 3). Finally, the static flux is used to-

gether with the adjoint flux to calculate the coolant average temperature noise throughout

the core (see Section 3).

In the two-group diffusion approximation, the static flux is the solution of the

following matrix equation:

(8)

where

(9)

(10)

This system of equations has to be spatially discretised. Finite differences were used

for that task, and more precisely the so-called “box-scheme” (more information

regarding this specific point can be found in (Pázsit et al, 2000) and (Pázsit et al, 2001),

where the discretisation scheme was extensively explained):

(11)

D r( )∇ 2 Σ r( )+[ ]
φ1 r( )

φ2 r( )
× 0=

D r( )
D1 r( ) 0

0 D2 r( )
=

Σ r( )
νΣ f 1, r( )

keff
---------------------- Σa 1, r( )– Σrem r( )–

νΣ f 2, r( )
keff

----------------------

Σrem r( ) Σa 2, r( )–

=

1

∆x ∆y⋅
------------------ DG r( )∇ 2φG r( )dr

I J,( )
∫

aG I J, ,
x φG I J, , bG I J, ,

x φG I, 1+ J, cG I J, ,
x φG I, 1– J,+ +( )

∆x
------------------------------------------------------------------------------------------------------------------------------–

aG I J, ,
y φG I J, , bG I J, ,

y φG I J 1+, , cG I J, ,
y φG I J 1–, ,+ +( )

∆y
------------------------------------------------------------------------------------------------------------------------------–

=
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with the different coefficients , , , , , and sum-

marised in Table 2 and Table 3 for the x and y directions respectively.

Table 2: Coupling coefficients in the x direction.

if the

node

I-1 does

not exist

0

if the

nodes

I-1 and

I+1both

exist

if the

node

I+1
does not

exist

0

Table 3: Coupling coefficients in the y direction.

if the

node

J-1 does

not exist

0

if the

nodes

J-1 and

J+1
both

exist

aG I J, ,
x

aG I J, ,
y

bG I J, ,
x

bG I J, ,
y

cG I J, ,
x

cG I J, ,
y

aG I J K, , ,
x

bG I J K, , ,
x

cG I J K, , ,
x

2DG I J, , DG I, 1 J,+

∆x DG I J, , DG I, 1 J,++( )
------------------------------------------------------------

2DG I J, ,
∆x

--------------------+

2DG I J, , DG I, 1 J,+

∆x DG I J, , DG I, 1 J,++( )
------------------------------------------------------------–

2DG I J, , DG I, 1 J,+

∆x DG I J, , DG I, 1 J,++( )
------------------------------------------------------------

2DG I J, , DG I 1– J,,
∆x DG I J, , DG I 1– J,,+( )
----------------------------------------------------------+

2DG I J, , DG I, 1 J,+

∆x DG I J, , DG I, 1 J,++( )
------------------------------------------------------------–

2DG I J, , DG I 1– J,,
∆x DG I J, , DG I 1– J,,+( )
----------------------------------------------------------–

2DG I J, ,
∆x

--------------------

2DG I J, , DG I 1– J,,
∆x DG I J, , DG I 1– J,,+( )
----------------------------------------------------------+

2DG I J, , DG I 1– J,,
∆x DG I J, , DG I 1– J,,+( )
----------------------------------------------------------–

aG I J K, , ,
y

bG I J K, , ,
y

cG I J K, , ,
y

2DG I J, , DG I J 1+, ,
∆y DG I J, , DG I J 1+, ,+( )
------------------------------------------------------------

2DG I J, ,
∆y

--------------------+

2DG I J, , DG I J 1+, ,
∆y DG I J, , DG I J 1+, ,+( )
------------------------------------------------------------–

2DG I J, , DG I J 1+, ,
∆y DG I J, , DG I J 1+, ,+( )
------------------------------------------------------------

2DG I J, , DG I J 1–, ,
∆y DG I J, , DG I J 1–, ,+( )
------------------------------------------------------------+

2DG I J, , DG I J 1+, ,
∆y DG I J, , DG I J 1+, ,+( )
------------------------------------------------------------–

2DG I J, , DG I J 1–, ,
∆y DG I J, , DG I J 1–, ,+( )
------------------------------------------------------------–
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The matrix equation given by Eq. (8) has to be used to determine both the two-

group fluxes and the eigenvalue. This can be done via the so-called outer iteration that

can be summarised as follows. If one rewrites Eqs. (8) - (10) as:

(12)

with

(13)

(14)

(15)

then the flux and the eigenvalue can be searched for by using an iterative scheme. In the

present study, the power iteration method was chosen for its simplicity and its relative ef-

ficiency (Bell and Glasstone, 1970), (Nakamura, 1977). In such a method, the flux and the

eigenvalue are given by the following expressions:

(16)

and

(17)

if the

node

J+1
does not

exist

0

Table 3: Coupling coefficients in the y direction.

aG I J K, , ,
y

bG I J K, , ,
y

cG I J K, , ,
y

2DG I J, ,
∆y

--------------------

2DG I J, , DG I J 1–, ,
∆y DG I J, , DG I J 1–, ,+( )
------------------------------------------------------------+

2DG I J, , DG I J 1–, ,
∆y DG I J, , DG I J 1–, ,+( )
------------------------------------------------------------–

M r( ) φ r( )× 1

keff
---------F r( ) φ r( )×=

M r( )
Σa 1, r( ) Σrem r( ) D1 r( )∇ 2

–+ 0

Σrem r( )– Σa 2, r( ) D2 r( )∇ 2
–

=

F r( ) νΣ f 1, r( ) νΣ f 2, r( )

0 0

=

φ r( )
φ1 r( )

φ2 r( )
=

φ
n( )

r( ) M
1–

r( ) 1

keff
n 1–( )---------------F r( ) φ

n 1–( )
r( )××=

keff
n( ) F r( ) φ

n( )
r( )×

F r( ) φ
n 1–( )

r( )×
----------------------------------------- keff

n 1–( )×=
-13-



where (n) represents the iteration number. The starting point of this method is an initial

guess for and . In this study, the values given by SIMULATE-3 were cho-

sen3. Then, a new flux distribution is calculated via Eq. (16), and subsequently a new ei-

genvalue is estimated via Eq. (17). This procedure is repeated until some convergence

criteria regarding both the neutron flux and the eigenvalue are fulfilled. Then the results

have to be scaled since Eq. (8) is a homogeneous equation. The scaling is required for

comparison purposes between the static core simulator and SIMULATE-3 (the MTC es-

timated theoretically via the noise technique is independent of this scaling, see Section 3).

The scaling factor is calculated so that the power level corresponds to the one given by

SIMULATE-3 in the axially condensed reactor:

(18)

where  and  are the energy release per fast and thermal fission respectively.

This static core simulator was then benchmarked against SIMULATE-3. In such a

benchmark, the cross-sections used in the 2-D simulator were obviously obtained

directly from the 3-D core modelled in SIMULATE-3 without any modification of the

absorption cross-sections (which would have been necessary to take the leakage in the

axial direction into account, as described previously (see Section 2.1)). Such a cross-

section adjustment would have made the axially condensed systems significantly

different with respect to the flux calculation. It is therefore expected that the eigenvalue

given by the static core simulator (2-D system) will be significantly larger than the one

given by SIMULATE-3 (3-D system).

The results of the benchmarking are given in Figs. 1 and 2. The peaks observed in

Fig. 1 correspond to the reflector peaks, i.e. an increase of the thermal flux in the

reflector region, and are also observed in the SIMULATE-3 results. Furthermore, the

agreement between the static core simulator and SIMULATE-3 is very good in the fuel

zone. The discrepancy is nevertheless relatively significant in the reflector zone for two

main reasons. First of all, the discretisation scheme used in the static core simulator, i.e.

the finite difference scheme, is known to give poor results when there are large flux

gradients, such as for instance in the reflector region and close to this region.

SIMULATE-3 uses a nodal diffusion model, which gives much more accurate results in

such cases. Another difference between the two modelling is the number of nodes used

in the calculation. In SIMULATE-3, the core is described via a 32x32 lattice, whereas

the static core simulator uses a 64x64 lattice. In order to compare the results of the two

calculations, the SIMULATE-3 results were simply expanded on the 64x64 grid without

any interpolation, i.e. the results are spatially homogeneous on each 2x2 node.

Consequently, a reflector “bundle” is actually described by 2x2 nodes in the static core

simulator, whereas it is described by only 1x1 node in SIMULATE-3. Since the static

3. For the flux, the axially condensed flux given by SIMULATE-3 is actually used.

φ
0( )

r( ) keff
0( )

κ1 r( )φ1 r( ) κ2 r( )φ2 r( )+[ ] rd

fuel
∫

static core simulator

κ1 r( )φ1 r( ) κ2 r( )φ2 r( )+[ ] rd

fuel
∫

SIMULATE-3

=

κ1 r( ) κ2 r( )
-14-
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Figure 1: Static flux calculations provided by the static core simulator in the
benchmark case (the fast flux is given in the upper figure, and the thermal flux is
given in the lower figure)
-15-



−80

−60

−40

−20

0  

20 

40 

60 

10 20 30 40 50 60

10

20

30

40

50

60

(φ
1
−φ

1,ref
)/φ

1,ref
 (%)

J coordinate (1)

I c
oo

rd
in

at
e 

(1
)

−80

−60

−40

−20

0  

20 

40 

60 

10 20 30 40 50 60

10

20

30

40

50

60

(φ
2
−φ

2,ref
)/φ

2,ref
 (%)

J coordinate (1)

I c
oo

rd
in

at
e 

(1
)

Figure 2: Relative difference in the static flux calculations between the static core
simulator and SIMULATE-3 in the benchmark case, with SIMULATE-3 being
considered as the reference case; the comparison of the fast flux is given in the
upper figure, and the comparison of the thermal flux is given in the lower one
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flux is assumed to vanish at the core boundary, big discrepancies are thus expected in the

reflector region. Concerning the eigenvalue calculation, the static core simulator gives a

value of 1.00332, whereas SIMULATE-3 gives a value of 0.99998. This discrepancy

was expected since the static core simulator represents a 2-D system in which the axial

leakage was eliminated, whereas SIMULATE-3 represents an actual 3-D system.

2.3. Description of the adjoint core simulator
As mentioned previously, the adjoint flux, together with the static flux, is needed in this

theoretical investigation for the calculation of the coolant average temperature noise

throughout the core (see Section 3).

In the two-group diffusion approximation, the adjoint flux is solution of the

following matrix equation:

(19)

where is given by Eq. (9) and where is the adjoint of , i.e. its transpose:

(20)

The spatial discretisation is carried out as before, i.e. by using the finite differences

and the so-called “box-scheme”:

(21)

with the different coefficients , , , , , and given

previously (see Table 2 and Table 3).

The matrix equation given by Eq. (19) has to be used to determine both the two-

group adjoint fluxes and the eigenvalue. In principle the eigenvalue of the direct problem

should be equal to the eigenvalue of the adjoint problem. Nevertheless, due the

discretisation scheme used in the calculations, it is not granted that these two eigenvalues

D r( )∇ 2 Σ
+

r( )+[ ]
φ1

+
r( )

φ2

+
r( )

× 0=

D r( ) Σ
+

r( ) Σ r( )

Σ
+

r( )

νΣ f 1, r( )
keff

---------------------- Σa 1, r( )– Σrem r( )– Σrem r( )

νΣ f 2, r( )
keff

---------------------- Σa 2, r( )–

=

1

∆x ∆y⋅
------------------ DG r( )∇ 2φG

+
r( )dr

I J,( )
∫

aG I J, ,
x φG I J, ,

+
bG I J, ,

x φG I, 1+ J,
+

cG I J, ,
x φG I, 1– J,

+
+ +( )

∆x
------------------------------------------------------------------------------------------------------------------------------–

aG I J, ,
y φG I J, ,

+
bG I J, ,

y φG I J 1+, ,
+

cG I J, ,
y φG I J 1–, ,

+
+ +( )

∆y
------------------------------------------------------------------------------------------------------------------------------–

=

aG I J, ,
x

aG I J, ,
y

bG I J, ,
x

bG I J, ,
y

cG I J, ,
x

cG I J, ,
y
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are still identical in the discretised problem. If the two simulators, i.e. the static and the

adjoint ones, are consistent, then the two numerical eigenvalues should be very close to

each other (as will be seen in the following, the two eigenvalues are actually identical).

Therefore the eigenvalue calculation has to be performed simultaneously with the flux

calculation, in order to verify that the difference between the two eigenvalues is

negligible. This can be done as before via the so-called outer iteration that can be

summarised as follows. If one rewrites Eqs. (19) and (20) as:

(22)

where and are the adjoint of and respectively, i.e. their trans-

pose:

(23)

(24)

and

(25)

then the flux and the eigenvalue can be searched for by using an iterative scheme. By us-

ing as before the power iteration method, the flux and the eigenvalue are given by the fol-

lowing expressions:

(26)

and

(27)

where (n) represents the iteration number. The starting point of this method is an initial

guess for and . In this study, the values given by SIMULATE-3 were cho-

sen4. Then, a new adjoint flux distribution is calculated via Eq. (26), and subsequently a

new eigenvalue is estimated via Eq. (27). This procedure is repeated until some conver-

M
+

r( ) φ
+

r( )× 1

keff
+

---------F
+

r( ) φ
+

r( )×=

M
+

r( ) F
+

r( ) M r( ) F r( )

M
+

r( )
Σa 1, r( ) Σrem r( ) D1 r( )∇ 2

–+ Σrem r( )–

0 Σa 2, r( ) D2 r( )∇ 2
–

=

F
+

r( )
νΣ f 1, r( ) 0

νΣ f 2, r( ) 0
=

φ
+

r( )
φ1

+
r( )

φ2

+
r( )

=

φ
+ n( )

r( ) M
+ 1–

r( ) 1

keff
+ n 1–( )------------------F

+

r( ) φ
+ n 1–( )

r( )××=

keff
+ n( ) F

+

r( ) φ
+ n( )

r( )×

F
+

r( ) φ
+ n 1–( )

r( )×
----------------------------------------------- keff

+ n 1–( )×=

φ
+ 0( )

r( ) keff
+ 0( )
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gence criteria regarding both the neutron flux and the eigenvalue are fulfilled. Then the

results have to be scaled since Eq. (19) is a homogeneous equation. The scaling is required

for comparison purposes between the adjoint core simulator and SIMULATE-3 (the MTC

estimated theoretically via the noise technique is independent of this scaling, see Section

3). The scaling factor is calculated so that the volume integral of the fast adjoint flux is

equal to unity:

(28)

where Vcore is the volume of the core (without reflector, i.e. only the fuel region).

This adjoint core simulator was then benchmarked against SIMULATE-3. In such a

benchmark, the cross-sections used in the 2-D simulator were once again obtained

directly from the 3-D core modelled in SIMULATE-3 without any modification of the

absorption cross-sections. It is therefore expected that the eigenvalue given by the

adjoint core simulator (2-D system) will be significantly larger than the one given by

SIMULATE-3 (3-D system).

The results of the benchmarking are given in Figs. 3 and 4. As can be seen in these

figures, the agreement between the adjoint core simulator and SIMULATE-3 is very

good in the fuel zone, whereas the discrepancy is significant in the reflector zone. The

same reasons as the ones presented for the static core simulator could explain this

discrepancy, i.e. the difference in the spatial discretisation schemes between

SIMULATE-3 and the adjoint core simulator, and the different number of nodes used for

the calculations. Concerning the eigenvalue calculation, the adjoint core simulator gives

a value of 1.00332, whereas SIMULATE-3 gives a value of 0.99998 for . These

values are identical to the ones given by the static direct calculations. The discrepancy

between the SIMULATE-3 and the adjoint core simulator results was expected since the

adjoint core simulator represents a 2-D system in which the axial leakage was

eliminated, whereas SIMULATE-3 represents an actual 3-D system.

2.4. Description of the noise simulator
The neutron noise simulator was extensively described in (Pázsit et al, 2000) and (Pázsit

et al, 2001). In the following, only the main characteristics of this neutron noise simulator

are recalled.

The neutron noise simulator is able to calculate the spatial distribution of the

neutron noise induced by any given spatially distributed or localised noise sources.

Several types of noise sources can be simultaneously investigated, i.e. a perturbation of

the macroscopic absorption cross-section (fast and/or thermal), and/or a perturbation of

the macroscopic removal cross-section, and/or a perturbation of the macroscopic fission

cross-section (fast and/or thermal). The neutron noise simulator is able to model the

noise sources of the “absorber of variable strength” type (the so-called reactor

4. For the adjoint flux, the axially condensed adjoint flux given by SIMULATE-3 is actually used.

1

V core
------------- φ1

+
r( ) rd

core
∫ 1=

keff
+
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oscillator). The simulator cannot model noise sources of the “moving absorber” type.

Furthermore, the calculations are directly performed in the frequency domain.

If the noise source is a point source of unit strength, the neutron noise simulator

actually estimates the 2-D 2-group discretised Green’s function , the
index representing the fast and thermal groups respectively. More specifically,
these transfer functions give the flux noise in and at a frequency
induced by a unit cross-section noise source located at at the same
frequency.

In the linear two-group diffusion theory, the neutron noise can be expressed as a

solution of the following matrix equation:

(29)

where the different matrices/vector are given as:

(30)

(31)

(32)

(33)

and the different coefficients are defined as:

(34)

(35)

GXS i→ r r ′ ω, ,( )
i 1 2,=

δφi r f ω 2π⁄=
δXS 1= r ′

D r( )∇ 2 Σ r ω,( )+[ ]
δφ1 r ω,( )

δφ2 r ω,( )
×

φrem r( )δΣrem r ω,( ) φa r( )
δΣa 1, r ω,( )

δΣa 2, r ω,( )
φf+ r ω,( )

δνΣ f 1, r ω,( )

δνΣ f 2, r ω,( )
+=

Σ r ω,( )
Σ1 r ω,( )– νΣ f 2, r ω,( )

Σrem r( ) Σa 2, r ω,( )–
=

φrem r( )
φ1 r( )

φ– 1 r( )
=

φa r( )
φ1 r( ) 0

0 φ2 r( )
=

φf r ω,( ) φ1 r( ) 1
iωβeff

iω λ+
---------------– 

 – φ2 r( ) 1
iωβeff

iω λ+
---------------– 

 –

0 0

=

Σ1 r ω,( ) Σa 1, r( ) iω
v1

------ Σrem r( ) νΣ f 1, r( ) 1
iωβeff

iω λ+
---------------– 

 –+ +=

νΣ f 2, r ω,( ) νΣ f 2, r( ) 1
iωβeff

iω λ+
---------------– 

 =
-22-



(36)

The matrix  is identical to the one given by Eq. (9).

The spatial discretisation is carried out as before, i.e. by using the finite differences

and the so-called “box-scheme”:

(37)

with the different coefficients , , , , , and given

previously (see Table 2 and Table 3).

Unlike the calculation of the static flux and the adjoint flux, the equation giving the

neutron noise, i.e. Eq. (29), is not a homogeneous equation, but represents a source

problem. Consequently, the discretised form of the matrix can be

directly inverted, and the flux noise calculated accordingly.

Even if Eq. (29) was written for any kind of noise sources, only one type will be

investigated in the MTC study. In order to determine which macroscopic cross-section is

the most sensitive to the coolant temperature, two SIMULATE-3 calculations were run:

the first one at the nominal operating conditions corresponding to the operational point

described previously, i.e. on May 5th, 1999, and the second one for the same burnup but

with a core inlet temperature increased by +5 F (2.78 C). For this second calculation,

the fuel temperature was kept equal to the one estimated during the first calculation, and

so were the main fission products (promethium, samarium, iodine, and xenon). Three

quantities are then studied (all the 0-D parameters are directly obtained from

SIMULATE-3):

• The relative variation (in percent) of each macroscopic cross-section defined as:

(38)

• The relative variation (in percent) of the corresponding reaction rate defined as:

(39)

where G is the group index associated with the cross-section variation which is studied;

Σa 2, r ω,( ) Σa 2, r( ) iω
v2

------+=

D r( )

1

∆x ∆y⋅
------------------ DG r( )∇ 2δφG r ω,( )dr

I J,( )
∫

aG I J, ,
x δφG I J, , ω( ) bG I J, ,

x δφG I, 1+ J, ω( ) cG I J, ,
x δφG I, 1– J, ω( )+ +( )

∆x
--------------------------------------------------------------------------------------------------------------------------------------------------------------------–

aG I J, ,
y δφG I J, , ω( ) bG I J, ,

y δφG I J 1+, , ω( ) cG I J, ,
y δφG I J 1–, , ω( )+ +( )

∆y
--------------------------------------------------------------------------------------------------------------------------------------------------------------------–

=

aG I J, ,
x

aG I J, ,
y

bG I J, ,
x

bG I J, ,
y

cG I J, ,
x

cG I J, ,
y

D r( )∇ 2 φ r ω,( )+[ ]

° °

∆X S0-D

X S0-D T, in 5+ X S0-D T, in
–

X S0-D T, in

------------------------------------------------------------ 100×=

∆RR0-D

X S0-D T, in 5+ φG 0-D T in 5+, ,× X S0-D T, in
φG 0-D T in, ,×–

X S0-D T, in
φG 0-D T in, ,×

------------------------------------------------------------------------------------------------------------------------------- 100×=
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• The corresponding reactivity variation (in pcm) for each different type of cross-sec-

tion given as:

(40)

where the effective multiplication factor, at a given core inlet temperature, is evaluated

according to the following formula:

(41)

All the symbols in Eq. (41) have their usual meaning. When evaluating Eq. (41), the

effect of the change of each cross-section was studied separately, i.e. was

estimated by using the value of this specific cross-section at , all the other

cross-sections taken at .

The results are summarised in the following Table 4. As can be seen, the cross-

section that has the largest reactivity effect is the macroscopic removal cross-section.

Therefore in the following, the noise source will be assumed to be a macroscopic

removal cross-section noise, i.e. the noise simulator will calculate the transfer function

from the macroscopic removal cross-section noise source to the induced neutron noise.

The neutron noise simulator was already benchmarked previously during Stage 7 of

the SKI project (Pázsit et al, 2001). In the following, only the case of a macroscopic

removal cross-section noise is presented. The layout of the core in this benchmark is

representative of the Swedish BWR Forsmark-1. The core was assumed to be a two-

region system (fuel + reflector), in which each region was spatially homogeneous. The

material constants, the point-kinetic parameters and the flux data were obtained from a

Table 4: Effect of a variation of the core inlet temperature (+5 F) on each of the
macroscopic cross-sections

(%)

-0.94 -0.15 -0.21 -0.17 -0.13

(%)

-0.21 0.59 -0.21 0.57 -0.14

(pcm)

-414 60 207 -35 -105

∆ρ
keff T in 5+, keff T in,–

keff T in,
2

----------------------------------------------- 10
5×=

keff

νΣ f 2 0-D, , νΣ f 1 0-D, ,
φ1 0-D,
φ2 0-D,
--------------×+

Σa 2 0-D, ,
---------------------------------------------------------------------------

Σrem 0-D,
Σa 1 0-D, , Σrem 0-D,+
----------------------------------------------

1

1
D1 0-D,

Σa 1 0-D, , Σrem 0-D,+
---------------------------------------------- Bg 1 0-D, ,

2×+

----------------------------------------------------------------------------------
1

1
D2 0-D,

Σa 2 0-D, ,
------------------- Bg 2 0-D, ,

2×+

-------------------------------------------------------×××

=

keff T in 5+,
T in 5+

T in

°

X S0-D Σrem 0-D, Σa 1 0-D, , Σa 2 0-D, , νΣ f 1 0-D, , νΣ f 2 0-D, ,

∆X S0-D

∆RR0-D

∆ρ
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generic General Electric BWR/6. At that time, the flux was not recalculated with a

dicretisation scheme compatible with the finite difference scheme, so that the

macroscopic cross-sections were slightly adjusted in each node in order to fulfil the

balance equations in each node with respect to the finite difference scheme (as written in

(Pázsit et al, 2001), this adjustment was only noticeable close to and in the reflector

region). The noise source was located in the middle of the core. Since the core was

roughly homogeneous, an analytical solution could be estimated and was used as a

reference solution. The results of this benchmark are presented in Figs. 5 and 6. Since the

noise source was located in the middle of the core, the results are rotational-invariant

around the z-axis crossing the core centre. Therefore only the radial dependence of the

fluxes is plotted in the Figures.

It can be noticed that the agreement between the numerical solution and the

analytical one is very good for both the magnitude and the phase of the induced neutron

noise. Since the noise simulator calculates a spatially-averaged flux noise over each

node, the analytical solution was also averaged over each node, so that both solutions

could be directly compared. The first point of the numerical solution (from the core

centre) represents therefore the flux noise in the node where the noise source is located.

The analytical solution gives obviously a different solution in this node, and thus the first

point of the analytical solution was systematically disregarded. Finally, due to the cross-

section adjustment, which is noticeable only around the reflector region, the accuracy

close to the reflector deteriorates slightly, but remains still acceptable. Another reason

explaining this discrepancy lies with the fact that the analytical solution does not take

any reflector into account.

3. Derivation of the MTC noise estimators for
2-D 2-group heterogeneous systems

According to the recent American Standard (ANSI, 1997), the MTC is defined as the var-

iation of reactivity induced by a variation of the inlet temperature of the core, divided by

the variation of the core average of the coolant temperature. In the noise analysis tech-

nique, the MTC can therefore be inferred from the reactivity noise and the core average

coolant temperature noise. In the following, expressions for these two quantities are de-

rived in the two-group formalism. The theoretical two-group MTC noise estimators are

then derived.

3.1. Calculation of the reactivity noise in multigroup
perturbation theory
In the following, the reactivity noise induced by a given noise source is presented. As

mentioned previously, emphasis is put on the case of a macroscopic removal cross-section

noise source, but the derivation is presented for a much more general case, i.e. any type

of noise source can be applied.

The starting point is to write the multigroup direct equations of the unperturbed

system in the diffusion approximation:
-25-
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Figure 5: Comparison of the magnitude of the flux noise calculations between the
neutron noise simulator and the reference solution in the benchmark case; the
comparison of the fast noise is given in the upper figure, and the comparison of
the thermal noise is given in the lower one
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Figure 6: Comparison of the phase of the flux noise calculations between the neutron
noise simulator and the reference solution in the benchmark case; the
comparison of the fast noise is given in the upper figure, and the comparison of
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(42)

with

(43)

(44)

All the symbols have their usual meaning.

The corresponding adjoint equations read as:

(45)

The direct equations for the perturbed system are then given by:

(46)

with the perturbed quantities defined by the following generic formulation:

(47)

where represents any of the following parameters: , , , ,

, and .

Multiplying Eq. (46) by , Eq. (45) by , substracting these two

quantities, and applying the Stokes-Ostrogradski theorem leads to (Bell and Glasstone,

1970):

∇ DG r( )∇φ G r( ) Σ0 G, r( )φG r( )+⋅–

ΣG ′ G→ r( )φG ′ r( )
νΣ f G ′, G→ r( )

keff
----------------------------------φG ′ r( )

G ′
∑+

G ′
∑=

Σ0 G, r( ) Σa G, r( ) ΣG G ′→ r( )
G ′
∑+=

νΣ f G ′ G→, r( ) χGνΣ f G ′, r( )=

∇ DG r( )∇φ G
+

r( ) Σ0 G, r( )φG
+

r( )+⋅–

ΣG G ′→ r( )φG ′
+

r( )
νΣ f G, G ′→ r( )

keff
+

----------------------------------φG ′
+

r( )
G ′
∑+

G ′
∑=

∇ DG
*

r t,( )∇φ G
*

r t,( ) Σ0 G,
*

r t,( )φG
*

r t,( )+⋅–

ΣG ′ G→
*

r t,( )φG ′
*

r t,( )
νΣ f G ′, G→

*
r t,( )

keff
*

---------------------------------------φG ′
*

r t,( )
G ′
∑+

G ′
∑=

P
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r t,( ) P r( ) δP r t,( )+=

P DG Σ0 G, ΣG ′ G→ νΣ f G ′, G→
φG keff

φG
+
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(48)

Summing over all the groups G, and neglecting the second-order terms gives:

(49)

with N being equal to

(50)

In two-group theory, it is common practice to assume that ,

and . In principle, one should also have

. Nevertheless, it is not granted that the two discretised problems, i.e. the di-

rect one and the adjoint one, will give the same eigenvalue. Running the two simulators

(the direct and the adjoint) seems to prove that the same eigenvalue is reached in the pow-

er iteration method. Therefore, one will assume anyway in the following that .

The Fourier transform of Eq. (50) gives then the following results:

• For a macroscopic removal cross-section noise source:

(51)
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• For a macroscopic fast absorption cross-section noise source:

(52)

• For a macroscopic thermal absorption cross-section noise source:

(53)

• For a macroscopic fast fission cross-section noise source:

(54)

• For a macroscopic thermal fission cross-section noise source:

(55)

Regarding now the MTC, its definition allows writing in the frequency domain:

(56)

In the following, one will assume that there is proportionality between the coolant tem-

perature noise and the macroscopic cross-section noise via a frequency- and space-inde-

pendent coefficient K as follows:

(57)

If the macroscopic cross-section noise is spatially homogeneous (homogeneous tempera-

ture noise), i.e. , the MTC can be easily estimated by using

one of Eqs. (51) - (55) depending on which type of noise source is studied. One thus gets:

(58)
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with the following function :

• in case of a macroscopic removal cross-section noise source:

(59)

• in case of a macroscopic fast absorption cross-section noise source:

(60)

• in case of a macroscopic thermal absorption cross-section noise source:

(61)

• in case of a macroscopic fast fission cross-section noise source:

(62)

• in case of a macroscopic thermal fission cross-section noise source:

(63)

If the macroscopic cross-section noise is not spatially homogeneous (heterogeneous

temperature noise), the MTC should nevertheless remain identical to the one calculated

beforehand (the MTC is independent of the structure of the temperature noise throughout

the core). This leads to the fact that the core average macroscopic cross-section noise and

the core average temperature noise should be calculated by using as a

weighting function as follows:

(64)

and

(65)
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3.2. Calibration of the noise simulator results to the
SIMULATE-3 results
The MTC which has to be considered as a reference value is the one given by SIMU-

LATE-3 (see Section 2.1). The results of the noise analysis technique can be properly

scaled to this reference value by adjusting the previous coefficient K. By rewriting

Eq. (58), one gets:

(66)

Depending on the noise source type, the weighting function is different, and

therefore the coefficient K differs, as shown in Table 5.

3.3. Derivation of the MTC noise estimators in the 2-D
2-group approximation
In the following, two MTC noise estimators are derived in the 2-D 2-group approxima-

tion. The first MTC noise estimator is the one that was used in all the experimental work

so far and relies on the local temperature noise, i.e. the neutron noise is measured some-

where in the core, and the temperature noise is measured at the same radial location. The

second noise estimator that is worth investigating is the one relying on the core average

temperature noise. For both estimators, one further assumes that the reactor behaves in a

point-kinetic way at the frequency of interest, therefore the reactivity noise can be approx-

imated by:

(67)

where is the zero-power reactor transfer function, i.e. its open-loop transfer func-

tion, and is the point-kinetic component of the flux noise5. Consequently, the

second noise estimator, i.e. the one that was suggested by us recently (see (Pázsit et al,

2000), and (Demazière and Pázsit, 2002)), is expected to be biased only by the deviation

Table 5: Value of the coefficient K depending on the noise source type

noise source

type

K
(cm. C/pcm)

-0.313 0.818 0.176 -0.821 -0.128

5. In this study, and represent the contribution of both the fast and thermal

groups, whereas it is more likely that the in-core neutron detectors are only sensitive to the ther-

mal flux.

K
1

MTC
-------------

w∆XS r( ) rd∫
νΣ f 1, 1→ r( )φ1

+
r( )φ1 r( ) νΣ f 2, 1→ r( )φ1

+
r( )φ2 r( )+[ ] rd∫

-------------------------------------------------------------------------------------------------------------------------------------------=
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°

δρ ω( ) 1

G0 ω( )
----------------

δφpk
r ω,( )

φ r( )
--------------------------=

G0 ω( )
δφpk

r ω,( )

δφpk
r ω,( ) φ r( )
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of the reactor response from point-kinetics, whereas the first noise estimator is also biased

by the non-homogeneous structure of the temperature noise throughout the core.

The traditional noise estimator, i.e. the one using the local temperature noise, is

defined as:

(68)

where the CPSD and APSD stand for the Cross-Power Spectral Density and the Auto-

Power Spectral Density respectively. This noise estimator can be numerically evaluated

in the two-group approximation by using the static core simulator, and the neutron noise

simulator. One gets:

(69)

where , represents the 2-D 2-group discretised Green’s func-
tion estimated by the neutron noise simulator, in the fast and thermal groups respectively.

The new noise estimator, i.e. the one relying on the core average of the temperature

noise, is given by:

(70)

This noise estimator can also be numerically evaluated in the two-group approximation

by using the static core simulator, the adjoint core simulator, and the neutron noise simu-

lator. One gets:

(71)

The noise estimators given by Eqs. (69) and (71) have to be spatially discretised in

2-D. Since the static core simulator, the adjoint core simulator, and the neutron noise

simulator only give node-averaged values of the static flux, the adjoint flux, and the
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------×

=
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neutron noise respectively, the noise estimators can only be approximated since a

discretisation that preserves the reaction rates requires the spatially-dependent static

flux, adjoint flux, and neutron noise within each node.

One therefore gets for the  noise estimator:

(72)

The summation over can be avoided since the neutron noise simulator is able to

calculate the flux noise induced by a spatially distributed noise source. The following

methodology can therefore be applied:

• For each pair, one calculates the neutron noise and

induced by the spatially distributed noise source ;

• The discretised  noise estimator is thus given by:

(73)

For the  noise estimator now, one has:

(74)

As before, the summation over can be avoided in the numerator of Eq. (74) since

the neutron noise simulator is able to calculate the flux noise induced by a spatially dis-

tributed noise source. The following methodology can therefore be applied:

• For each pair, one calculates the neutron noise and

induced by the spatially distributed noise source

;

• The discretised  noise estimator is thus given by:
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(75)

The static core simulator, the adjoint core simulator, the neutron noise simulator, the

calculation of the coefficient K depending on the noise source type, and the derivation of

the MTC noise estimators can be checked by running a test case. Namely, one assumes

that the temperature noise is spatially homogeneous throughout the core. In such a case,

the reactor behaves in a point-kinetic way (Demazière and Pázsit, 2002), and the local

temperature noise is identical to the core average temperature noise. Consequently, the

noise estimator should provide the correct MTC value. As can be seen in

Figs. 7 - 11, the correct MTC value is given throughout the core. The

noise estimator is obviously identical to the noise estimator in such a case

(homogeneous temperature noise in the core).
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Figure 7: MTC noise estimation in case of a spatially homogeneous temperature
noise proportional to the macroscopic removal cross-section noise
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Figure 8: MTC noise estimation in case of a spatially homogeneous temperature
noise proportional to the macroscopic fast absorption cross-section noise
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Figure 9: MTC noise estimation in case of a spatially homogeneous temperature
noise proportional to the macroscopic thermal absorption cross-section noise
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Figure 10: MTC noise estimation in case of a spatially homogeneous temperature
noise proportional to the macroscopic fast fission cross-section noise
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Figure 11: MTC noise estimation in case of a spatially homogeneous temperature
noise proportional to the thermal fission cross-section noise
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4. Results
In the following, the results of the theoretical MTC noise investigations are presented. As

mentioned previously, all the calculations were performed at the frequency of 1 Hz. Fur-

thermore, only one given core burnup was considered, i.e. 8.767 GWd/tHM. The fact that

the usual MTC noise estimator, i.e. , underestimates the actual MTC value

by a constant factor throughout the fuel cycle will be therefore investigated at a later stage.

4.1. Specification of the noise source
In this study, only the macroscopic removal cross-section noise source is studied, since

the reactivity effect induced by a change in the moderator temperature on the removal

cross-section is the most significant one (see Table 4).

As presented in (Demazière and Pázsit, 2002), the noise source is defined directly

through its spatial statistical properties as:

(76)

with

(77)

and where represents the noise source strength, i.e. its APSD. Different

functions are planned to be investigated in the future. In this study, only one type of

shape function is investigated. Namely, one has:

(78)

where R is the core radius and . This shape function corresponds to some ex-

perimental evidence that the temperature noise is larger close to the core boundary than

at the core centre (Karlsson, 2000). In this model, l is called the correlation length of the
temperature fluctuations and is supposed to be space independent. The correlation length
indicates roughly the maximum distance between two points that can be considered as
having a coherent behaviour. For greater distances, their behaviour can be assumed to be
completely uncorrelated. Several correlation lengths are investigated in this study:

, , and .

Eq. (76) has to be used as a noise source for the neutron noise simulator. Therefore,

this noise source needs also to be spatially discretised in 2-D. A rigorous discretisation

would be to calculate the following quantities:
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(79)

This discretised CPSD function is relatively complex to evaluate, since in 2-D this corre-

sponds to a quadruple spatial integral. Therefore, a more simple way of discretizing the

CPSD function was adopted, namely the CPSD function was discretised by simply choos-

ing the value of the function in the middle of each node. The corresponding discretised

APSD function can be seen in Fig. 12.

4.2. Calculated MTC noise estimators
A comparison of the traditional MTC noise estimator and the new

MTC noise estimator to the true MTC is plotted for a correlation length of

in Fig. 13, for a correlation length of in Fig. 14, and for a corre-

lation length of  in Fig. 15.

As can be seen in these Figures, the new MTC noise estimator

always correctly estimates the actual value of the MTC, whatever the correlation length

of the temperature noise is and whatever the location of the measurement of the neutron

noise is. Since this noise estimator still relies on a point-kinetic behaviour of the reactor,

this suggests that the deviation of the reactor response from point-kinetics is negligible

with respect to the MTC determination. Consequently, measuring the total flux noise

instead of only its point-kinetic component does not seem to affect significantly the
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Figure 12: Discretised APSD function
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Figure 13: Comparison between and the actual MTC value (upper

figure), and between and the actual MTC value (lower figure),

for a correlation length of
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Figure 14: Comparison between and the actual MTC value (upper

figure), and between and the actual MTC value (lower figure),

for a correlation length of
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Figure 15: Comparison between and the actual MTC value (upper

figure), and between and the actual MTC value (lower figure),

for a correlation length of
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accuracy of the noise analysis technique (as can be seen on the Figures, the discrepancy

due to the fact that the reactor does not behave perfectly in a point-kinetic manner is less

than 4%).

In contrast to the new MTC noise estimator, the traditional noise

estimator is systematically biased low compared to the actual MTC value. The smaller

the correlation length of the temperature noise is, the bigger the discrepancy is. This

traditional MTC noise estimator is also strongly space-dependent. Compared to the

previous 1-D study in a homogeneous reactor, the underestimation seems to be larger in

2-D than in 1-D for the same correlation length. Furthermore, the discrepancy in the 2-D

case seems to be also more homogeneous than in the 1-D case. If one tries to relate these

theoretical investigations to the experimental MTC noise studies performed so far, it

seems that in the centre of the core a realistic correlation length seems to be around 100 -

150 cm in the 2-D system, because with this correlation length the underestimation of the

estimator is about a factor five, which corresponds to the experimental

results so far. The same underestimation in the 1-D case was obtained with a correlation

length of about 15 cm.

5. Conclusions
In this study, the effect of a non-homogeneous distribution of the moderator temperature

noise on the MTC estimation by noise analysis was investigated. All the models relied on

the 2-group diffusion approximation, and realistic data corresponding to a commercial nu-

clear reactor were axially condensed in 2-D.

It was found that the main reason why the traditional MTC noise estimator

systematically underestimates the actual value of the MTC lies with the fact that the

temperature noise might be radially heterogeneous, whereas this traditional MTC

estimator only uses the temperature noise at the same radial location as the neutron

noise. Another noise estimator (already proposed in (Pázsit et al, 2000)) was tested and

was proven to always give the correct MTC value within an accuracy of 4% of the

design-predicted MTC value. This slight discrepancy results from the deviation of the

reactor response from point-kinetics, an approximation on which this new MTC noise

estimator still relies. The main difference between the new and traditional MTC noise

estimators is that the new one takes the heterogeneous structure of the temperature noise

into account.

As a matter of fact, this estimator is based on the core average temperature noise

that has first to be estimated. This estimation relies on the possibility of measuring the

coolant temperature noise inside the core, and then on calculating the average by using a

proper weighting function. Several weighting functions are possible depending on the

type of noise source that is assumed to be the most sensitive to the coolant temperature

noise.

Such weighting functions are planned to be tested in the near future since a noise

measurement was recently performed in Ringhals-2, measurement in which Gamma-

Thermometers (GTs) were used together with a couple of in-core neutron detectors and a

core-exit thermocouple. It was proven that GTs are actually working as ordinary

thermocouples in the frequency range of interest for the MTC investigation by noise

H 1

biased
r ω,( )

H 1

biased
r ω,( )
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analysis. Therefore, these GTs offer a unique opportunity to test this new MTC noise

estimator, and to compare it to the traditional one. If the heterogeneous structure of the

temperature noise is actually responsible for the underestimation of the MTC noise

estimation via the traditional noise estimator, then the new one should give the correct

MTC value.
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7. Nomenclature
APSD Auto-Power Spectral Density

BOC Beginning Of Cycle

CPSD Cross-Power Spectral Density

EOC End Of Cycle

GT Gamma-Thermometer

HZP Hot Zero Power

MTC Moderator Temperature Coefficient

MOX Mixed Oxide

PWR Pressurized Water Reactor
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