SKI perspective

Background

As part of the licence for SFR-1 a renewed safety assessment should be carried out at least each ten years for the continued operation of the SFR-1 repository. SKB is currently engaged in the SAFE project to evaluate the performance of the repository system. SKI is currently preparing for its review of this renew safety assessment.

Purpose of the project

SKI work has so far been focused on the construction of a new Process Influence Diagram (PID) for the SFR repository, including the far-field. Another task is the testing of the software program SPARTA (developed by QuantiSci for SKI) on real PIDs. The program will serve as a tool for development and updating of PIDs and for scenario analysis. Assigning influence levels to the SFR PID is also a part of this task.

Results and continued work

The PID that now has been set up for the SFR repository is based on a list of FEPs (Features, Events and Processes) describing the future evolution of the repository system. This FEP-list together with the PID, that has been prepared using the software program SPARTA and the SPARTA program itself, make a powerful tool for scrutinise the development of the SFR-1 system.

The PID for SFR is not final product but must be updated whenever new knowledge and understanding of the repository system is gained.

Effect on SKI's work

This project forms an essential part of the SKI's review of SKB's project SAFE for SFR-1.

Project information

Responsible at SKI has been Benny Sundström.

SKI ref. 14.9-991358/99209 (and SKI ref. 14.9-980661/98144).

Relevant SKI report is: SKI Report 95:26, SITE-94, Systems Analysis, Scenario Construction and Consequence Analysis Definition for SITE-94, Neil A.Chapman, Johan Andersson, Peter Robinson, Kristina Skagius, Clas-Otto Wene, Marie Wiborgh, Stig Wingefors, June 1995.

Final report within the project: System studies in PA: Development of process influence diagram (PID) for SFR-1 repository. Near-field + far-field, MSCI-9916, M. Stenhouse, W. Miller, N. Chapman August 2000.

Summary

Scenario development is a key component of the performance assessment (PA) process for radioactive waste disposal, the primary objective being to ensure that all relevant factors associated with the future evolution of the repository system are properly considered in PA. As part of scenario development, a list of features, events and processes (FEPs) are identified and assembled, representing the Process System, with interactions/influences between FEPs incorporated in a Process Influence Diagram (PID).

This report documents the technical work conducted between 1997 and the end of 1999 under the Systems Studies Project. The overall objective of this project has been the construction of a PID for the SFR-1 repository (final repository for reactor waste), this PID being the first stage in the identification of scenarios to describe future evolution of this repository.

The PIDs discussed in this report have been created using two software applications: existing commercial software (Business Modeller, Infotool AB. Stockholm, Sweden) and, more recently, a newly developed software tool SPARTA (Enviros QuantiSci, Henley, U.K.). Although the focus of this report is on the application of SPARTA to PID development, it is important to document the work carried out prior to SPARTA being available, in order to provide a complete record of the entire SFR-1 PID development effort as well as preserving the context of the multi-year project.

Following a description of the different disposal sections of the SFR-1 and the various near-field barriers, the sequential development (i.e. near-field of Silo, BMA, BLA, BTF sections; far-field; integrated near-field + far-field) of the PID for SFR-1 repository system using Business Modeller is described. Owing to the complexity of the repository, in terms of number of both different disposal sections (Silo, BLA, BMA, BTF) and barriers associated with each section, the two-dimensional (2D) PID created for SFR-1 using Business Modeller is visually complex and potentially difficult to interpret. Primarily for this reason, the need for an alternative approach was recognised in 1996 and the decision was taken to develop new software for this purpose. Following a consensus on the specific requirements of the new software, a first version of SPARTA became available towards the end of 1998, with subsequent versions being released during 1999.

SPARTA is used to generate a three-dimensional (3D) PID consisting of a series of layers, each underlying layer providing additional (more detailed) information about the Process System. The uppermost layer or diagram may be regarded as a top-level view of the repository system (near-field, far-field and biosphere). In the PID developed for SKI, underlying layers or diagrams often have some physical meaning, *e.g.* sections of the repository (Silo, BLA, BMA, BTF sections, repository zone), or barriers of a section (e.g. for the Silo - backfill, reinforced shell, porous grout or mortar, waste package). Other layers contain groups of related FEPs, *e.g.* geochemical FEPs. A total of 95 drawings, typically consisting of 6-8 FEPs each, describe the SFR-1 repository system.

The two PIDs developed for the SFR-1 repository provide different representations of the near-field and far-field of the repository system; the first PID being two-dimensional

and the later one three-dimensional. Despite the different approaches, the primary objective of constructing each PID has been the same: firstly, to ensure that all FEPs relevant to the future evolution of the repository system are considered, and secondly, that all "essential" Influences are identified so that they may be incorporated in the subsequent modelling of the system's evolution.

Table of contents

1 Introduction to Project			
	1.1 1.2 1.3	Process System and Process Influence Diagram Phases of Project Layout of Report	1
2	Wa	ste Disposal Concepts for SFR-1 Repository	3
	2.1 2.2	Silo Near-Field: Engineered Barriers Near-Field Barriers of Other Sections of Repository	
3	Pre	paration of Near-Field FEP list for SFR-1	9
	3.13.2	Identification of Near-Field FEPs.3.1.1Methodology for Preparing PID FEP List.3.1.2Categorisation of Near-field FEPs3.1.3Rationalisation of Near-field FEPs.Preparation of Far-Field FEP List	9 .10 .11
4	Dev	elopment of PID for SFR-1 Repository Using Business Modeller	.13
	4.14.24.3	Construction of Near-Field PIDs	.13 .14 .15
5	Dev	elopment of PID for SFR-1 Using SPARTA	.17
	5.1 5.2 5.3	Description of Hierarchical Approach Description of SPARTA Code and SPARTA PIDs Construction of SPARTA PID for SFR-1 5.3.1 Stages in Development of Current PID 5.3.2 Presentation of the Current PID	.18 .21 .21
	5.4	Comments on Current SPARTA PID	.22
6	Sun	nmary of Project	.23
	6.1	Recommendations	.23
Ref	erenc	es	.25
App	endi	x A: Compilation of Near-Field FEPs from International FEP List	.27

Appendix B:	Reduced List of Near-Field Barrier FEPs: Sorted by Category	1
Appendix C:	FEP List for Near-Field PID for L/ILW Disposal	3
Appendix D:	Compilation of Far-Field FEPs from International FEP List	7
Appendix E:	Reduced List of Far-Field FEPs: Sorted by Category7	1
Appendix F:	FEP List for Far-Field PID for SFR-17	3

Appendix G: Influences in the Reference Case L/ILW Near- Field Section of PID	75
Appendix H: Influences in the Far-Field Section of PID for SFR-1	89
Appendix I: FEPs From SPARTA PID for SFR-1 Repository: Near-Field	93
Appendix J: FEPs Included in SPARTA PID for SFR-1 Repository: Far-Field	99
Annexe I: Extracts of PID for Near-Field Section of Silo, SFR-1 Repository	Annexe I-1
Annexe II: Extracts of PID for Near-Field Rock Zone and Far-Field Sections of Repository	
Annexe III: Reference Case PID for SFR-1 Repository: Individual Drawings from SPA	

1 Introduction to Project

1.1 Process System and Process Influence Diagram

Scenario development is a key component of the performance assessment (PA) process for radioactive waste disposal (NEA, 1992), the primary objective being to ensure that all relevant factors associated with the future evolution of the repository system are properly considered in PA. As part of scenario development, a list of features, events and processes (FEPs) are identified and assembled in a Process System, with interactions/influences between FEPs incorporated in a Process Influence Diagram (PID) (Chapman et al., 1995). This organised assembly is required to describe the performance of the disposal system (near-field, far-field and biosphere), including radionuclide release and migration, so that its behaviour can be predicted from a given set of external conditions. A scenario is then defined by a specific set of external conditions which influences the FEPs in the Process System. For each scenario, FEPs and their interactions/influences can be used to identify what modelling or calculations are necessary to determine the consequences of that scenario.

This report documents the technical work conducted between 1997 and the end of 1999 under the Systems Studies Project. The overall objective of this project has been the construction of a PID for the SFR-1 repository (final repository for reactor waste), this PID being the first stage in the identification of scenarios. In order to facilitate construction of the PID, as well as enabling editing and manipulation of the various elements of these diagrams, a software tool, SPARTA, was developed independently. This development, concurrent with the Systems Studies Project, is reported elsewhere (Jack and Hiller, 1999). However, since it was appreciated that the software tool would only become available during 1999, it had been important to proceed with PID development prior to 1999, using existing software, in order to maintain the capability for scenario development work associated with the PA of SFR-1.

Ultimately, therefore, the PIDs discussed in this report have been created using two software applications: the existing commercial software and the newly developed code SPARTA. Although the focus of this report is on the application of SPARTA to PID development, it is important to document the work carried out prior to SPARTA being available, in order to provide a complete record of the entire SFR-1 PID development effort as well as preserving the context of the multi-year project. As discussed in this report, the fact that the resultant PIDs have been constructed in entirely different ways has offered the opportunity to compare the products of the different approaches.

1.2 Phases of Project

As stated above, this project has been underway since 1997 and has been conducted in various stages, as discussed below and reported in several internal SKI reports. In order

to document overall progress and achievements, these different stages are covered in this report.

The initial (1997) project work under this project focussed on the development of a near-field PID for the Silo section of the SFR-1 repository (Stenhouse and Chapman, 1998), via:

- identification, screening and categorisation of near-field FEPs; and
- construction of a general PID for the Silo section of the SFR-1 repository only, using existing software, available commercially (<u>Business Modelle</u>r; Infotool Data AB, Stockholm, Sweden).

Subsequently, as reported in Stenhouse *et al.* (1998), the bulk of the 1998 input to the Systems Studies Project involved:

- extension of the existing PID for the Silo to accommodate all sections of the repository (the near-field of SFR-1 comprises five independent sections in total: one Silo, two BTF vaults, one BLA vault and one BMA vault, as discussed in *Sections 2.1* and *2.2*;
- similar treatment of the far-field, *i.e.*;
 - identification, screening and categorisation of FEPs applicable to the far-field of the SFR-1 repository;
 - construction of the far-field section of the PID;
- combination of near-field and far-field to produce the reference case PID for the SFR-1 repository.

The bulk of the 1999 work made use of SPARTA to construct a different type of PID, but for the same repository system. As newer versions of the code were released, the opportunity became available to make use of additional features in the software, incorporated to improve flexibility and speed of PID construction. Thus, to a large extent, the creation of this independent PID fulfilled the important requirement of providing in-depth testing and demonstration of the software capabilities.

1.3 Layout of Report

Discussion of the stages in the project described above are laid out in this report essentially in sequence. *Section 2* of this report is devoted to a short summary of the key features of the disposal concepts for the SFR-1 repository system. *Section 3* deals with the compilation and review of FEPs appropriate to the near- and far-fields. *Section 4* provides a brief summary of the construction of the Reference Case PID comprising near-field and far-field of the SFR-1 repository using the existing software, Business Modeller. *Section 5* covers the more recent PID construction using SKI's code SPARTA, developed specifically for this purpose.

Finally, *Section 6* discusses the achievements of the 3-year project as well as identifying ways in which the most recent version of the PID can be made more powerful.

2 Waste Disposal Concepts for SFR-1 Repository

As a basis for developing the PID, a brief description of the SFR-1 repository and its components is provided here.

The waste intended for SFR-1 arises mainly from the operation and maintenance of nuclear power plants and comprises low- and intermediate-level waste with a small inventory of long-lived radionuclides (Andersson *et al.*, 1994). This waste , generated through the operation of nuclear reactors, consists of filters, ion-exchange resins, and general scrap for which recycling is not an option. The repository is also expected to take similar types of waste arising from the use of radioisotopes in medicine, industry and research.

There are 4 separate types of disposal section within the SFR-1 repository, viz.

- the Silo, containing metallic, organic and inorganic wastes immobilised in concrete and bitumen;
- *BMA* rock vault/tunnel section, also containing wastes immobilised in bitumen or cement;
- *BLA* rock vault/tunnel section, containing wastes in steel containers or containing wastes immobilised in bitumen or cement;
- two *BTF* rock vaults, for concrete tanks containing ion exchange resin wastes as well as the ashes from waste incineration.

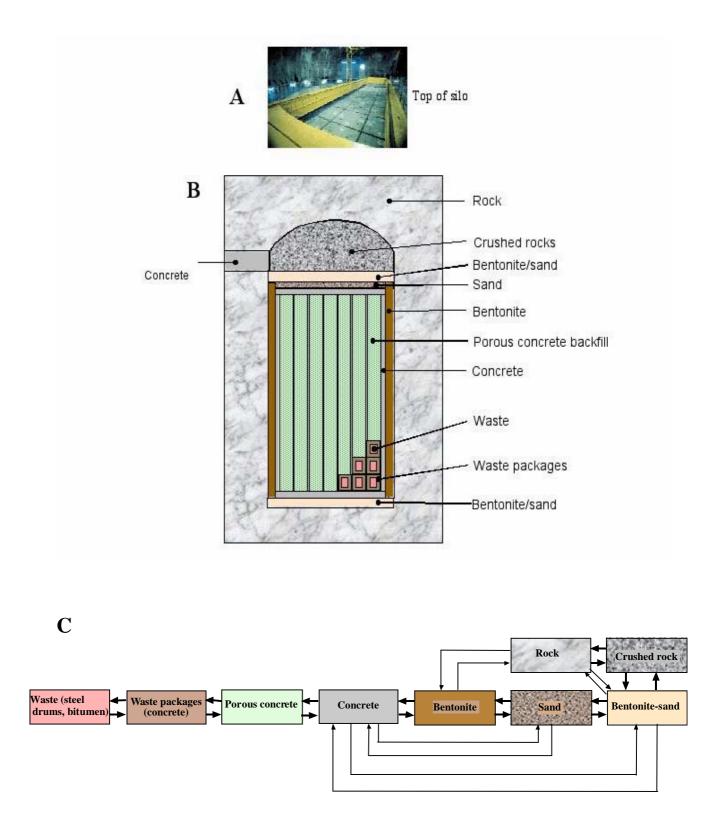
About 70% of the radioactivity of the repository is housed in the Silo (Bo Strömberg, personal communication).

2.1 Silo Near-Field: Engineered Barriers

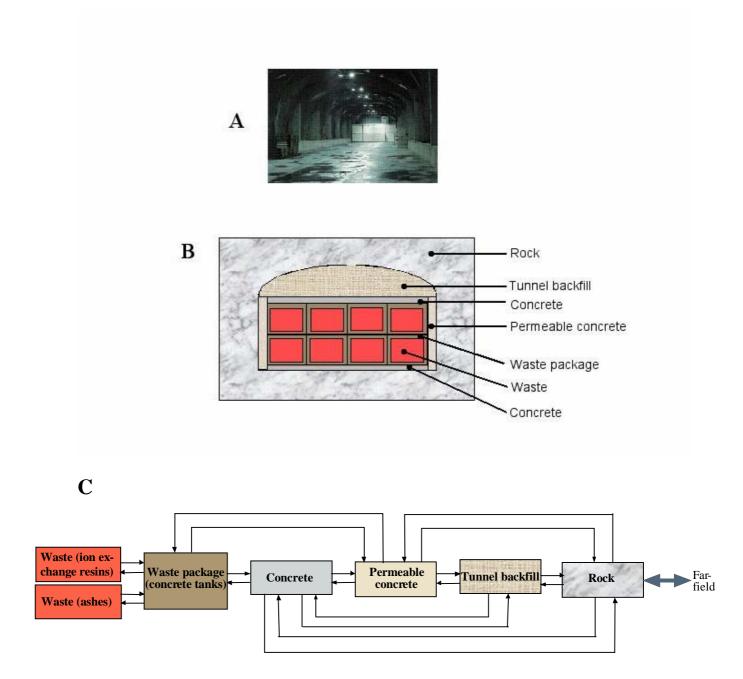
The near-field barriers of the Silo of SFR-1, discussed in detail in Stenhouse and Chapman (1998) and shown in *Figure 1*, comprise:

- *the waste package*: the waste itself immobilised in concrete or bitumen, within steel drums, and with a concrete overpack;
- an intimate mix of *porous concrete* or grout (mortar) surrounding the waste packages within the Silo structure (shell);
- the *shell* constructed using reinforced concrete;
- a *backfill layer*, between Silo and rock, consisting of:
 - bentonite/sand (base),

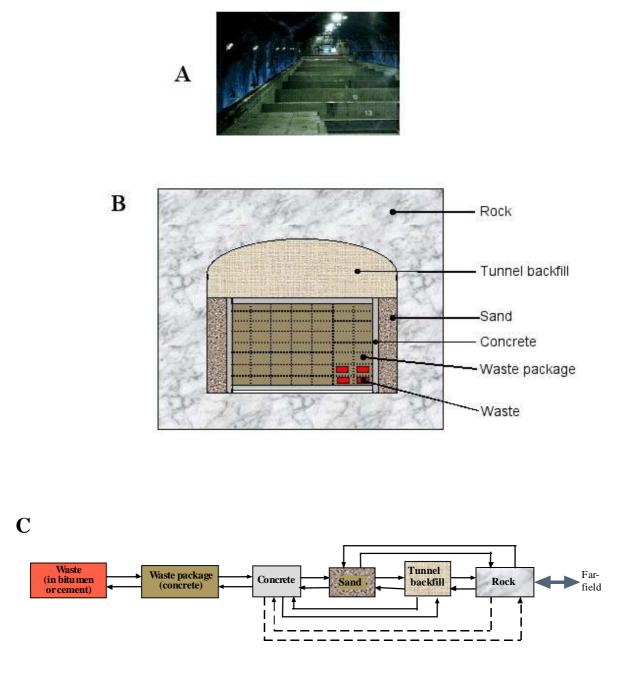
- sand plus bentonite-sand (top),
- bentonite only (around the Silo shell);
- *near-field rock* surrounding the Silo, with an additional layer of crushed rock above the bentonite-sand on top of the Silo.


2.2 Near-Field Barriers of Other Sections of Repository

The equivalent near-field barriers for the disposal concepts for the BTF, BMA and BLA sections of the SFR-1 repository are shown in *Figures 2A*, *3A* and *4A*. In fact, the individual engineered barriers for each of these sections of the repository system are quite similar to those of the Silo, although there are distinct differences, the main one being that the tunnel/vault sections of SFR-1 do not contain bentonite or bentonite-sand as an engineered barrier. *Figures 2B*, *3B* and *4B*, identify the corresponding conceptual barriers to be incorporated in the respective near-fields of each section of the repository.


Table 1 summarises the near-field barriers for each area and is useful for comparison purposes when extending the Silo near-field to include the other near-field areas of the SFR-1 repository. For example, using Business Modeller, these other areas may be generated by duplicating the Silo near-field PID, followed by removal of those section(s) or specific FEPs which do not apply to the BTF, BMA or BLA sections. Thus, for example, FEPs relating to bentonite and the "mortar" component of the PID may be removed from the corresponding BTF, BMA and BLA sections. Similar to the Silo, *Table 1* indicates that some of the backfill barriers have a composite nature.

	Composition			
Barrier	Silo	BTF	BMA	BLA
Waste + container	yes	yes	yes	yes
Porous concrete	Mortar, including reinforced honeycomb	no	no	no
Shell	Reinforced concrete	concrete or permeable concrete	concrete	concrete base only
Backfill	Bentonite or sand-bentonite or sand	crushed rock?	sand or crushed rock?	crushed rock?
Near-field rock	Yes (including crushed rock)	yes	yes	yes


 Table 1
 Near-field barriers included in near-field PID.

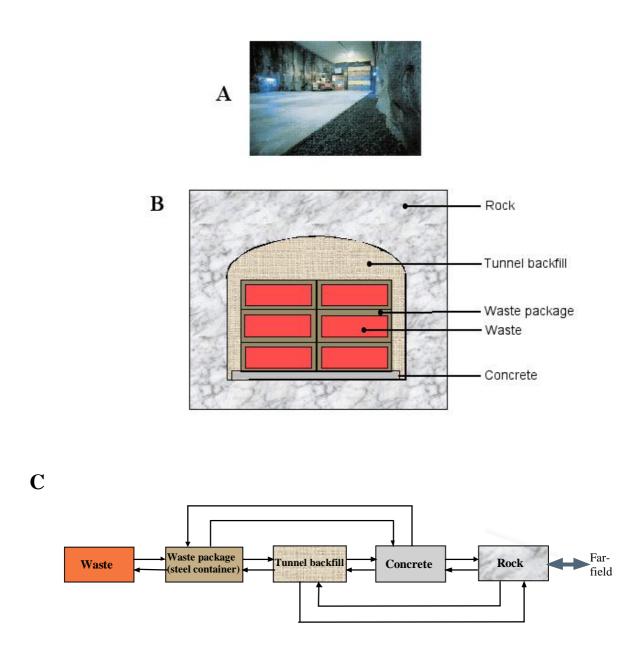

Figure 1 The Silo concept for radioactive waste disposal (based on an original drawing provided by B. Sundström, Swedish Nuclear Inspectorate. A: photograph, Swedish Nuclear Fuel and Waste Management Co.; **B**: disposal system; **C**: modular approach of Process System.

Figure 2 The BTF concept for radioactive waste disposal (based on an original drawing provided by B. Sundström, Swedish Nuclear Inspectorate. A: photograph, Swedish Nuclear Fuel and Waste Management Co.; B: disposal system; C: modular approach of Process System.

Figure 3 The BMA concept for radioactive waste disposal (based on an original drawing provided by B. Sundström, Swedish Nuclear Inspectorate. A: photograph, Swedish Nuclear Fuel and Waste Management Co.; B: disposal system; C: modular approach of Process System.

Figure 4 The BLA concept for radioactive waste disposal (based on an original drawing provided by B. Sundström, Swedish Nuclear Inspectorate. A: photograph, Swedish Nuclear Fuel and Waste Management Co.; B: disposal system; C: modular approach of Process System.

3 Preparation of Near-Field FEP list for SFR-1

3.1 Identification of Near-Field FEPs

Preparation of the initial near-field FEP list focussed on the Silo component of SFR-1, which, as well as containing about 70% total activity of the repository, can be considered as having the greatest number of barriers or near-field components. However, the compilation and review of FEPs was carried out in such a way that all barriers of the near-field systems for the suite of disposal concepts within SFR-1 and SFL 3-5 could be accommodated.

An initial objective was to ensure that all FEPs relevant to the radioactive waste disposal concept were identified and incorporated in the PID. Thus, an appropriate starting point was the international set of FEPs compiled from individual radioactive waste disposal management programmes. This 'raw' FEP List contains approximately 1580 entries of which the major portion (~ 1265 entries) was used as the basis for auditing the SKI FEP list as part of SITE-94 (Stenhouse *et al.* 1993). The FEP lists added to the original compilation are those for Kristallin I (Nagra, 1994) and the SFL 3-5 series developed by Eng *et al.* (1995). The latter, however, was used only for comparison purposes and is not included in *Appendix A* (see below).

As discussed in Andersson (1989), "the safety analysis of a radioactive waste repository involves the consideration of all possible relevant Features, Events and Processes, FEPs, that could, directly or indirectly, influence the release and transport of radionuclides from the repository". Furthermore, each FEP should be examined in terms of its cause, likelihood of occurrence, consequences and interaction with other FEPs (Andersson, 1989). Such an approach was also considered an appropriate basis for preparing the FEP list for PID development in this project.

Some obvious differences are expected in the series of FEPs associated with the disposal of long-lived L/ILW, compared with those for HLW disposal as described in SITE-94 (Chapman *et al.*, 1995), especially since cement/concrete plays a significant role in a repository for long-lived L/ILW. Nevertheless, it became apparent that many of the FEPs for HLW and long-lived L/ILW, as discussed below, were quite similar.

3.1.1 Methodology for Preparing PID FEP List

The methodology adopted for producing a working FEP list for the PID relevant to lowand intermediate-level reactor waste disposal in the SFR-1 involved five stages, *viz*.

- 1. Using the compilation of national/international FEP lists as a starting point.
- 2. Identifying from this list those FEPs which are relevant to the near-field.

- 3. Identifying and eliminating duplicates *etc.* and screening out irrelevant FEPs (*e.g.* those exclusive to HLW).
- 4. Assigning FEPs from the reduced set to recognisable near-field categories.
- 5. Rationalising FEPs of different categories to obtain a working set of PID FEP titles.

Appendix A contains, in spreadsheet form, the compilation of 'near-field' FEPs (512) obtained at the end of Stage 2 above. Additionally in this Appendix, the letters shown in the second column of the spreadsheet tables were used to allow (most of) the irrelevant FEPs to be screened out in Stage 3. The justifications for exclusion and the corresponding letter codes are shown in *Table 2*.

Table 2 Explanation of Screening Codes.

Code	Meaning	
Н	FEP is only relevant to HLW disposal	
NR	not relevant to current disposal concept	
? or V	FEP is too vague to be useful	
sub E	a 'sub-FEP' of a 'parent FEP'; the latter being specific enough to be included by itself	
R G	'external FEP' or EFEP, or at least external to the near-field and far-field system	
	repeat FEP, the link to the original entry being provided in the last column	
	FEP is too general; more specific sub-FEPs are included	

Additional letters added as descriptors, but not used for screening purposes, were T to denote *time dependency*, and P to denote *properties* or a *parameter*.

3.1.2 Categorisation of Near-field FEPs

The resulting reduced series of FEPs from Stage 3 was still rather large and unwieldy. Consequently, to manage this list better, the FEPs were sorted according to the individual components of the near-field barrier system, *viz*.

- *WC* comprising
 - W = WASTE: the waste form, which is inside an outer container or drum. The waste form comprises both the waste itself and its encapsulation/ immobilisation matrix, if any, and
 - C = CANISTER: the steel container/drum in which the waste form is emplaced;

- M = MORTAR: the porous grout or concrete used to backfill compartments of the silo.
- S = SHELL: the reinforced concrete structure of the silo itself.
- B = BUFFER: the buffer (*e.g.* bentonite, bentonite-sand, or sand) around the silo or the backfill used to fill disposal vaults or tunnels.
- N = NEAR-FIELD ROCK: taken as the repository zone in which waste form, container, and buffer/backfill are emplaced; refers generically to the host rock from which the disposal caverns are constructed.¹

The sorted FEPs are shown in *Appendix B* with additional information to identify the relevance of each FEP to the sections of the SFR-1 repository.

3.1.3 Rationalisation of Near-field FEPs

The final stage in the process was to 'rationalise' the sorted and reduced set of FEPs. Given that the FEP lists compiled in Stage 1 represent a range of waste disposal concepts, the categories identified should be considered as generic in the first instance.

Thus, the FEPs sorted by category in *Appendix B* represent a heterogeneous mixture of FEPs which, having been abstracted from lists of individual countries, do not necessarily provide consistency in either the level of detail or interpretation. For example, some of the FEPs in the lists describe possible interactions between processes rather than the processes themselves.

Review of the reduced and categorised FEPs was able to generate a smaller set of FEPs for incorporation in the PID. It should be emphasised that FEP boxes within a PID are normally simplified to a certain extent, thereby keeping the number of boxes to a manageable level to allow ease of visual inspection. Hence, each FEP box may represent a combination of several FEPs which were individually identified in the original FEP list. It is important, however, that each FEP in *Appendix B* is incorporated in the PID and this requirement is the major reason for conducting the rationalisation.

Specifically, the rationalisation process involved:

- treating some FEPs as influences. Several FEPs in *Appendix B* are relevant to the PID but more as influences (*i.e.* interactions between FEP boxes) rather than as individual features, events or processes. For example, thermal effects, would involve a link to temperature. It should be noted, however, that the distinction between what constitutes a FEP and what is an interaction is, to some extent, arbitrary and is not necessarily consistent.
- renaming some FEPs to more representative titles so that they can be used in different parts of the process system, in keeping with a modular approach.

¹ The letter codes, W, C, M, S, B and N appear in the PID showing the individual FEPs and their interactions/influences.

• grouping FEPs under one title, *e.g. Water chemistry* (speciation, pH, *etc.*).

The end product, shown in *Appendix C*, is the list of FEPs to be incorporated in the PID.² Although FEPs for long-lived L/ILW waste disposal are not directly applicable to the SITE-94 FEP list (specific to spent fuel disposal), comparisons are possible on the basis of 'equivalent' FEPs; for example, when FEPs relate to a barrier of the engineered barrier system but are not necessarily specific to the material used. Thus, subsequent comparison of the FEPs in *Appendix C* with those of SITE-94 indicated that many of the FEPs were essentially the same or certainly comparable in both lists.

3.2 Preparation of Far-Field FEP List

A process similar to that discussed above was carried out to generate the list of far-field FEPs. *Appendix D* contains, in spreadsheet form, the list of 'far-field' FEPs (547) abstracted from the original compilation. Additionally in this Appendix, the letters shown in the second column of the spreadsheet tables were used to allow duplicates and most of the irrelevant FEPs to be screened out (Stage 3). The basic reasons for exclusion and the corresponding letter codes are similar to those used for the near-field FEPs (see *Table 2*) and the resultant list of screened FEPs is shown in the second column of *Appendix E*.

Again, a rationalisation process similar to that discussed in *Section 3.1.3* was carried out on the screened far-field FEPs, *i.e.*

- re-naming some FEPs to more representative titles to conform with those FEPs in the near-field rock component of the process system, in keeping with a modular approach (the original name and new FEP title are shown in *Appendix D*).
- grouping FEPs under one title, *e.g. Properties of rock* (fracture, hydrogeological and physical properties).

In addition, in order to maintain a degree of uniformity in the PID between the near-field (particularly the near-field rock barrier) and the far-field, some FEPs from the near-field rock category were added to the far-field FEP list, resulting in the more detailed working list of far-field FEPs shown in the fourth (right-hand) column of *Appendix E* and also, for completeness, in *Appendix F*³.

² Some deletions (of FEPs), as a result of Workshop discussions (Stenhouse et al., 2000), are recorded in *Appendix C*.

³ Similar to the near-field FEPs, some FEP titles were either renamed or deleted following one of the SKI PID Workshops (Stenhouse et al., 2000); these are shown in *Appendix F*.

4 Development of PID for SFR-1 Repository Using Business Modeller

As discussed in *Section 1.2*, the complete PID for both near-field and far-field of the SFR-1 repository was developed in stages. Although the focus of this report is the application of SPARTA to PID development, the earlier work involving the existing software is summarised below in order to establish the sequence and context of PIDs generated within the Systems Studies Project. The order in which the PIDs are discussed in this section reflects the different stages of development.

4.1 Construction of Near-Field PIDs

4.1.1 Development of Near-field PID for Silo

As stated in *Section 1*, a Process System is the organised assembly of all the FEPs required to describe the near-field disposal system performance, including radionuclide release/migration from the near-field, so that radionuclide release can be predicted with at least some degree of determinism from a given set of external conditions imposed on the Process System.

The Process System for the SFR-1 repository is represented by boxes which describe the features, events or processes (FEP boxes for, *e.g.* radioactive decay, degradation of barrier components, such as reinforced steel or waste matrix, *etc.*) which make up the waste disposal system, linked together by interactions between FEPs, or Influences. The end product is a Process Influence Diagram (PID).

The first step in constructing a PID is to identify the system to be defined. Briefly, as discussed in *Section 2*, the waste disposal concept for the SFR-1 Silo is shown in *Figure 1A*, and comprises:

• radioactive wastes; various wasteforms (cement and bitumen matrices) in steel canisters with concrete overpacks; backfilled with cementitious grout; all within a reinforced concrete silo; sand and bentonite-sand backfill; the disposal volume located in relatively deep, crystalline host rock.

The component barrier regions corresponding to the disposal system of the Silo, i.e. *Figure 1A*, are shown schematically in *Figure 1B*. Once the FEPs relevant to each barrier are specified, integrated and organised into regions of the PID, interactions between FEPs are identified and represented in the diagram by lines connecting the interacting FEPs, with an arrow showing the direction of the interaction/Influence.

The software package Business Modeller developed by the Swedish Institute for Systems Development and released commercially by Infotool Data AB (Stockholm, Sweden), was used to draw the Influence Diagram. Generally, the main properties/features of each barrier, along with processes which act upon these properties and the transport pathways in the barrier, feed towards the bottom right-hand corner where the FEP box "*Transport and release of nuclides*" for each region, or barrier, is situated. These "*Transport and release*..." FEPs are key links within the PID.

Extracts of the PID developed for the Silo of the disposal system are shown in *Annexe I* Approximately one page represents a single barrier of the multi-barrier disposal system. One main difference between this PID and one for vitrified HLW or spent fuel, is the need to accommodate different types of waste (L/ILW); in particular, separate FEP boxes for metal and organic wastes. This approach allows the relative importance of certain processes, for example, gas generation, to be reflected accurately in the level of significance, *i.e.* Importance Level, attached to corresponding Influences.

It can be seen from the different pages of *Annexe I*, that the FEPs and Influences for each near-field barrier are structured in a similar way, since many of the FEP titles were designed to be appropriate to more than one component of the disposal system as depicted in *Figure 1B*. The main links between the different barriers typically involve FEP boxes for *Mechanical stress*, *Temperature*, *Water movement*, *Water chemistry* and, of course, *Transport and release of radionuclides*.

Each Influence on the diagram has been assigned a unique code identifier, using a letter to identify each near-field barrier:

W	waste;
С	matrix + container;
Μ	mortar and the Silo honeycomb of internal cells (porous grout);
S	reinforced concrete shell (Silo only);
В	backfill: bentonite or sand-bentonite;
Ν	near-field rock/disturbed rock zone.

Some Influence identifiers include the letter "T" (*e.g.* WT2 or ST2) to denote those Influences which are related to transport and release of radionuclides. These Influences are depicted in the PIDs via heavier, patterned lines. The numbers in parentheses following the Influence identifier, *e.g.* M33 (0), refer to Importance Levels (ILs) which were tentatively assigned initially, and subsequently audited/revised following a Workshop organised specifically for this purpose (Stenhouse *et al.*, 2000). A full list of near-field Influences for the Business Modeller PID, together with Influence number, is provided in *Appendix G*.

4.1.2 Near-Field PIDs for BTF, BMA and BLA Sections

Separate near-field PIDs were created for the BTF, BMA and BLA sections of the SFR-1 repository. Although not included in this report, these PIDs are similar to the PID for the Silo section. Owing to memory constraints associated with Business Modeller and the desire to maintain clarity, these sections were created separately and remain separate diagrams. However, in an integrated near-field comprising all disposal sections, links/Influences between the different areas of the repository, including the Silo, will exist via the interconnecting tunnels/shafts in the integrated near-field and far-

field, as discussed in Section 4.3.

4.2 Construction of Far-Field PID

The PID for the far-field component of the Process System was constructed in a similar way to that of the near-field rock barrier of the near-field PID, though incorporating a slightly different set of FEPs. For the far-field PID, the external boundary conditions were provided by the following external FEPs, or EFEPs:

- Climate change;
- Erosion of the surface;
- Uplift/subsidence.

Note that the FEPs *Seismic activity*, and *Saline or fresh groundwater intrusion* were included in the far-field, although these FEPs could be considered external to the Process System (EFEPs).

The resultant PID, which for continuity includes the near-field rock zone as well as the far-field, are shown in *Annexe II*. The list of Influences which appear in this diagram is provided in *Appendix H*. Note that the corresponding letter code identifier for the far-field is G. Similarly, the letter code for Influences originating from external FEPs is E.

4.3 Integrated Near- and Far-Field PID

The final stage in the development of the full PID involved the development of an integrated near-field and far-field diagram. At this stage, owing to memory constraints of Business Modeller and the need for clarity, together with the fact that the new code, SPARTA, was now available for testing, a <u>near-field + far-field</u> PID was constructed only at an upper hierarchic level to show the inter-relationships between (only) two distinct near-field sections and the far-field. This diagram is shown in *Figure 5*. Note that in *Figure 5*, the FEP "*Shaft and tunnel seal degradation*" lies outside the two near-field components represented; this positioning is intended to reflect the repository layout in which interconnecting shafts/tunnels will exist between different parts of the repository.

In fact, as discussed in the next section, the approach used to generate the PID section shown in *Figure 5* is similar to that adopted in the SPARTA code, where different hierarchic levels of the PID are presented separately. This approach is considered advisable when the level of detail in the PID is excessive.

SFR 1 REPOSITORY: NEAR FIELD + FAR FIELD UPPER HIERARCHIC LEVEL (2 near-field components shown) SKI/PID L/ILW/NF+FF/Version 1.2 (12/05/2000)

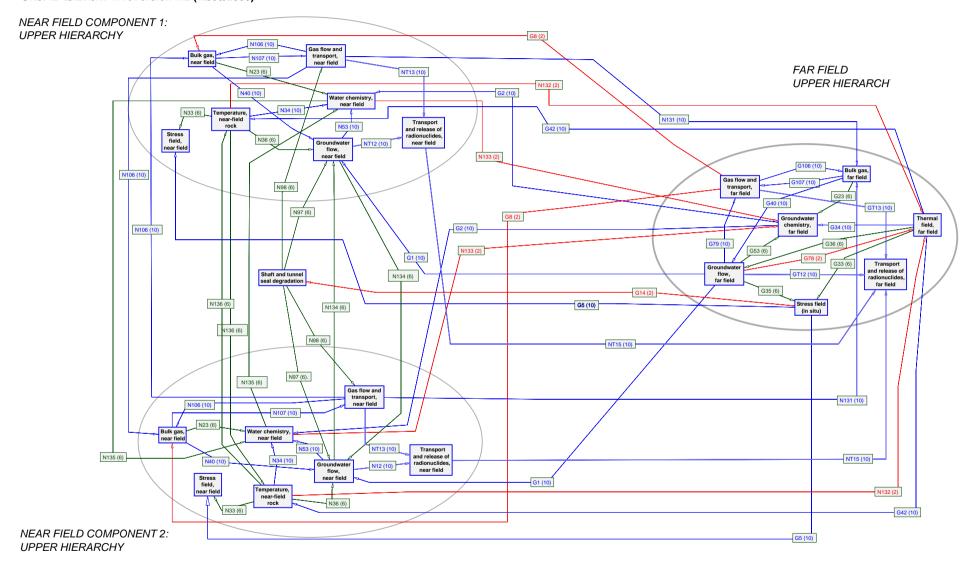


Figure 5 Process Influence Diagram for two near-field and the far-field components of the SFR-1 repository: upper hierarchic level only.

5 Development of PID for SFR-1 Using SPARTA

Owing to the number of different sections (Silo, BLA, BMA, BTF) of the repository and the number of barriers associated with each section, the two-dimensional (2D) PID created for SFR-1 using Business Modeller is visually complex. Thus, information on FEPs and Influences is difficult to impart to those not intimately familiar with either the software or PIDs.

Primarily for this reason, the need for a different approach was recognised in 1996 and steps taken at that time to develop new software that would accommodate this different approach. Following a consensus on the specific requirements of the new software, a first version of SPARTA became available towards the end of 1998, with subsequent versions being released during 1999.

5.1 Description of Hierarchical Approach

The objective of the PID remains the same, i.e. to provide a systematic way of ensuring that all features, events and processes are considered for the repository system being studied. Similarly, FEPs are represented in the same way, via a box with a name signifying the FEP title.

The hierarchical or three-dimensional (3D) PID consists of a series of layers, where the uppermost layer or diagram can be regarded as an overview of the repository system; principally near-field, far-field and biosphere. Each layer constitutes a separate drawing and each drawing typically consists of 6-8 'boxes'.

Within the hierarchical structure, upper-level layers comprise groupings of FEPs designated as "super-FEPs". Note that the term "super-FEP" is purely an arbitrary one, being used generally to signify an underlying structure to that FEP. In the PID developed for SKI, some such layers or diagrams often have some physical meaning, *e.g.* in the case of the SFR-1 repository, individual

- components of the system (biosphere, far-field, near-field);
- sections of repository (Silo, BLA, BMA, BTF sections, repository zone);
- barriers of a section (e.g. for the Silo backfill, reinforced shell, porous grout or mortar, waste package).

Other layers contain groups of related FEPs, e.g. the "super-FEP" Geochemistry contains FEPs such as Groundwater composition, Sorption, Precipitation/Dissolution, Microbial activity, and Colloid generation.

As one "descends" the PID structure, i.e. examines the underlying structure, the level of

detail needed to describe the elements of the repository system increases and eventually, the lowermost levels of this PID consist of "individual" features, events or processes⁴, and are similar to small sections of the 2D PID. Although in the discussion below, all boxes are referred to as FEPs, the distinction between groups of FEPs, or super-FEPs, and individual FEPs should be appreciated.

The principal advantages of such an approach are that:

- development of a PID is to some extent intuitive as one can start from a fairly simple, superficial-level diagram (biosphere, far-field and near-field) and gradually add detail in a logical fashion as one becomes more familiar with the disposal system;
- each diagram of the PID is much simpler in appearance, typically consisting of about 4-8 FEP boxes;
- the structure beneath certain super-FEPs, *i.e.* the underlying FEPs and Influences, is in many cases identical, which offers the opportunity to duplicate those parts of the PID, using SPARTA.

Added to the above advantages is the large supporting database (see next section), which results in a flexible, yet powerful, software tool. The only apparent drawback of the 3D PID is, of course, the inability to view the entire PID at one time; however, given a complex PID such as that for the SFR-1 repository, this should not be regarded necessarily as a disadvantage.

Two examples of drawings are provided here: *Figure 6*, showing the individual barriers of the Silo section, and *Figure 7*, containing the individual FEPs within the *Transport and Release of Radionuclides* drawing for the Silo Waste Package.

5.2 Description of SPARTA Code and SPARTA PIDs

SPARTA was developed for SKI by QuantiSci (Jack and Hillier, 1999) to facilitate the construction of 3D PIDs. FEPs, or groups of FEPs are represented by boxes, and Influences by lines connecting boxes, similar to the basic components of a regular 2D PID.

However, in the 3D structure, Influences can extend over several drawings. To enable Influences to be properly recorded, therefore, lines called "*Connections*" are physically added to drawings. By way of an analogy, the layers of a 3D PID may be looked upon as separate floors of a building, FEPs may be considered as rooms within a floor, and Connections correspond to the wiring which links different rooms and different floors.

⁴ The term "individual" to FEPs is also an arbitrary one since decisions may subsequently be made to subdivide an individual FEP into two or more detailed FEPs. In such a case, the original "individual" FEP becomes one with structure, *i.e.* a super-FEP.

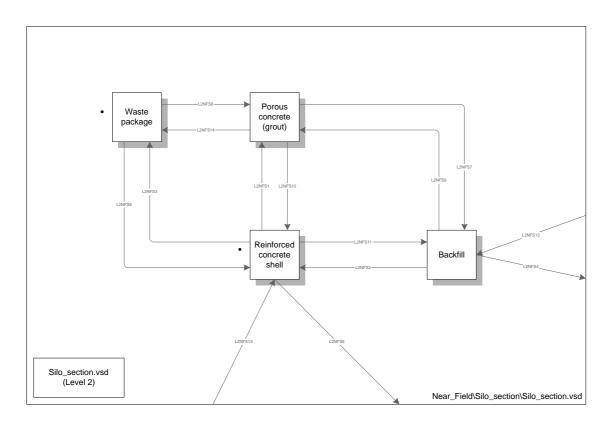


Figure 6 SFR-1 PID: Individual barriers of the Silo section of the SFR-1 repository.

Note: Lines extending from FEPs to the boundary of the drawing (*Reinforced concrete shell* in *Figure 6* above) connect Influences from that drawing to one or more other drawings.

Using SPARTA, each drawing consists of a rectangular boundary within which boxes, or FEPs are added. Connections between FEPs in the same drawing are obtained by direct lines between the FEPs concerned. Connections between FEPs in different drawings, on the other hand, are achieved by inserting lines from the FEPs concerned to the boundary of the drawing (see *Figure 6*).

The power of SPARTA lies in the supporting databases which store information on FEPs and Influences as well as incorporating links to more detailed documents, *e.g.* detailed FEP descriptions contained in a FEP Encyclopaedia (Miller *et al.*, 1998). The code also allows searches of FEPs and Influences in the form of key words or key fragments of words.

For FEPs, the type of information recorded includes:

- FEP title;
- drawing in which FEP is contained;
- description of FEP (with option of hyperlink to FEP Encyclopaedia (Miller *et al.*, 1998);

- classification (*e.g.* geological, hydrogeological, mechanical, chemical/geochemical);
- time dependency, if any.

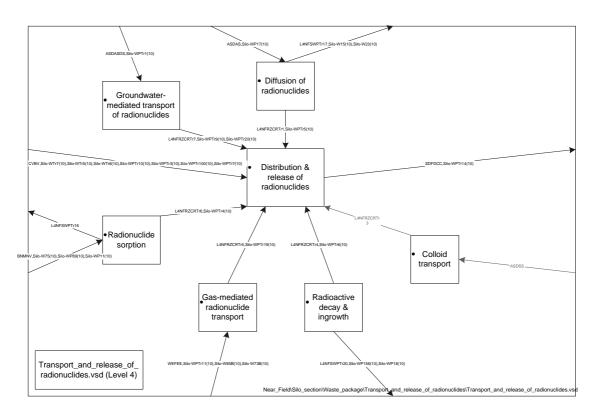


Figure 7 SFR-1 PID: Silo: Waste Package: Transport and release of radionuclides.

Note: Lines extending from FEP boxes to the boundary connect influences from one drawing to the next; text coding attached to individual lines identifies specific Influences.

- general comments, which may be used for audit purposes;
- creator's ID and date and time of FEP creation;
- unique identifiers for database records.

The type of information for Influences is similar to the above, with the exception of classification and time dependency, but with additional input of identifying those FEPs (starting and ending) which are linked.

5.3 Construction of SPARTA PID for SFR-1

5.3.1 Stages in Development of Current PID

As is the case for 2D PIDs, the development process is an iterative one, benefiting from feedback from various sources. The original intention had been to "convert" the Business Modeller 2D PID to a 3D version. Thus, the first PID developed using SPARTA contained the same FEP names as the 2D PID, part of which is shown in *Annexe I*. Subsequently, largely as the result of two Workshops held in 1999, one focusing on the PID (including Influences and Importance Levels), and the other on the use of SPARTA, the structure of the current PID was redefined to show a certain degree of consistency in names among different sections.

Preliminary Importance Levels (IL) were assigned to Influences based on the following arbitrary criteria:

- IL=10: Influence must be included or taken into consideration in the current context;
- IL=2: Influence is not considered important in the current context and can be ignored;
- IL=6: Influence may be important requires second opinion.

"Current context" in the above criteria refers to the reference case Central Scenario in which only the expected evolution of the repository system is addressed.

The current PID with Importance Levels for Influences has not been formally audited. Rather, individual sections of the PID were examined by external reviewers familiar with Process System Models and the use of PIDs.⁵

5.3.2 Presentation of the Current PID

The drawings of the current PID for the SFR-1 repository, comprising full near-field (Silo, BMA, BLA and BTF sections, as well as near-field rock zone and far-field) are contained in *Annexe III*. The main features of this PID are:

- detailed drawings generated for far-field and near-field components only, the biosphere and external FEPs, or EFEPs, being considered separately;
- a total of 95 drawings;
- a total of 584 "FEPs" (including super-FEPs);
- 2100 Influences.

⁵ Far-field and near-field rock zone: Matt White (QuantiSci); Silo section: David Savage (Quintessa); BMA section: Peter Robinson (QuantiSci); BTF section: Randy Arthur (Monitor Scientific).

Although the PID is substantial in terms of the number of FEPs and Influences, closer examination of the individual drawings shows that the structure of individual engineered barriers is similar, making the overall structure more easy to comprehend. Thus, approximately 30 FEPs/super-FEPs exist for each barrier and most of these FEPs are linked in an identical way.

5.4 Comments on Current SPARTA PID

It is appropriate at this stage to provide a few comments on the current PID constructed using SPARTA.

Firstly, it should be re-emphasised that the current PID and its contents have not undergone a formal audit. Rather, sections of the PID have been reviewed in detail combined with the fact that there is a significant overlap between the information contained in the 2D PID, which was audited, and the 3D PID. However, the immediate purpose of the existing PID was as a tool to help identify research and development needs for SKI over a one- to two-year period. In this context, the PID was used successfully at a January Workshop for such a purpose (Stenhouse *et al.*, 2000; also discussed in *Section* 6).

As stated above, the current PID includes detailed treatment of the near-field and far-field only, in keeping with the scope of the project. Other components of the repository system, which are being treated elsewhere, are the biosphere and EFEPs, or scenario-generating FEPs. For the purposes of the January Workshop, EFEPs relevant to the Central Scenario, *i.e.* expected evolution of the repository system, were included in the PID.

Some of the FEPs/super-FEPs contained in the existing SPARTA-generated PID have different titles from those used to generate the 2D PID, the latter being listed in *Appendices C* and *F*. This situation has arisen primarily because the current PID was created independently of the 2D PID and is no longer an exact representation of the original PID. In addition, as a result of discussions at the various Workshops (2 in 1999, 1 in 2000), it was recognised that, particularly for cementitious barriers, some additional, more detailed FEP titles were desirable, particularly for the cementitious barriers, to ensure that specific processes were treated, e.g. *Sulphate attack* (on cement) and *Degradation of superplasticisers* (effect on *Release and transport of radionuclides*). Thus, the current near-field and far-field FEP lists are shown in *Appendices I* and *J*, with FEPs identified either as true FEPs or groups of FEPs.

6 Summary of Project

Two detailed PIDs have been prepared as part of the performance assessment of the SFR-1 repository. Each diagram provides a different representation of the near-field and far-field of the repository system; the first PID being two-dimensional and the later one three-dimensional. Despite the different approaches, the primary objective of constructing each PID has been the same: to ensure firstly, that all features, events and processes relevant to the future evolution of the repository system are considered, and secondly, that all "essential" Influences are identified so that they may be incorporated in some form in the modelling of the system's evolution.

As mentioned in *Section 5.4*, the 3D PID was used at an SFR-1 Safety Assessment Workshop held in January, 2000 (Stenhouse *et al.*, 2000), to guide the Rock and Vault Clearing Houses - groups of experts focussing on specific parts of the repository system. The objective of this Workshop was to identify key issues which needed to be considered in depth prior to performance assessment calculations. Each Clearing House was expected to:

- scope the information available within their area of responsibility;
- identify key questions and issues currently relating to SFR-1 safety (known uncertainties);
- review activities to be undertaken (review/scoping calculations/in-depth treatments);
- allocate review tasks and timetable;
- indicate and scope the relevant R&D required to address the key questions and issues;
- define any input requirements from other Clearing Houses.

The SPARTA-generated PID provided a successful basis by which the Rock and Vault Clearing Houses structured these tasks.

6.1 Recommendations

Currently, because of time constraints, the information contained in SPARTA's database for the SFR-1 PID is limited to the basic input required by SPARTA, together with a descriptions. External few. select comments on FEP review and understanding/appreciation of the PID would therefore benefit from entries in the additional descriptive data fields accommodated by SPARTA. In addition, hyperlinks embedded in the FEP input information within the SPARTA PID, would allow links to individual FEP descriptions in the FEP Encyclopaedia, thereby enhancing the usefulness of the PID. These additions would allow the full potential of the new software to be realised.

With regard to other repository systems, owing to the amount of preparative work carried out prior to constructing the PIDs, *i.e.* FEP identification, compilation and selection, much of the information base is available for transfer to other repository systems, particularly where cementitious barriers are a significant component. In this context, the 3D PID for SFR-1 can be readily adapted to the deep repository for spent nuclear fuel, SFL 2, and to the deep repository for long-lived low- and intermediate-level waste, SFL 3-5.

References

Andersson J (ed.) (1989). The joint SKI/SKB scenario development project. SKI Technical Report 89:14, Stockholm, Sweden.

Andersson J, Barrdahl R, Hägg C, Jensen M, Sandin A-C, Sundström B and Wingefors S (1994). Evaluation of SKB's in-depth safety assessment for SFR-1. *SKI Technical Report* **94:30**, Stockholm, Sweden.

Chapman N A, Andersson J, Robinson P, Skagius K, Wene C-O, Wiborgh M and Wingefors S (1995). Systems analysis, scenario construction & consequence analysis definition for SITE-94. *SKI Technical Report* **95:26**, Stockholm, Sweden.

Cranwell R M, Guzowski R V, Campbell J E and Ortiz N R (1982). Risk methodology for geologic disposal of radioactive waste: scenario selection procedure. *Sandia National Laboratory Report* SAND80-1429, NUREG/CR-1667, Albuquerqe, New Mexico.

Eng T, Hudson J, Stephansson O, Skagius K and Wiborgh M (1994). Scenario development methodologies. *SKB Technical Report* **TR 94-28**, Stockholm, Sweden.

Goodwin B W (1991). (ed.) Scenario analysis for the post-closure assessment of the Canadian concept for nuclear fuel waste disposal. AECL draft report 91/07/25. Subsequently published as **AECL-10717**, **COG-93-7**, Pinawa, Canada.

Hodgkinson D P and Sumerling T J (1989). A review of approaches to scenario analysis for repository safety assessment. In *Safety Assessment of Radioactive Waste Repositories*, Proc. NEA/IAEA/CEC Symposium, Paris 1989. NEA/OECD, Paris, France.

IAEA (1981). Safety Assessment for the Underground Disposal of Radioactive Wastes. IAEA Safety Series No. 56, Vienna, Austria.

Jack, J.P. and Hillier, J.E. (1999). Sparta User Guide, Sparta Version 2, QuantiSci Report SKI-6145A-1, Version 1.1.

Miller W M and Chapman N A (1992).(eds.) Identification of relevant processes. System Concept Group. *UK DoE/HMIP Technical Report* **TR-ZI-11**.

Miller, W.M.M. Savage, D., McEwen, T.J., McLeod, R. and White, M.J. (1999). Encyclopaedia of Features, Events & Processes (FEPs), Volume One, QuantiSci Report SKI-6141 Version 1, February 1999, QuantiSci.

Nagra (1994). Kristallin I: Safety Assessment Report. *Nagra Technical Report* **NTB 93-22**, Wettingen, Switzerland.

NEA (1992). Systematic Approaches to Scenario Development: Safety Assessment of *Radioactive Waste Repositories*. Report of the NEA Working Group on the identification and selection of scenarios for the safety assessment of radioactive waste disposal. NEA/OECD, Paris, France.

Project Gewähr (1985). Nuclear waste management in Switzerland: feasibility studies and safety analyses. *Nagra Project Report* NGB 85-09, Wettingen, Switzerland.

Stenhouse M J and Chapman N A (1998). System studies in PA: Development of Process Influence Diagram (PID) for SFR Repository: Silo Near-Field. *QuantiSci Report to SKI*, **SKI-6046A-GEN**, Version 1, February 1998.

Stenhouse M J, Chapman N A and Sumerling T J (1993). Scenario development FEP audit list preparation: methodology and presentation. *SKI Technical Report* **93:27**, Stockholm, Sweden.

Stenhouse M J, Chapman N A and Miller W M (1998). System studies in PA: Development of Process Influence Diagram (PID) for SFR-1 Repository: Near-Field + Far-Field. *QuantiSci Report to SKI*, **SKI-6144/T1-1**, Version 1, May 1998.

Stenhouse, M.J., Chapman, N A and Lind, A. (2000). Summary Notes of SFR-1 Workshop on SKI's Review of SKB SFR-1 Safety Assessment Project SAFE, held Vår Gård, Sweden, January 26-28, 2000. *Monitor Scientific Report* **MSCI-9916-1** to SKI.

Stenhouse M J and Chapman, N A (2001). System Studies in PA: Development of Process Influence Diagram (PID) for SFR-1 Repository using SPARTA: Near-Field + Far-Field. *Monitor Scientific Report to SKI*, **SKI-9916-3**, April 2001.

Thorne, M.C. (1992): Dry Run 3. A trial assessment of underground disposal of radioactive wastes based on probabilistic risk analysis. Volume 8: Uncertainty and bias audit. U.K. Department of the Environment Report DoE/HMIP/RR/92.040. London, U.K.

Wiborgh M (1995). (ed.) Prestudy of final disposal of long-lived low and intermediate level wastes. *SKB Technical Report* **TR 95-03**, Stockholm, Sweden.

Appendix A: Compilation of Near-Field FEPs from International FEP List

FEPs from the following lists appear in this appendix (corresponding code in parentheses) 6 :

- Atomic Energy of Canada Ltd. (AECL): spent fuel disposal; Goodwin *et al.* (1991).
- Department of the Environment, U.K. (DOE): L/ILW waste disposal; Thorne (1992).
- International Atomic Energy Agency (IAEA): IAEA (1981).
- Nagra, Switzerland (PGA): vitrified HLW disposal; Project Gewähr (1985).
- SKI/SKB (SKI): spent fuel disposal; Andersson (1989).
- Sandia National Laboratories, U.S.A. (SNL): HLW disposal; Cranwell *et al.* (1982).
- U.K. Nirex Ltd. (UKN): L/ILW disposal; Hodgkinson and Sumerling (1989).
- Department of the Environment, U.K. (*HMIP*); L/ILW disposal; Miller and Chapman (1992).
- Nagra Kristallin I (*NAGRA*): vitrified HLW disposal; Nagra (1994).

⁶ A list of over 1500 FEPS was compiled in Stenhouse *et al.* (1993). In this compilation, the FEP list of Nuclear Energy Agency (NEA, 1992) was included, but is identical to that of U.K. Nirex Ltd. (UKN) above. This current, reduced set of near-field FEPs does not include FEPs from the list prepared by Eng *et al.* (1994), which was compiled but used only for comparison purposes.

CODE	Screen	FEP NAME	SEE
AECL1.1	Р	Backfill characteristics	
AECL1.2	Т	Backfill evolution	
AECL1.3	R	Biological activity	DOE1.6.6
AECL1.4 ? Boundary conditions			
AECL1.5	sub	Buffer additives	AECL1.6
AECL1.6	Р	Buffer characteristics	
AECL1.7	Т	Buffer evolution	
AECL1.8	R	Cave ins	DOE1.4.4
AECL1.9	V	Chemical gradients	
AECL1.10		Chemical interactions (expected)	
AECL1.11	Т	Chemical interactions (long-term)	
AECL1.12	?	Chemical interactions (other)	
AECL1.13	Т	Chemical kinetics	
AECL1.14	Е	Climate change	
AECL1.15		Colloids	
AECL1.16		Complexation by organics	
AECL1.17	V	Concrete	
AECL1.18		Container corrosion products	
AECL1.19	Т	Container failure (early)	
AECL1.20	Т	Container failure (long-term)	
AECL1.21	?	Container failure (other long-term processes)	
AECL1.22		Container healing	
AECL1.23	sub	Containers - partial corrosion	
AECL1.24		Convection	
AECL1.25	?	Correlation	
AECL1.26	R	Corrosion	DOE1.1.1
AECL1.27	?	Coupled processes	
AECL1.28	R	Criticality	DOE1.3.2
AECL1.29		Diffusion	
AECL1.30		Dispersion	
AECL1.31	E	Earthquakes	
AECL1.32		Electrochemical gradients	
AECL1.33	R	Evolution of buffer	AECL1.7
AECL1.34		Excessive hydrostatic pressures	
AECL1.35	E	Explosions	
AECL1.36	E	Faulty buffer emplacement	
AECL1.37		Formation of cracks	
AECL1.38	R	Formation of gases	DOE1.2
AECL1.39	?	Galvanic coupling	
AECL1.40		Geochemical pump	
AECL1.41	E	Glaciation	
AECL1.42	E	Global effects	
AECL1.43	Р	Hydraulic conductivity	
AECL1.44	Р	Hydraulic head	
AECL1.45	?	Hydride cracking	
AECL1.46	NR	Hydrothermal alteration	

CODE	Screen	FEP NAME	SEE
AECL1.47	Е	Improper operation	
AECL1.48	Е	Incomplete closure	
AECL1.49	Е	Incomplete filling of containers	
AECL1.50	?	Interfaces (boundary conditions)	
AECL1.51	Е	Intrusion (animal)	
AECL1.52	Е	Intrusion (human)	
AECL1.53	Р	Inventory	
AECL1.54	Р	Other wastes (other than vitrified HLW)	
AECL1.55	Т	Long-term physical stability	
AECL1.56	?	Long-term transients	
AECL1.57	?	Methylation	
AECL1.58	R	Microbes	DOE1.6.6
AECL1.59	R	Microorganisms	DOE1.6.6
AECL1.60	Е	Monitoring and remedial activities	
AECL1.61	?	Mutation	
AECL1.62	Е	Percolation in shafts	
AECL1.63	sub	Pitting	DOE1.1.1
AECL1.64	Е	Preclosure events	
AECL1.65	R	Precipitation and dissolution	DOE1.6.5
AECL1.66		Pseudo-colloids	
AECL1.67		Radiation damage	
AECL1.68	R	Radioactive decay	DOE1.3.1
AECL1.69		Radiolysis	
AECL1.70	Е	Recharge groundwater	
AECL1.71		Reflooding	
AECL1.72	E	Retrievability	
AECL1.73	E	Sabotage and improper operation	
AECL1.74	Т	Seal evolution	
AECL1.75		Seal failure	
AECL1.76	R	Sorption	DOE2.4.5
AECL1.77	sub	Sorption: non-linear	
AECL1.78		Source terms (expected)	
AECL1.79	?	Source terms (other)	
AECL1.80		Speciation	DOE1.6.5
AECL1.81	?	Stability	
AECL1.82	Н	Stability of glass	
AECL1.83	NR	Swelling pressure	
AECL1.84	?	Temperature rises (unexpected effects)	
AECL1.85	Т	Time dependence	
AECL1.86	R	Transport in gases or of gases	DOE2.4.11
AECL1.87	?	Uncertainties	
AECL1.88	sub	Uniform corrosion	DOE1.1.1
AECL1.89	?	Unmodelled design features	
AECL1.90	R	Unsaturated transport	DOE1.5.2
AECL1.91	?	Vault geometry	
AECL2.42	R	Methane	UKN1.2.13

CODE	Screen	FEP NAME	SEE
DOE1.1.1		Structural container metal corrosion	
DOE1.1.1.1	sub	Structural container metal corrosion: Localised	
DOE1.1.1.2	sub	Structural container metal corrosion: Bulk	
DOE1.1.1.3	sub	Structural container metal corrosion: Crevice	
DOE1.1.1.4	sub	Structural container metal corrosion: Stress corrosion cracking	
DOE1.1.2		Physical degradation of concrete	
DOE1.1.2.1	sub	Cracking	
DOE1.1.2.2	sub	Sealing of cracks	
DOE1.1.2.3	sub	Pore blockage	
DOE1.1.2.4	sub	Alkali-aggregate reaction	
DOE1.1.2.5	sub	Cement-sulphate reaction	
DOE1.1.3		Chemical degradation of concrete	
DOE1.1.3.1	sub	Changes in pore water composition, pH, Eh	
DOE1.1.3.2	sub	Exchange capacity exceeded	
DOE1.1.3.3	sub	Alkali-aggregate reaction	
DOE1.1.3.4	sub	Cement-sulphate reaction	
DOE1.1.4	Н	Degradation of wastes (vitrified glass)	
DOE1.1.4.1	sub	Metal corrosion	
DOE1.1.4.2	sub	Leaching	
DOE1.1.4.3	sub	Complex formation	
DOE1.1.4.4	sub	Colloid formation	
DOE1.1.4.5	sub	Microbial degradation of organic wastes	
DOE1.1.4.6	sub	Microbial corrosion	
DOE1.1.4.7	sub	Radiolysis	
DOE1.2.1		Hydrogen [production] by metal corrosion	
DOE1.2.1.1	sub	Structural steel	
DOE1.2.1.2	sub	Container steel	
DOE1.2.1.3	sub	Waste steel	
DOE1.2.1.4	sub	Waste Magnox	
DOE1.2.1.5	sub	Waste aluminium	
DOE1.2.1.6	sub	Waste Zircalloy	
DOE1.2.1.7	sub	Waste other metals	
DOE1.2.1.8	sub	Effects of microbial growth on concrete	
DOE1.2.2		Methane and carbon dioxide [production] by microbial degradation	
DOE1.2.2.1	sub	Cellulosics	
DOE1.2.2.2	sub	Other susceptible organic materials	
DOE1.2.2.3	sub	Aerobic degradation	
DOE1.2.2.4	sub	Anaerobic degradation	
DOE1.2.2.5	sub	Effects of temperature	
DOE1.2.2.6	sub	Effects of lithostatic pressure	
DOE1.2.2.7	sub	Effects of microbial growth on properties of concrete	
DOE1.2.2.8	sub	Effects of biofilms	
DOE1.2.2.9	sub	Effects of hydrogen from metal corrosion	
DOE1.2.2.10	sub	Inhibition due to the pressure of toxic materials	
DOE1.2.2.11	sub	Carbonate/bicarbonate exchange with concrete	
DOE1.2.2.12	sub	Energy and nutrient control of metabolism	
DOE1.2.2.13	sub	Effects of radiation on microbial populations	
DOE1.2.3		Gas generation from concrete	

CODE	Screen	FEP NAME	SEE
DOE1.2.4		Active gases	
DOE1.2.4.1	sub	Tritiated hydrogen	
DOE1.2.4.2	sub	Active methane and carbon dioxide	
DOE1.2.4.3	sub	Other active gases	
DOE1.2.5		ic gases	
DOE1.2.6		Gas transport	
DOE1.2.6.1	sub	In the waste container	
DOE1.2.6.2	sub	In the vaults between containers	
DOE1.2.6.3	sub	Between vaults	
DOE1.2.6.4	sub	In the near-field, including up and around access shafts and adits	
DOE1.2.6.5	sub	Into and through the far-field	
DOE1.2.7		Flammability	
DOE1.2.7.1	sub	Fires	
DOE1.2.7.2	sub	Explosions	
DOE1.3.1		Radioactive decay and ingrowth	
DOE1.3.2		Nuclear criticality	
DOE1.4.1		Canister or container movement	
DOE1.4.2		Changes in in situ stress field	
DOE1.4.3		Embrittlement	
DOE1.4.4		Subsidence/collapse	
DOE1.4.4.1	sub	Repository induced	
DOE1.4.4.2	sub	Natural	
DOE1.4.5		Rock creep	
DOE1.4.6		Fracturing	
DOE1.5.1		Changes in moisture content	
DOE1.5.1.1	sub	Due to dewatering	
DOE1.5.1.2	sub	Due to stress relief	
DOE1.5.2		Groundwater flow (unsaturated conditions)	
DOE1.5.2.1	sub	Initial conditions	
DOE1.5.2.2	sub	Due to gas production	
DOE1.5.3	sub	Groundwater flow (saturated conditions)	
DOE1.5.4		Transport of chemically active substances into the near-field	
DOE1.5.4.1	sub	Inorganic ions	
DOE1.5.4.2	sub	Humic and fulvic acids	
DOE1.5.4.3	sub	Microbes	
DOE1.5.4.4	sub	Organic complexes	
DOE1.5.4.5	sub	Colloids	
DOE1.6.1	V	Differential elastic response	
DOE1.6.2	V	Non-elastic response	
DOE1.6.5		Chemical changes	
DOE1.6.5.1	sub	Metal corrosion	
DOE1.6.5.2	sub	Concrete degradation	
DOE1.6.5.3	sub	Waste degradation	
DOE1.6.5.4	sub	Gas production	
DOE1.6.5.5	sub	Complex formation	
DOE1.6.5.6	sub	Colloid production	
DOE1.6.5.7	sub	Solubility	
DOE1.6.5.8	sub	Sorption	
DOE1.6.5.9	sub	Species equilibrium	

CODE	Screen	FEP NAME	SEE
DOE1.6.6		Microbiological effects	
DOE1.6.6.1	sub	Cellulose degradation	
DOE1.6.6.2	sub	Microbial activity	
DOE1.6.6.3	sub	Microbial product reactions	
DOE2.1.1	Е	Meteorite impact	
DOE2.4.1		Advection	
DOE2.4.2		Diffusion	
DOE2.4.2.1	sub	Bulk	
DOE2.4.2.2	sub	Matrix	
DOE2.4.2.3	sub	Surface	
DOE2.4.3		Hydrodynamic dispersion	
DOE2.4.4		Solubility constraints	
DOE2.4.4.1	sub	Effects of pH and Eh	
DOE2.4.4.2	sub	Effects of ionic strength	
DOE2.4.4.3	sub	Naturally-occurring complexing agents	
DOE2.4.4.4	sub	Complexing agents formed in the near-field	
DOE2.4.4.5	sub	Naturally-occuring colloids	
DOE2.4.4.6	sub	Colloids formed in the near-field	
DOE2.4.4.7	sub	Major ions migrating from the near-field	
DOE2.4.4.8	sub	Effects of microbial activity	
DOE2.4.5		Sorption	
DOE2.4.5.1	sub	Linear	
DOE2.4.5.2	sub	Non-linear	
DOE2.4.5.3	sub	Reversible	
DOE2.4.5.4	sub	Irreversible	
DOE2.4.5.5	sub	Effects of pH and Eh	
DOE2.4.5.6	sub	Effects of ionic strength	
DOE2.4.5.7	sub	Effects of naturally-occurring organic complexing agents	
DOE2.4.5.8	sub	Effects of naturally-occuring inorganic complexing agents	
DOE2.4.5.9	sub	Effects of complexing agents formed in the near-field	
DOE2.4.5.10	sub	Effects of naturally-occurring colloids	
DOE2.4.5.11	sub	Effects of colloids formed in the near-field	
DOE2.4.5.13	sub	Effects of microbial activity	
DOE2.4.7		Organic colloid transport	
DOE2.4.10		Isotopic dilution	
DOE2.4.11		Gas Transport	
DOE2.4.11.1		Solution	
DOE2.4.11.2		Gas phase	
DOE2.4.12		Gas-induced groundwater transport	
DOE2.4.13		Thermally induced groundwater transport	
DOE2.4.13.1	sub	Repository-induced	

CODE	Screen	FEP NAME	SEE
IAEA1.12		Geochemical change	
IAEA1.13		Fluid interactions	
IAEA1.13.1	sub	Fluid interactions: Groundwater flow	
IAEA1.13.2	sub	Fluid interactions: Dissolution	
IAEA2.2	Е	Inadequate design	
IAEA2.2.1	Е	Inadequate design: Shaft seal failure	
IAEA2.2.2	Е	Inadequate design: Exploration borehole seal failure	
IAEA2.3	Е	Improper operation: Improper waste emplacement	
IAEA3.1		Thermal effects	
IAEA3.2	G	Chemical effects	
IAEA3.2.1		Chemical effects: Corrosion	
IAEA3.2.2		Chemical effects: Interactions of waste package and rock	
IAEA3.2.3		Chemical effects: Gas generation	
IAEA3.2.4		Chemical effects: Geochemical change	
IAEA3.3	G	Mechanical effects	
IAEA3.3.1		Mechanical effects: Canister movement	
IAEA3.3.2		Mechanical effects: Local fracturing	
IAEA3.4	G	Radiological effects	
IAEA3.4.1		Radiological effects: Material property changes	
IAEA3.4.2	R	Radiological effects: Radiolysis	AECL1.69
IAEA3.4.3		Radiological effects: Decay product gas generation	
IAEA3.4.4	R	Radiological effects: Nuclear criticality	DOE1.3.2
PGA3.1	Н	Radiation damage of the matrix	
PGA3.2	R	Radiolysis	AECL1.69
PGA3.3	R	Nuclear criticality	DOE1.3.2
PGA3.4	R	Canister movement in backfill	DOE1.4.1
PGA3.6		Mechanical canister damage	
PGA3.7		Differing thermal expansion	
PGA3.12	G	Geochemical changes	
PGA3.12.1		Geochemical changes in backfill	
PGA3.12.2		Geochemical changes in host rock	
PGA3.13		Physico-chemical phenomena/effects (eg. colloid formation)	
PGA3.14	R	Microbiological phenomena/effects	DOE1.6.6
PGA3.15	R	Gas production	SKI1.2.4

CODE	Screen	FEP NAME	SEE
SKI1.1.1	R	Criticality	DOE1.3.2
SKI1.1.2		Radioactive decay; heat	
SKI1.1.3		Recoil of alpha-decay	
SKI1.1.4	R	Gas generation: He production	IAEA3.4.3
SKI1.2.1	R	Radiolysis	IAEA3.4.2
SKI1.2.2		H2/O2 explosions	
SKI1.2.3	Н	Pb-I reactions	
SKI1.2.4		Gas generation	
SKI1.2.5	Н	I, Cs-migration to glass surface	
SKI1.2.6	Н	Solubility within fuel matrix	
SKI1.2.7		Recrystallization	
SKI1.2.8	Р	Redox potential	
SKI1.2.9		Dissolution chemistry	
SKI1.3	Н	Damaged or deviating fuel	
SKI1.4	Н	Sudden energy release	
SKI1.5		Release of radionuclides from the failured canister	
SKI2.1.1	Н	Chemical reactions (copper corrosion)	
SKI2.1.2		Coupled effects (electrophoresis)	
SKI2.1.3		Internal corrosion due to waste	
SKI2.1.4		Role of the eventual channeling within the canister	
SKI2.1.5	Н	Role of chlorides in copper corrosion	
SKI2.1.6.1	Н	Repository induced Pb/Cu electrochemical reactions	
SKI2.1.6.2		Natural telluric electrochemical reactions	
SKI2.1.7	sub	Pitting	DOE1.1.1
SKI2.1.8		Corrosive agents, Sulphides, oxygen etc	
SKI2.1.9	Н	Backfill effects on Cu corrosion	
SKI2.1.10	R	Microbes	DOE1.6.6
SKI2.2	Н	Creeping of copper	
SKI2.3.1		Thermal cracking	
SKI2.3.2		Electro-chemical cracking	
SKI2.3.3		Stress corrosion cracking	
SKI2.3.4	Н	Loss of ductility	
SKI2.3.5		Radiation effects on canister	
SKI2.3.6		Cracking along welds	
SKI2.3.7.1		External stress	
SKI2.3.7.2		Hydrostatic pressure on canister	
SKI2.3.8		Internal pressure	
SKI2.4	Н	Voids in the lead filling	
SKI2.5.1		Random canister defects - quality control	
SKI2.5.2		Common cause canister defects - quality control	
SKI3.1.1		Degradation of the bentonite by chemical reactions	
SKI3.1.2		Saturation of sorption sites	
SKI3.1.3		Effects of bentonite on groundwater chemistry	
SKI3.1.4		Colloid generation - source	
SKI3.1.5		Coagulation of bentonite	
SKI3.1.6		Sedimentation of bentonite	
SKI3.1.7		Reactions with cement pore water	
SKI3.1.8	1	Near field buffer chemistry	

CODE	Screen	FEP NAME	SEE
SKI3.1.9	R	Radiolysis	IAEA3.4.2
SKI3.1.10		Interactions with corrosion products and waste	
SKI3.1.11		Redox front	
SKI3.1.12		Pertubed buffer material chemistry	
SKI3.1.13		Radiation effects on bentonite	
SKI3.2.1		No entry [Swelling of bentonite?]	
SKI3.2.1.1		Swelling of bentonite into tunnels and cracks	
SKI3.2.1.2		Uneven swelling of bentonite	
SKI3.2.2	R	Movement of canister in buffer/backfill	DOE1.4.1
SKI3.2.3		Mechanical failure of buffer/backfill	
SKI3.2.4	Т	Erosion of buffer/backfill	
SKI3.2.5		Thermal effects on the buffer material	
SKI3.2.6	sub	Diffusion - surface diffusion	DOE2.4.2
SKI3.2.7		Swelling of corrosion products	
SKI3.2.8		Preferential pathways in the buffer/backfill	
SKI3.2.9		Flow through buffer/backfill	
SKI3.2.10		Soret effect	
SKI3.2.11		Backfill material deficiencies	
SKI3.2.12		Gas transport in bentonite	
SKI4.1.1		Oxidizing conditions	
SKI4.1.2		pH-deviations	
SKI4.1.3		Colloids, complexing agents	
SKI4.1.4	R	Sorption	DOE2.4.5
SKI4.1.5	sub	Matrix diffusion	DOE2.4.2
SKI4.1.6		Reconcentration	
SKI4.1.7		Thermochemical changes	
SKI4.1.8		Change of groundwater chemistry in nearby rock	
SKI4.1.9		Complexing agents	
SKI4.2.1	R	Mechanical failure of repository	DOE1.4.4
SKI4.2.2.1		Excavation/backfilling effects on nearby rock	
SKI4.2.2.2		Hydraulic conductivity change - Excavation/backfilling effect	
SKI4.2.2.3		Mechanical effects - Excavation/backfilling effects	
SKI4.2.3		Extreme channel flow of oxidants and nuclides	
SKI5.1		Saline (or fresh) groundwater intrusion	
SKI5.2	Е	Non-sealed repository	
SKI5.3	Е	Stray materials left	
SKI5.4	E	Decontamination materials left	
SKI5.11	Т	Degradation of hole- and shaft seals	
SKI5.14	_	Resaturation	
SKI5.23		Changed hydrostatic pressure on canister	
SKI5.39	E	Postclosure monitoring	
SKI5.43	Е	Methane intrusion	
SKI5.44	R	Solubility and precipitation	DOE2.4.4
SKI5.45		Colloid generation and transport	
SKI6.2	R	Gas transport	DOE2.4.11
SKI6.4		Dispersion	
SKI6.5		Dilution	
SKI7.4	_	Chemical toxicity of wastes	
SKI7.5	R	Isotopic dilution	DOE2.4.10

CODE	Screen	FEP NAME	SEE
SNL6.1	R	Subsidence and Caving	DOE1.4.4
SNL6.2	Т	Shaft and Borehole Seal Degradation	
UKN1.2.13		Natural gas intrusion	
UKN1.6.1	R	Advection and dispersion	DOE2.4.1
UKN1.6.2	R	Diffusion	DOE2.4.2
UKN1.6.4	R	Gas mediated transport	DOE2.4.12
UKN1.6.5		Multiphase flow and gas driven flow	
UKN1.6.6	Р	Solubility limit	
UKN1.6.7	R	Sorption (linear/non-linear, reversible/irreversible)	DOE2.4.5
UKN1.6.8		Dissolution, precipitation and crystalisation	
UKN1.6.9		Colloid formation, dissolution and transport	
UKN1.6.10		Complexing agents	
UKN1.6.13		Mass, isotopic and species dilution	DOE2.4.10
UKN1.6.14		Chemical gradients (electrochemical effects and osmosis)	
UKN1.7.6	?	Chemical transformations	
UKN1.7.7	R	Microbial interactions	DOE1.6.6
UKN2.1.6		Material defects, e.g. early canister failure	
UKN2.1.10		Thermal effects (eg. concrete hydration)	
UKN2.2.2	Е	Inadequate backfill or compaction, voidage	
UKN2.2.3	Е	Co-disposal of reactive wastes (deliberate)	
UKN2.2.4	Е	Inadvertant inclusion of undesirable materials	
UKN2.2.5		Heterogeneity of waste forms (chemical, physical)	
UKN3.1.5		Induced chemical changes (solubility, sorption, species equilibrium, mineralise	ation)
UKN3.2.1	R	Metallic corrosion (pitting/uniform, internal and external agents, gas generatio	DOE1.6.5
UKN3.2.2		Interactions of host materials and gr/w with repository materials (eg, concrete	carbonation,sul
UKN3.2.3		Interactions of waste and repository materials with host materials (eg. electroc	hemical, corrosi
UKN3.2.5		Cellulosic degradation	
UKN3.2.6		Introduced complexing agents and cellulosics	DOE1.5.4
UKN3.2.7	R	Microbiological effects (on corrosion/degradation, on solubility/complexatio	DOE1.6.6
UKN3.3.1	R	Canister or container movement	DOE1.4.1
UKN3.3.3	R	Embrittlement and cracking	DOE1.4.3
UKN3.3.6		Gas effects (pressuration, disruption, explosion, fire)	
UKN3.4.1	R	Radiolysis	AECL1.69
UKN3.4.2	Е	Material property changes	
UKN3.4.3	R	Nuclear criticality	DOE1.3.2
UKN3.4.4	R	Radioactive decay and ingrowth (chain decay)	DOE1.3.1

CODE	Screen	FEP NAME	SEE
HMIP1.1	G	Chemical/physical degradation	
HMIP1.1.1	R	Container metal corrosion	DOE1.1.1
HMIP1.1.2	R	Physico-chemical degradation of concrete	DOE1.1.2
HMIP1.1.3		Physico-chemical degradation of wastes and transport to the far-field	
HMIP1.1.4		Electrical effects of metal corrosion	
HMIP1.2	G	Gas production, transport and flammability	
HMIP1.2.1	R	Hydrogen by metal corrosion	DOE1.2.1
HMIP1.2.2	R	Methane and carbon dioxide by microbial degradation	DOE1.2.2
HMIP1.2.3	R	Gas generation from concrete	DOE1.2.3
HMIP1.2.4	R	Radioactive gases	DOE1.2.4
HMIP1.2.5	R	Chemotoxic gases	DOE1.2.5
HMIP1.2.6	R	Gas transport	DOE1.2.6
HMIP1.2.7	R	Flammability	DOE1.2.7.1
HMIP1.2.8		Thermo-chemical effects	
HMIP1.3	G	Radiation phenomena	
HMIP1.3.1	R	Radioactive decay and ingrowth	DOE1.3.1
HMIP1.3.2	R	Nuclear criticality	AECL1.69
HMIP1.4	G	Structural integrity	
HMIP1.4.1		Waste-form and backfill consolidation	
HMIP1.4.2	R	Vault collapse	DOE1.4.4
HMIP1.5	G	Hydrogeological effects	
HMIP1.5.1	Е	Desaturation (pumping) effects	
HMIP1.5.2		Disturbed zone (hydromechanical) effects	
HMIP1.5.3		Gas production (unsaturated flow)	
HMIP1.5.4		Saturated groundwater flow	
HMIP1.5.5	R	Transport of chemically active substances into the near-field	DOE1.5.4
HMIP1.6	G	Thermal Effects	
HMIP1.6.1		Rock-mass changes (thermal effects)	
HMIP1.6.2		Hydrogeological changes (thermal effects)	
HMIP1.6.3		Chemical changes (thermal effects)	
HMIP1.6.4		Transport (diffusion) effects (thermal effects)	

CODE	Screen	FEP NAME	SEE
NAGRA0.1	R	Radioactive decay	DOE1.3.1
NAGRA0.2	R	Speciation (including gases/volatiles)	AECL1.80
NAGRA1.2	R	Radionuclide inventory	AECL1.53
NAGRA1.4	Н	Void space	
NAGRA1.8	R	Heat output (radionuclide decay heat)	SKI1.1.2
NAGRA1.10	R	Radiation damage	AECL1.67
NAGRA1.13		Selective leaching	
NAGRA1.14		Coprecipitates/solid solutions	
NAGRA1.15		Elemental solubility limits	
NAGRA1.16		Solute transport resistance	
NAGRA1.17		Iron corrosion products	
NAGRA1.20	R	Radionuclide source term	AECL1.78
NAGRA1.21	R	Colloid formation	HMIP1.6.9
NAGRA1.22	R	Microbial activity	DOE1.6.6
NAGRA1.23	R	Radiolysis	AECL1.69
NAGRA1.24	R	He gas production	IAEA3.4.3
NAGRA1.25	Е	Quality control	
NAGRA2.1	Н	Cast steel canister	
NAGRA2.2	Р	Canister thickness	
NAGRA2.3		Corrosion on wetting	
NAGRA2.4	R	Oxic corrosion	DOE1.1.1
NAGRA2.5		Microbially mediated corrosion	
NAGRA2.6	sub	Anoxic corrosion	
NAGRA2.7	sub	Localised corrosion	
NAGRA2.8	Т	Total corrosion rate	
NAGRA2.9	sub	Stress corrosion cracking	
NAGRA2.10	?	Canister (other effects)	
NAGRA2.11		Radiation shielding	
NAGRA2.12a		Canister failure (alternative modes)	
NAGRA2.12b		Canister failure (reference)	
NAGRA2.13		Residual canister (crack/hole effects)	
NAGRA2.14		Chemical buffering (canister corrosion products)	
NAGRA2.15	R	Radionuclide sorption and co-precipitation	DOE2.4.5
NAGRA2.16	R	Hydrogen production	DOE1.2.1
NAGRA2.17		Effect of hydrogen on corrosion	
NAGRA2.18		Corrosion products (physical effects, including volume increase)	
NAGRA2.19		Canister temperature	
NAGRA2.20		Radionuclide transport	
NAGRA2.21	Е	Quality control	
NAGRA2.22	Е	Mis-sealed canister	
NAGRA3.1		Bentonite emplacement and composition	
NAGRA3.2		Thermal evolution	

CODE	Screen	FEP NAME	SEE
NAGRA3.3	R	Bentonite saturation	SKI5.14
NAGRA3.4		Bentonite swelling pressure	
NAGRA3.5	Р	Bentonite plasticity	
NAGRA3.6	Т	Bentonite corrosion/colloid formation	
NAGRA3.7		Canister sinking	
NAGRA3.8		Buffer impermeability	
NAGRA3.9		Bentonite porewater chemistry	
NAGRA3.10		Radionuclide retardation	
NAGRA3.11		Colloid filtration	
NAGRA3.12		Mineralogical alteration	
NAGRA3.13		Bentonite cementation	
NAGRA3.14		Canister/bentonite interaction	
NAGRA3.15		Gas permeability	
NAGRA3.16		Radionuclide transport through buffer	
NAGRA3.17	R	Microbial activity	DOE1.6.6
NAGRA3.18		Elemental solubility/precipitation	
NAGRA3.19	R	Radiolysis	AECL1.69
NAGRA3.20		Interaction bewteen canisters	
NAGRA3.21	Е	Inhomogeneities	
NAGRA3.22	Е	Quality control	
NAGRA3.23	Е	Poor emplacement of buffer	
NAGRA3.24		Organics/contamination of bentonite	
NAGRA3.25		Interaction with cement components	
NAGRA4.1	G	Excavation-disturbed zone (EDZ)	
NAGRA4.2		Natural radionuclides/elements	
NAGRA4.3	R	Desaturation/resaturation of excavation-disturbed zone	SKI5.14
NAGRA4.4		Effect of bentonite swelling on excavation-disturbed zone	
NAGRA4.5		Geochemical alteration	
NAGRA4.6		Groundwater chemistry	
NAGRA4.7		Water flow at the bentonite/host rock interface	
NAGRA4.8		Radionuclide migration	
NAGRA4.9	R	Radionuclide retardation	NAGRA3.10
NAGRA4.10		Elemental solubility	
NAGRA4.11	R	Gas transport/dissolution	DOE1.2.6
NAGRA4.12	R	Colloids	AECL1.15
NAGRA4.13		Radionuclide release from excavation-disturbed zone	
NAGRA4.15	G	TRU silos (siting)	
NAGRA4.16	Р	Access tunnels and shafts	
NAGRA4.17	Р	Shaft and tunnel seals	
NAGRA4.18		Oil or organic fluid spill	
NAGRA4.19		TRU silos high pH plume	

Appendix B: *Reduced List of Near-Field Barrier FEPs: Sorted by Category*

Reduced List of Near-Field Barrier FEPs: Sorted by Category

FEP NAME	SILO BLA BMA BTF	FEP TITLE / COMMENT
Container corrosion products		Evolving properties of container
Container failure (early)		Evolving properties of container
Container failure (long-term)		Evolving properties of container
Container healing		Evolution of container
Inventory		Evolving radionuclide inventory
Other wastes (other than vitrified HLW)		Inventory
Structural container metal corrosion		Evolving properties of container
Physical degradation of concrete		Evolving properties of cement matrix
Chemical degradation of concrete		Degradation of concrete
Hydrogen [production] by metal corrosion		Gas generation in waste package
Methane and carbon dioxide [production] by microbial degradation		Gas generation in waste package
Gas generation from concrete		Gas generation in waste package
Active gases		Gas generation in waste package
Toxic gases		Gas generation in waste package
Canister or container movement		Mechanical stress distribution in waste package
Embrittlement		Evolving properties of container
Fracturing		Evolving properties of container
Radiological effects: Material property changes		Radiation effects on mortar/shell
Radiological effects: Decay product gas generation		Radiation effects on mortar/shell
Mechanical canister damage		Evolving properties of container
Release of radionuclides from the failured canister		Transport and release of nuclides from waste pack

NEAR-FIELD FEPs: WASTE PACKAGE (WASTE + CANISTER)		
FEP NAME	SILO BLA BMA BTF	FEP TITLE / COMMENT
Internal corrosion due to waste		Evolving properties of container
Role of the eventual channeling within the canister		Evolving properties of container
Radiation effects on canister		
Cracking along welds		Evolving properties of container
External stress		Mechanical stress distribution in waste package
Hydrostatic pressure on canister		Mechanical stress distribution in waste package
Internal pressure		Mechanical stress distribution in waste package
Random canister defects - quality control		Evolving properties of container
Common cause canister defects - quality control		Evolving properties of container
Interactions with corrosion products and waste		via Water chemistry in waste package
Changed hydrostatic pressure on canister		Mechanical stress distribution in waste package
Chemical toxicity of wastes		
Heterogeneity of waste forms (chemical, physical)		
Cellulosic degradation		Degradation of organic waste/ion exchange resins
Introduced complexing agents and cellulosics		via Water chemistry
Physico-chemical degradation of wastes [and transport to the far-field]		Degradation of waste
Electrical effects of metal corrosion		via Evolution of waste package
Waste-form and backfill consolidation		
Selective leaching		Water chemistry in waste package
Iron corrosion products		Evolving properties of container
Canister thickness		Evolving properties of container
Corrosion on wetting		Evolving properties of container
Microbially mediated corrosion		Evolving properties of container
Total corrosion rate		Evolving properties of container
Radiation shielding		Evolving properties of container
Canister failure (alternative modes)		Evolving properties of container
Canister failure (reference)		Evolving properties of container
Residual canister (crack/hole effects)		Evolving properties of container
Chemical buffering (canister corrosion products)		Water chemistry in waste package
Effect of hydrogen on corrosion		Evolving properties of container

FEP NAME	SILO	BLA	BMA	BTF	FEP TITLE / COMMENT
Corrosion products (physical effects, including volume increase)			·		Evolving properties of container
Canister temperature					Evolving properties of container
Canister sinking					
Canister/bentonite interaction					
Interaction between canisters					Evolving properties of container
Backfill characteristics					Properties of mortar/shell
Backfill evolution					Degradation of mortar/shell
Buffer characteristics					Properties of mortar/shell
Buffer evolution					Degradation of mortar/shell
Fracturing					Degradation of mortar/shell
Geochemical changes in backfill					Degradation of mortar/shell
Degradation of the bentonite by chemical reactions					Degradation of mortar/shell
Effects of bentonite on groundwater chemistry					via Water chemistry in mortar/shell
Coagulation of bentonite					
Sedimentation of bentonite					
Reactions with cement pore water					
Near field buffer chemistry					Water chemistry in mortar/shell
Pertubed buffer material chemistry					Water chemistry in mortar/shell
Radiation effects on bentonite					Radiation effects on mortar/shell
Swelling of bentonite [created]					
Swelling of bentonite into tunnels and cracks					
Uneven swelling of bentonite					
Mechanical failure of buffer/backfill					Degradation of mortar/shell
Erosion of buffer/backfill					Degradation of mortar/shell
Thermal effects on the buffer material					Thermal effects on the mortar/concrete
Preferential pathways in the buffer/backfill					Transport and release of nuclides from mortar/shell
Flow through buffer/backfill					Water movement in and through mortar/shell
Backfill material deficiencies					Properties of mortar/shell
Gas transport in bentonite					Gas flow and transport in mortar/shell

NEAR-FIELD FEPs: MORTAR (Porous concrete) and SHELL (Rei FEP NAME	1	BLA	BMA	BTF	FEP TITLE / COMMENT
Waste-form and backfill consolidation				•	
Bentonite emplacement and composition					Properties of mortar/shell
Thermal evolution					Temperature
Bentonite swelling pressure					
Bentonite plasticity					
Bentonite corrosion/colloid formation					Colloid generation and transport in mortar/shell
Buffer impermeability					Properties of mortar/shell
Bentonite porewater chemistry					Water chemistry in mortar/shell
Colloid filtration					Colloid generation and transport in mortar/shell
Mineralogical alteration					Degradation of mortar/shell
Bentonite cementation					Degradation of mortar/shell
Gas permeability					Gas flow and transport in mortar/shell
Radionuclide transport through buffer					Transport and release of nuclides from mortar/shell
Organics/contamination of bentonite					Properties of mortar/shell
Interaction with cement components					Water chemistry in mortar/shell
Effect of bentonite swelling on excavation-disturbed zone					
Water flow at the bentonite/host rock interface					

NEAR-FIELD FEPs: BACKFILL (sand/bentonite and bentonite)					
FEP NAME	SILO	BLA	BMA	BTF	FEP TITLE / COMMENT
Backfill characteristics					Properties of backfill
Backfill evolution					Degradation/alteration of backfill
Buffer characteristics					Properties of backfill
Buffer evolution					Degradation/alteration of backfill
Fracturing					Degradation/alteration of backfill
Geochemical changes in backfill					Degradation/alteration of backfill
Degradation of the bentonite by chemical reactions					Degradation/alteration of backfill
Effects of bentonite on groundwater chemistry					via Water chemistry in backfill
Coagulation of bentonite					Degradation/alteration of backfill
Sedimentation of bentonite					Degradation/alteration of backfill
Reactions with cement pore water					Water chemistry in backfill
Near field buffer chemistry					Water chemistry in backfill
Pertubed buffer material chemistry					Water chemistry in backfill
Radiation effects on bentonite					Radiation effects on backfill
Swelling of bentonite [created]					Bentonite swelling in backfill
Swelling of bentonite into tunnels and cracks					Bentonite swelling in backfill/Properties backfill
Uneven swelling of bentonite					Bentonite swelling in backfill/Properties backfill
Mechanical failure of buffer/backfill					Degradation/alteration of backfill
Erosion of buffer/backfill					Degradation/alteration of backfill
Thermal effects on the buffer material					Thermal effects on the backfill material
Preferential pathways in the buffer/backfill					Transport and release of nuclides from backfill

NEAR-FIELD FEPs: BACKFILL (sand/bentonite and bentonite) FEP NAME	SILO	BLA	BMA	BTF	FEP TITLE / COMMENT		
Flow through buffer/backfill					Water movement in and through backfill		
Backfill material deficiencies					Properties of backfill		
Gas transport in bentonite					Gas flow and transport in backfill		
Waste-form and backfill consolidation							
Bentonite emplacement and composition					Properties of backfill		
Thermal evolution					Temperature of backfill		
Bentonite swelling pressure					Properties of backfill		
Bentonite plasticity					Properties of backfill		
Bentonite corrosion/colloid formation					Colloid generation and transport in backfill		
Buffer impermeability					Degradation/alteration of backfill		
Bentonite porewater chemistry					Water chemistry in backfill		
Colloid filtration					Colloid generation and transport in backfill		
Mineralogical alteration					Degradation/alteration of backfill		
Bentonite cementation					Degradation/alteration of backfill		
Gas permeability					Gas flow and transport in backfill		
Radionuclide transport through buffer					Transport and release of nuclides from backfill		
Organics/contamination of bentonite					Properties of backfill		
Interaction with cement components					via Water chemistries		
Effect of bentonite swelling on excavation-disturbed zone					via Mechanical stress distribution in backfill		
Water flow at the bentonite/host rock interface					Water movement in and through backfill		

NEAR-FIELD FEPs: NEAR-FIELD ROCK					
FEP NAME	SILO	BLA	BMA	BTF	FEP TITLE / COMMENT
Reflooding					Resaturation state of near-field rock
Seal evolution					Shaft and tunnel seal degradation
Seal failure					Shaft and tunnel seal degradation
Changes in situ stress field					Stress field in near-field rock
Subsidence/collapse					Cave-in
Rock creep					Creeping of rock mass in near-field
Geochemical changes in host rock					Properties or Degradation/alteration of near-field rock
Change of groundwater chemistry in nearby rock					Water chemisrty in near-field rock
Excavation/backfilling effects on nearby rock					Excavation effects on near-field rock
Degradation of hole- and shaft seals					Shaft and tunnel seal degradation
Shaft and Borehole Seal Degradation					Shaft and tunnel seal degradation
Desaturation (pumping) effects					Resaturation state of near-field rock
Disturbed zone (hydromechanical) effects					Stress field in near-field rock
Transport of chemically active substances into the near-field					via Groundwater chemistry (far field)
Natural radionuclides/elements					via Groundwater chemistry (far field)
Effect of bentonite swelling on excavation-disturbed zone					Stress field in near-field rock
Water flow at the bentonite/host rock interface					Groundwater flow through near-field rock
Radionuclide release from excavation-disturbed zone					Transport and release of nuclides from near-field rock
Access tunnels and shafts					
Shaft and tunnel seals					
Oil or organic fluid spill					
TRU silos high pH plume					via Water chemistry

NEAR-FIELD FEPs: GENERAL					
FEP NAME	SILO	BLA	BMA	BTF	FEP TITLE / COMMENT
Chemical interactions (expected)					Water chemistry
Chemical interactions (long-term)					Water chemistry
Chemical kinetics					Water chemistry
Colloids					Colloid generation and transport
Complexation by organics					Water chemistry
Convection					Water movement
Diffusion					Diffusion
Dispersion					Groundwater flow
Electrochemical gradients					Electrochemical gradients
Excessive hydrostatic pressures					Stress field
Formation of cracks					Fast pathways
Long-term physical stability					Degradation
Precipitation and dissolution					Precipitation/dissolution
Pseudo-colloids					Colloid generation and transport
Radiation damage					Radiation effects
Radiolysis					Radiolysis
Speciation					Water chemistry
Time dependence					
Gas transport					Gas flow and transport
Flammability					
Radioactive decay and ingrowth					Radioactive decay and ingrowth
Nuclear criticality					
Changes in moisture content					Resaturation state
Groundwater flow (unsaturated conditions)					Groundwater flow
Transport of chemically active substances into the near-field					via Water chemistry (far field)
Chemical changes					Water chemistry

NEAR-FIELD FEPs: GENERAL	I				
FEP NAME	SILO	BLA	BMA	BTF	FEP TITLE / COMMENT
Microbiological effects					via Microbial activity
Advection					Groundwater flow
Diffusion					Diffusion
Hydrodynamic dispersion					Groundwater flow
Solubility constraints					Precipitation/dissolution
Sorption					Sorption
Organic colloid transport					Colloid generation and transport
Isotopic dilution					via Water chemistry
Gas Transport					Gas flow and transport
Solution					Water chemistry
Gas phase					Gas generation
Gas-induced groundwater transport					via Gas pressure
Thermally induced groundwater transport					via Temperature
Geochemical change					Degradation / Alteration
Thermal effects					via Temperature
Chemical effects: Corrosion					Degradation
Chemical effects: Interactions of waste package and rock					via Water chemistry
Chemical effects: Gas generation					via Gas generation
Mechanical effects: Local fracturing					Mechanical stress
Differing thermal expansion					Mechanical stress
Physico-chemical phenomena/effects (eg. colloid formation)					
Radioactive decay; heat					via Evolving radionuclide inventory
Recoil of alpha-decay					Recoil from alpha decay
Gas generation: He production					Gas generation
H2/O2 explosions					
Pb-I reactions					
Recrystallization					Precipitation/dissolution
Redox potential					Redox front

NEAR-FIELD FEPs: GENERAL					
FEP NAME	SILO	BLA	BMA	BTF	FEP TITLE / COMMENT
Dissolution chemistry					Precipitation/dissolution
Coupled effects (electrophoresis)					via Electrochemical gradients
Natural telluric electrochemical reactions					via Electrochemical gradients
Corrosive agents, Sulphides, oxygen etc					Water chemistry
Thermal cracking					Degradation
Electro-chemical cracking					Degradation
Stress corrosion cracking					Degradation
Saturation of sorption sites					Sorption
Colloid generation - source					Colloid generation and transport
Redox front					Redox front
Swelling of corrosion products					Mechanical stress distribution
Soret effect					
Oxidizing conditions					Water chemistry
pH-deviations					Water chemistry
Colloids, complexing agents					Colloid generation and transport
Reconcentration					Precipitation/dissolution
Thermochemical changes					
Complexing agents					Water chemistry
Hydraulic conductivity change - Excavation/backfilling effect					
Mechanical effects - Excavation/backfilling effects					
Extreme channel flow of oxidants and nuclides					Fast pathways
Saline (or fresh) groundwater intrusion					
Resaturation					Resaturation state
Colloid generation and transport					Colloid generation and transport

NEAR-FIELD FEPs: GENERAL							
FEP NAME	SILO	BLA	BMA	BTF	FEP TITLE / COMMENT		
Dispersion					Groundwater flow		
Dilution					Water chemistry		
Natural gas intrusion							
Multiphase flow and gas driven flow					Gas flow and Groundwater flow		
Solubility limit					Precipitation/dissolution		
Dissolution, precipitation and crystalisation					Precipitation/dissolution		
Colloid formation, dissolution and transport					Colloid generation and transport		
Complexing agents					Water chemistry		
Mass, isotopic and species dilution					Water chemistry		
Chemical gradients (electrochemical effects and osmosis)					Water chemistry		
Material defects, e.g. early canister failure					Properties		
Thermal effects (eg. concrete hydration)					via Temperature		
Induced chemical changes (solubility, sorption, species equilibrium, mineralisation)					via Water chemistries		
Interactions of host materials and groundwater with repository material (eg, concrete	carbona	tion,sulj	phate at	tack)	via Water chemistries		
Interactions of waste and repository materials with host materials (eg. electrochemical	, corros	ive ager	nts)		via Water chemistries		
Gas effects (pressuration, disruption, explosion, fire)							
Thermo-chemical effects							
Gas production (unsaturated flow)					Gas generation		
Coprecipitates/solid solutions					Precipitation/dissolution		
Elemental solubility limits					Precipitation/dissolution		
Solute transport resistance					Water chemistry		
Radionuclide transport					Transport and release of radionuclides		
Radionuclide retardation					Anion exclusion		
Elemental solubility/precipitation					Precipitation/dissolution		
Geochemical alteration					Degradation / alteration		
Groundwater chemistry					Precipitation/dissolution		
Radionuclide migration					Transport and release of radionuclides		
Elemental solubility					Precipitation/dissolution		

Appendix C: *FEP List for Near-Field PID for L/ILW Disposal*⁷

FEP Title	Silo	BMA	BLA	BTF
Alteration/weathering of flow paths in near-field rock Anion exclusion	Y	Y	Y	Y
in mortar [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y			
in shell [as above]	Y	Y	Y	Y
in backfill [as above]	Y	Y	Y	Y
in near-field rock [as above]	Y	Y	Y	Y
Bentonite swelling in backfill	Y			
Cave-in (near-field rock)	Y	Y	Y	Y
Change in radionuclide inventory [changed to "Evolving radionuclide inventory"]	Y	Y	Y	Y
Colloid generation in waste package	Y	Y	Y	Y
Colloid generation and transport in				
mortar shell	Y Y	Y	Y	Y
backfill	Y	Y	Y	Y
near-field rock	Ŷ	Ŷ	Ŷ	Ŷ
Creeping of rock mass in near-field [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y
Degradation/alteration of				
mortar	Y			
shell	Ŷ	Y	Y	Y
backfill	Y	Y	Y	Y
Degradation of cell walls (mortar/shell)	Y			
Degradation of inorganic waste	Y	Y	Y	Y
Degradation of metal waste	Y	Y	Y	Y
Degradation of organic waste	Y	Y	Y	Y
Degradation of rock reinforcement and grout	Y	Y	Y	Y
Degradation of steel reinforcement in shell	Y	Y	Y	Y
Differential thermal expansion of near-field barriers [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y
Diffusion through				
and in waste package	Y	Y	Y	Y
mortar shell	Y Y	Y	Y	Y
backfill	Y	Y	Y	Y
near-field rock	Ŷ	Ŷ	Ŷ	Ŷ
Dispersion in				
backfill [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y
near-field rock	Y	Y	Y	Y
Electrochemical effects in waste package				
[subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y

⁷ Amendments (deletions) made since the original list was prepared, e.g. as a result of Workshop discussions (Stenhouse et al., 2000, are identified by underscoring/italics.

FEP Title	Silo	BMA	BLA	BTF
Electrochemical gradients in				
mortar [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y			
shell [as above]	Y	Y	Y	Y
backfill [<i>as above</i>]	Y	Y Y	Y Y	Y
near-field rock [<i>as above</i>] Evolving properties of	Y	r	ĭ	Y
bitumen matrix	Y	Y	Y	Y
cement matrix	Ŷ	Ŷ	Ŷ	Ŷ
container including degradation/corrosion	Y	Y	Y	Y
Excavation effects on near-field rock	Y	Y	Y	Y
Fast pathways in near-field rock				
[subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y
Fault movements and activation				
[subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y
Filtration in backfill (bentonite, bentonite-sand)	Y			
Gas flow and transport in				
waste package	Y	Y	Y	Y
mortar shell	Y Y	Y	Y	Y
backfill	Y	Y	Y	Y
near-field rock	Ŷ	Ŷ	Ŷ	Ŷ
Gas generation (bulk gas formation) in				
waste package	Y	Y	Y	Y
mortar	Y			
shell	Y	Y	Y	Y
backfill	Y	Y	Y	Y
near-field rock Groundwater flow through near-field rock	Y Y	Y Y	Y Y	Y Y
Matrix diffusion in				
mortar [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y			
shell [as above]	Y	Y	Y	Y
near-field rock	Y	Y	Y	Y
Mechanical stress distribution in				
waste package	Y	Y	Y	Y
mortar	Y	v	v	V
shell backfill	Y Y	Y Y	Y Y	Y Y
Microbial activity in	1	1	1	1
waste package	Y	Y	Y	Y
mortar	Y			
shell	Y	Y	Y	Y
backfill	Y	Y	Y	Y
near-field rock	Y	Y	Y	Y
Precipitation/dissolution in	37	V	37	17
waste package mortar	Y Y	Y	Y	Y
shell	Y	Y	Y	Y
backfill	Ŷ	Ŷ	Ŷ	Ŷ
near-field rock	Y	Y	Y	Y
Properties of				
mortar	Y			
shell	Y	Y	Y	Y
backfill	Y	Y	Y	Y
near-field rock	Y	Y	Y	Y

Radiation effects on

mortar [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y			
shell [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y
backfill [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y

FEP Title	Silo	BMA	BLA	BTF
Radioactive decay in waste	Y	Y	Y	Y
Radioactive decay and ingrowth of nuclides in	1	1	1	1
waste package	Y			
mortar	Y			
shell	Y	Y	Y	Y
backfill near-field rock	Y Y	Y Y	Y Y	Y Y
Radiolysis in	1	1	1	1
waste package [subsequently deleted for BMA, BLA and BTF following Workshop] mortar [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y Y	Y	Y	Y
shell [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y
backfill [as above]	Y	Y	Y	Y
near-field rock [as above]	Y	Y	Y	Y
Radionuclide reconcentration in near-field rock				
[subsequently deleted following Workshop]	Y	Y	Y	Y
Recoil of alpha decay [subsequently deleted following Workshop (Stenhouse et al., 2000)]	Y	Y	Y	Y
Redox front/Redox heterogeneity in				
mortar	Y			
shell	Y	Y	Y	Y
backfill near-field rock	Y	Y	Y	Y
Release from L/ILW waste	Y Y	Y Y	Y Y	Y Y
Resaturation/Resaturation state of	1	1	1	1
waste package	Y			
mortar	Ŷ			
shell	Y	Y	Y	Y
backfill	Y	Y	Y	Y
near-field rock	Y	Y	Y	Y
Shaft and tunnel seal degradation	Y	Y	Y	Y
Sorption on waste package	Y	Y	Y	Y
mortar	Y	1	1	1
shell	Ŷ	Y	Y	Y
backfill	Y	Y	Y	Y
near-field rock	Y	Y	Y	Y
Stress field in near-field rock	Y	Y	Y	Y
Temperature of				
waste package	Y	Y	Y	Y
mortar shell	Y	V	v	V
backfill	Y Y	Y Y	Y Y	Y Y
near-field rock	Y	Y	Y	Y
Transport and release of nuclides from				
waste package	Y	Y	Y	Y
mortar	Y			
shell	Y	Y	Y	Y
backfill	Y Y	Y Y	Y Y	Y Y
near-field rock	I	I	I	I
Water chemistry in	• •		X 7	• •
waste package	Y Y	Y	Y	Y
mortar shell	Y Y	Y	Y	Y
backfill	Y	Y	Y	Y
near-field rock	Ŷ	Ŷ	Ŷ	Ŷ
Water movement in and through				
waste package	Y	Y	Y	Y
mortar	Y			• 7
shell	Y	Y	Y	Y

backfill near-field rock (see Groundwater flow) $\begin{array}{ccccccc} Y & Y & Y & Y \\ Y & Y & Y & Y \end{array}$

Appendix D: Compilation of Far-Field FEPs from International FEP List

FEPs from the following lists appear in this appendix (corresponding code in parentheses) 8 :

- Atomic Energy of Canada Ltd. (AECL): spent fuel disposal; Goodwin et al. (1991).
- Department of the Environment, U.K. (DOE): L/ILW waste disposal; Thorne (1992).
- International Atomic Energy Agency (*IAEA*): IAEA (1981).
- Nagra, Switzerland (PGA): vitrified HLW disposal; Project Gewähr (1985).
- SKI/SKB (SKI): spent fuel disposal; Andersson (1989).
- Sandia National Laboratories, U.S.A. (SNL): HLW disposal; Cranwell et al. (1982).
- U.K. Nirex Ltd. (UKN): L/ILW disposal Hodgkinson and Sumerling (1989).
- Department of the Environment, U.K. (*HMIP*); L/ILW disposal; Miller and Chapman (1992).
- Nagra Kristallin I (NAGRA): vitrified HLW disposal; Nagra (1994).

⁸ A list of over 1500 'raw' FEPS (applicable to near-and far-fields) was compiled in Stenhouse *et al.* (1993). In this compilation, the FEP list of Nuclear Energy Agency (NEA, 1992) was included, but is identical to that of U.K. Nirex Ltd. (UKN) above. This current, reduced set of far-field FEPs (this Appendix) does not include FEPs from the list prepared by Eng *et al.* (1994), which was compiled but used only for comparison purposes.

CODE	Screen	FEP NAME	SEE
AECL1.3	R	Biological activity	AECL2.43
AECL1.4	?	Boundary conditions	
AECL1.9	G	Chemical gradients	
AECL1.10	G	Chemical interactions (expected)	
AECL1.11	G	Chemical interactions (long-term)	
AECL1.12	G	Chemical interactions (other)	
AECL1.13	G	Chemical kinetics	
AECL1.14	R	Climate change	AECL2.8
AECL1.15	G	Colloids	
AECL1.16	G	Complexation by organics	
AECL1.24	sub	Convection	DOE2.2.11
AECL1.27	?	Coupled processes	
AECL1.28	Н	Criticality	
AECL1.29	R	Diffusion	AECL2.15
AECL1.30	R	Dispersion	AECL2.17
AECL1.31	Е	Earthquakes	
AECL1.32		Electrochemical gradients	
AECL1.34	sub	Excessive hydrostatic pressures	AECL2.33
AECL1.37	sub	Formation of cracks	PGA2.6
AECL1.38	R	Formation of gases	AECL2.26
AECL1.40	?	Geochemical pump	
AECL1.41	sub	Glaciation	AECL2.8
AECL1.42	?	Global effects	
AECL1.43	sub	Hydraulic conductivity	AECL2.33
AECL1.44	sub	Hydraulic head	AECL2.33
AECL1.46	Е	Hydrothermal alteration	
AECL1.50	?	Interfaces (boundary conditions)	
AECL1.51	Е	Intrusion (animal)	
AECL1.52	E	Intrusion (human)	
AECL1.55	?	Long-term physical stability	
AECL1.56	?	Long-term transients	
AECL1.58	R	Microbes	AECL2.43
AECL1.59	R	Microorganisms	AECL2.43
AECL1.60	E	Monitoring and remedial activities	
AECL1.64	E	Preclosure events	
AECL1.65	R	Precipitation and dissolution	AECL2.46
AECL1.66	sub	Pseudo-colloids	AECL2.9
AECL1.68	R	Radioactive decay	AECL2.48
AECL1.69	?	Radiolysis	
AECL1.70	R	Recharge groundwater	HMIP2.2.1
AECL1.71	E	Reflooding	
AECL1.72	E	Retrievability	
AECL1.73	E	Sabotage and improper operation	
AECL1.76	R	Sorption	AECL2.58
AECL1.77	sub	Sorption: non-linear	AECL2.58
AECL1.80	sub	Speciation	SKI4.19
AECL1.81	?	Stability	
AECL1.84	?	Temperature rises (unexpected effects)	
AECL1.85	?	Time dependence	
AECL1.86	R	Transport in gases or of gases	AECL2.26
AECL1.87	?	Uncertainties	
AECL1.90	sub	Unsaturated transport	AECL2.55
AECL2.1	Е	Blasting and vibration	
AECL2.2	Е	Bomb blast	
AECL2.3	E	Borehole - well	
AECL2.3	E	Borehole seal failure/open boreholes	
11002.4		Dorenoie scar ranure/open obtenoies	

CODE	Screen	FEP NAME	SEE
AECL2.6	Е	Boreholes - unsealed	
AECL2.7	Е	Cavitation	
AECL2.8	В	Climate change	
AECL2.9		Colloid formation	
AECL2.10	sub	Complexation by organics	SKI4.1.9
AECL2.11	?	Conceptual model - hydrology	
AECL2.12	?	Correlation	
AECL2.14	sub	Dewatering	AECL2.55
AECL2.15		Diffusion	
AECL2.16	sub	Discharge zones	HMIP2.2.1
AECL2.17		Dispersion	
AECL2.18	sub	Drought	HMIP2.2.1
AECL2.19	Е	Earthmoving	
AECL2.20	sub	Earthquakes	NAGRA9.5
AECL2.21	В	Erosion	
AECL2.22	Е	Explosion	
AECL2.23	R	Faulting	PGA2.6
AECL2.24	sub	Flood	HMIP2.2.1
AECL2.25	sub	Fulvic acid	SKI4.1.9
AECL2.26		Gases and gas transport	
AECL2.27	R	Geothermal gradient effects	DOE2.2.11
AECL2.28	sub	Glaciation	AECL2.8
AECL2.29	sub	Greenhouse effect	AECL2.8
AECL2.30	R	Groundwater - evolution	NAGRA5.8
AECL2.31	R	Groundwater composition change	NAGRA5.8
AECL2.32	sub	Humic acid	SKI4.1.9
AECL2.33		Rock properties (hydrogeological)	
AECL2.34	E	Intrusion (magmatic)	
AECL2.35	E	Intrusion (mines)	
AECL2.36	sub	Isostatic rebound	IAEA1.14
AECL2.37	E	Magmatic activity	
AECL2.38	E	Magnetic poles	
AECL2.39		Matrix diffusion	
AECL2.40	E	Metamorphic activity	
AECL2.41	E	Meteorite	
AECL2.42	sub	Methane	AECL2.26
AECL2.43		Microbes	
AECL2.44	E	Mines	
AECL2.45	E	Ozone layer	
AECL2.46	1	Radionuclide precipitation - dissolution	
AECL2.47	sub	Pseudo-colloids	AECL2.9
AECL2.48	ND	Radioactive decay	
AECL2.49	NR	Radiolysis, radiation damage	
AECL2.50	R	Recharge groundwater	HMIP2.2.1
AECL2.51	Е	Rock properties Rock properties - undetected features	
AECL2.52	E		
AECL2.53 AECL2.54		Sabotage Salinity effects on flow	SKI5.1
AECL2.54 AECL2.55	sub	Saturation	<u>SNIJ.1</u>
AECL2.55 AECL2.56	Е	Saturation Shaft seal failure	
AECL2.56 AECL2.57	E	Solution mining	
AECL2.58 AECL2.59	sub	Sorption Sorption - non-linear	AECL2.58
AEUL2.JY	sub	Sorption - non-linear Speciation	SKI4.1.9

CODE	Screen	FEP NAME	SEE
AECL2.61	sub	Topography - current	AECL2.21
AECL2.62	sub	Topography - future	AECL2.21
AECL2.63	?	Turbulence	
AECL2.64	?	Uncertainties	
AECL2.65	sub	Unsaturated rock	AECL2.55
AECL2.66	Е	Vault closure (incomplete)	
AECL2.67	S	Vault heating effects	DOE2.2.11
AECL2.68	Е	Vulcanism	
AECL2.69	Е	Wells	
AECL2.70	Е	Wells (high demand)	
DOE1.2.4.1	sub	Tritiated hydrogen	AECL2.26
DOE1.2.4.2	sub	Active methane and carbon dioxide	AECL2.26
DOE1.2.4.3	sub	Other active gases	AECL2.26
DOE1.2.5	sub	Toxic gases	AECL2.26
DOE1.2.6.5	sub	Gas flow into and through the far-field	AECL2.26
DOE1.3.1	R	Radioactive decay and ingrowth	AECL2.48
DOE1.3.2	Н	Nuclear criticality	
DOE1.4.2		Changes in situ stress field	
DOE1.4.4.2	sub	Natural rock subsidence	IAEA1.14
DOE1.4.5	sub	Rock creep	AECL2.51
DOE1.4.6	sub	Fracturing	PGA2.6
DOE1.5.1.1	sub	Moisture loss due to dewatering	AECL2.55
DOE1.5.1.2	sub	Moisture loss due to stress relief	AECL2.55
DOE1.5.2.1	sub	Groundwater flow initial conditions	DOE2.4.1
DOE1.5.2.2	sub	Groundwater flow due to gas production	DOE2.4.1
DOE1.5.3	sub	Groundwater flow (saturated conditions)	DOE2.4.1
DOE1.6.3	G	Fracture changes	2022111
DOE1.6.3.1	sub	Aperture	DOE2.2.7.3
DOE1.6.3.2	sub	Length	DOE2.2.7.3
DOE1.6.4	G	Hydrological changes	
DOE1.6.4.1	sub	Fluid pressure	DOE2.4.1
DOE1.6.4.2	sub	Density	DOE2.4.1
DOE1.6.4.3	sub	Viscosity	DOE2.4.1
DOE1.6.5.7	sub	Solubility	NAGRA5.8
DOE1.6.5.8	R	Sorption	AECL2.58
DOE2.1.1	E	Meteorite impact	
DOE2.2.1	sub	Regional tectonic	IAEA1.14
DOE2.2.1.1	sub	Uplift	IAEA1.14
DOE2.2.1.2	sub	Subsidence	IAEA1.14
DOE2.2.1.3	sub	Lateral and/or vertical flexure	IAEA1.14
DOE2.2.2	E	Magmatic	
DOE2.2.2.1	E	Intrusive	
DOE2.2.2.2	E	Extrusive	
DOE2.2.2.3	E	Hydrothermal	
DOE2.2.3	E	Metamorphism	
DOE2.2.3.1	E	Contact	
DOE2.2.3.2	E	Regional	
DOE2.2.3.3	E	Dislocation	
DOE2.2.4	E	Diagenesis	
DOE2.2.5	E	Diapirism	
DOE2.2.6	R	Seismicity	NAGRA9.5
DOE2.2.6.1	sub	Repository-induced	NAGRA9.5
DOE2.2.6.2	sub	Externally-induced	NAGRA9.5
DOE2.2.6.3	sub	Natural	NAGRA9.5

CODE	Screen	FEP NAME	SEE
DOE2.2.7	R	Faulting/fracturing	PGA2.6
DOE2.2.7.1	sub	Activation	PGA2.6
DOE2.2.7.2	sub	Generation	PGA2.6
DOE2.2.7.3		Fracture properties	
DOE2.2.8	sub	Major incision	PGA2.6
DOE2.2.9	sub	Weathering	AECL2.21
DOE2.2.10	sub	Effects of natural gases	AECL2.26
DOE2.2.11		Geothermal effects	
DOE2.3.1	sub	Variation in groundwater recharge	HMIP2.2.1
DOE2.3.2	sub	Groundwater losses (e.g. evaporation)	HMIP2.2.1
DOE2.3.3	R	Rock property changes	AECL2.51
DOE2.3.3.1	sub	Porosity	AECL2.51
DOE2.3.3.2	sub	Permeability	AECL2.51
DOE2.3.3.3	sub	Microbial pore blocking	AECL2.43
DOE2.3.3.4	sub	Channel formation/closure	DOE2.2.7.3
DOE2.3.4	R	Groundwater flow	DOE2.4.1
DOE2.3.4.1	sub	Darcy	DOE2.4.1
DOE2.3.4.2	sub	Non-Darcy	DOE2.4.1
DOE2.3.4.3	R	Intergranular (matrix)	AECL2.39
DOE2.3.4.4	sub	Fracture	DOE2.4.1
DOE2.3.4.5	sub	Effects of solution channels	DOE2.4.1
DOE2.3.4.6	R	Unsaturated	AECL2.55
DOE2.3.5	?	Salinity	111012100
DOE2.3.5.1	sub	Effects of differences in salinity	SKI5.1
DOE2.3.5.2	sub	Effects at the saline-freshwater interface	SKI5.1
DOE2.3.5.3	?	Implications of evaporite deposits/minerals	JIII JI
DOE2.3.6	sub	Variations in groundwater temperature	DOE2.2.11
DOE2.4.1	540	Groundwater flow (advection)	D012.2.11
DOE2.4.2	R	Diffusion	AECL2.15
DOE2.4.2.1	sub	Bulk	AECL2.15
DOE2.4.2.2	R	Matrix	AECL2.39
DOE2.4.2.3	sub	Surface	AECL2.15
DOE2.4.3	R	Hydrodynamic dispersion	AECL2.17
DOE2.4.4	sub	Solubility constraints	NAGRA5.8
DOE2.4.4.1	sub	Effects of pH and Eh	NAGRA5.8
DOE2.4.4.2	sub	Effects of ionic strength	NAGRA5.8
DOE2.4.4.3	sub	Naturally-occurring complexing agents	SKI4.1.9
DOE2.4.4.4	sub	Complexing agents formed in the near-field	SKI4.1.9
DOE2.4.4.5	R	Naturally-occuring colloids	AECL2.9
DOE2.4.4.6	R	Colloids formed in the near-field	AECL2.9
DOE2.4.4.7	sub	Major ions migrating from the near-field	NAGRA5.8
DOE2.4.4.8	R	Effects of microbial activity	AECL2.43
DOE2.4.5	R	Sorption	AECL2.58
DOE2.4.5.1	sub	Linear	AECL2.58
DOE2.4.5.2	sub	Non-linear	AECL2.58
DOE2.4.5.3	sub	Reversible	AECL2.58
DOE2.4.5.4	sub	Irreversible	AECL2.58
DOE2.4.5.5	sub	Effects of pH and Eh	NAGRA5.8
DOE2.4.5.6	sub	Effects of ionic strength	NAGRA5.8
DOE2.4.5.7	R	Naturally-occurring organic complexing agents	SKI4.1.9
DOE2.4.5.7 DOE2.4.5.8	sub	Naturally-occuring inorganic complexing agents	SKI4.1.9
DOE2.4.5.9	sub	Complexing agents formed in the near-field	SKI4.1.9

CODE	Screen	FEP NAME	SEE
DOE2.4.5.10	sub	Effects of naturally-occurring colloids	AECL2.9
DOE2.4.5.11	sub	Effects of colloids formed in the near-field	AECL2.9
DOE2.4.5.12	sub	Major ions migrating from the near-field	NAGRA5.8
DOE2.4.5.13	R	Effects of microbial activity	AECL2.43
DOE2.4.6	sub	Fracture mineralisation	DOE2.2.7.3
DOE2.4.7	sub	Organic colloid transport	AECL2.9
DOE2.4.7.1	sub	Porous media	AECL2.9
DOE2.4.7.2	sub	Fractured media	AECL2.9
DOE2.4.7.3	sub	Effects of pH and Eh	NAGRA5.8
DOE2.4.7.4	sub	Effects of ionic strength	NAGRA5.8
DOE2.4.8	sub	Inorganic colloid transport	AECL2.9
DOE2.4.8.1	sub	Porous media	AECL2.9
DOE2.4.8.2	sub	Fractured media	AECL2.9
DOE2.4.8.3	sub	Effects of pH and Eh	NAGRA5.8
DOE2.4.8.4	sub	Effects of ionic strength	NAGRA5.8
DOE2.4.9	sub	Transport of radionuclides bound to microbes	AECL2.43
DOE2.4.10	sub	Isotopic dilution	NAGRA5.8
DOE2.4.11	G	Gas Transport	AECL2.26
DOE2.4.11.1	sub	Solution	AECL2.26
DOE2.4.11.2	sub	Gas phase	AECL2.26
DOE2.4.12	sub	Gas-induced groundwater transport	AECL2.26
DOE2.4.13	sub	Thermally induced groundwater transport	DOE2.2.11
DOE2.4.13.1	sub	Repository-induced	DOE2.2.11
DOE2.4.13.2	sub	Naturally-induced	DOE2.2.11
DOE2.4.14	sub	Biogeochemical changes	AECL2.43
DOE3.1.1.1	sub	Precipitation (climate)	AECL2.8
DOE3.1.1.3	sub	Sea level rise	HMIP2.2.1
DOE3.1.1.6	sub	Potential evaporation	AECL2.8
DOE3.1.2	sub	Glacial/interglacial cycling	AECL2.8
DOE3.1.2.1	sub	Precipitation (climate)	HMIP2.2.1
DOE3.1.2.3	sub	Sea level changes (rise/fall)	HMIP2.2.1
DOE3.1.2.6	sub	Seasonally frozen ground	HMIP2.2.1
DOE3.1.2.7	sub	Permanently frozen ground	HMIP2.2.1
DOE3.1.2.8	sub	Glaciation	AECL2.8
DOE3.1.2.9	sub	Deglaciation	AECL2.8
DOE3.1.2.10	R	Potential evaporation	HMIP2.2.1
DOE3.1.3	sub	Exit from glacial/interglacial cycling	AECL2.8
DOE3.1.3.1	sub	Greenhouse gas induced	AECL2.8
DOE3.1.3.2	sub	Other causes	AECL2.8
DOE3.2.1	R	Generalised denudation	AECL2.21
DOE3.3.3	R	Groundwater recharge	HMIP2.2.1
DOE3.3.4.5	R	Effects of sea level change	HMIP2.2.1
DOE3.5.3	R	Groundwater discharge to wells or springs	HMIP2.2.1
DOE3.5.4	R	Groundwater discharge to freshwaters	HMIP2.2.1
DOE3.5.5	R	Groundwater discharge to estuaries	HMIP2.2.1
DOE3.5.6	R	Groundwater discharge to coastal waters	HMIP2.2.1
DOE4.1.1	Е	Investigation borehole seal	
DOE4.1.1.1	E	Failure	
DOE4.1.1.2	Е	Degradation	
DOE4.1.2	E	Shaft or access tunnel seal	
DOE4.1.2.1	E	Failure	
DOE4.1.2.2	E	Degradation	

CODE	Screen	FEP NAME	SEE
DOE4.1.3	R	Subsidence	IAEA1.14
DOE4.1.3.1	R	Fault/fracture induction	PGA2.6
DOE4.2.1	Е	Deliberate recovery of wastes or associated materials	
DOE4.2.2	Е	Malicious intrusion	
DOE4.2.3	Е	Exploratory drilling	
DOE4.2.4	Е	Exploitation drilling	
DOE4.2.5	Е	Geothermal energy production	
DOE4.2.6	Е	Resource mining	
DOE4.2.7	Е	Tunnelling	
DOE4.2.8	Е	Construction of underground storage/disposal facilities	
DOE4.2.12	Е	Groundwater abstraction	
DOE4.2.13	Е	Underground weapons testing	
	م ا		
IAEA1.1	R	Climatic change	AECL2.8
IAEA1.2	R	Hydrological change	HMIP2.2.1
IAEA1.3	sub	Sea level change	HMIP2.2.1
IAEA1.6	sub E	Glacial erosion Sedimentation	AECL2.21
IAEA1.8 IAEA1.9		Diagenesis	
	E		
IAEA1.10	E	Diapirism	NACDA0.5
IAEA1.11	R	Faulting/seismicity	NAGRA9.5
IAEA1.12	R	Geochemical change	NAGRA5.8
IAEA1.13	?	Fluid interactions	DOE2 4 1
IAEA1.13.1	sub	Fluid interactions: Groundwater flow	DOE2.4.1
IAEA1.13.2	sub	Fluid interactions: Dissolution	AECL2.46
IAEA1.13.3	E	Fluid interactions: Brine pockets	
IAEA1.14	B	Uplift/Subsidence	1454114
IAEA1.14.1	sub	Uplift/Subsidence: Orogenic	IAEA1.14
IAEA1.14.2	sub	Uplift/Subsidence: Epirogenic	IAEA1.14
IAEA1.14.3	sub	Uplift/Subsidence: Isostatic	IAEA1.14
IAEA1.15	E	Undetected features	
IAEA1.15.1	E	Undetected features: Faults, shear zones	
IAEA1.15.2	E	Undetected features: Breccia pipes	
IAEA1.15.3	E	Undetected features: Lava tubes	
IAEA1.15.4	E	Undetected features: Intrusive dykes	
IAEA1.15.5	E	Undetected features: Gas or brine pockets	
IAEA1.16[.1]	E	Magmatic activity: Extrusive	
IAEA1.17	E	Meteorite impact	
IAEA2.1	E	Undetected past intrusion	
IAEA2.1.1	E	Undetected past intrusion: Boreholes	
IAEA2.1.2	E	Undetected past intrusion: Mine shafts	
IAEA2.2	E	Inadequate design	
IAEA2.2.1	E	Inadequate design: Shaft seal failure	
IAEA2.2.2	E	Inadequate design: Exploration borehole seal failure	
IAEA2.3	E	Improper operation: Improper waste emplacement	
IAEA2.4	E	Transport agent introduction (TAI)	
IAEA2.4.1	E	TAI: Irrigation	
IAEA2.4.2	E	TAI: Reservoirs	
IAEA2.4.3	E	TAI: Intentional artificial groundwater recharge or withdrawal	
IAEA2.4.4	E	TAI: Chemical liquid waste disposal	
IAEA2.5	R	Climatic change (including climate control)	AECL2.8
IAEA2.6	R	Large-scale hydrological change	HMIP2.2.1

CODE	Screen	FEP NAME	SEE
IAEA2.7	Е	Intentional intrusion	
IAEA2.7.1	Е	Intentional intrusion: War	
IAEA2.7.2	Е	Intentional intrusion: Sabotage	
IAEA2.7.3	Е	Intentional intrusion: Waste recovery	
IAEA2.8	Е	Inadvertent future intrusion	
IAEA2.8.1	Е	Inadvertent future intrusion: Exploratory drilling	
IAEA2.8.2	Е	Inadvertent future intrusion: Archaeological exhumation	
IAEA2.8.3	Е	Inadvertent future intrusion: Resource mining (mineral, water, hydrocarbon,	geothermal, salt
IAEA3.1	R	Thermal effects	DOE2.2.11
IAEA3.1.1	sub	Thermal effects: Differential elastic response	DOE2.2.11
IAEA3.1.2	sub	Thermal effects: Non-elastic response	DOE2.2.11
IAEA3.1.3	sub	Thermal effects: Fluid pressure, density, viscosity changes	DOE2.2.11
IAEA3.1.4	sub	Thermal effects: Fluid migration	DOE2.2.11
IAEA3.2.3	R	Chemical effects: Gas generation	AECL2.26
IAEA3.2.4	R	Chemical effects: Geochemical change	NAGRA5.8
IAEA3.3.2	R	Mechanical effects: Local fracturing	PGA2.6
PGA1.1	R	Climate changes	AECL2.8
PGA1.2	sub	Sea-level changes	HMIP2.2.1
PGA1.4	Е	Sedimentation	
PGA1.5	sub	Tectonic crustal movements	IAEA1.14
PGA1.6	Е	Magma intrusion	
PGA1.7	Е	Volcanism	
PGA1.8	Е	Diapirism	
PGA1.9	Е	Diagenesis	
PGA1.10	Е	Metamorphosis	
PGA1.11	sub	Weathering, mineralisation	AECL2.21
PGA1.12	R	Groundwater changes	NAGRA5.8
PGA2.1	Е	Earthquakes	
PGA2.2	Е	Volcanic eruption	
PGA2.3	Е	Meteor impact	
PGA2.4	Е	Flooding with extreme erosion	
PGA2.5	Е	Hurricane, storms	
PGA2.6		Movements at faults	
PGA2.7	sub	Formation of new faults	PGA2.6
PGA3.13	G	Physico-chemical phenomena/effects (eg. colloid formation)	
PGA3.14	R	Microbiological phenomena/effects	AECL2.43
PGA3.16	Е	Failure of shaft sealing	
PGA4.1	Е	Direct alterations in hydrogeology	
PGA4.2	Е	Injection of liquid waste	
PGA4.3	Е	Drilling	
PGA4.3.1	Е	Drilling: in sediments	
PGA4.3.2	Е	Drilling: in host rock	
PGA4.4	Е	Geothermal energy production in crystalline rock	

CODE	Screen	FEP NAME	SEE
SKI4.1.1	?	Oxidizing conditions	
SKI4.1.2	?	pH-deviations	
SKI4.1.3	G	Colloids, complexing agents	
SKI4.1.4	R	Sorption	AECL2.58
SKI4.1.5	R	Matrix diffusion	AECL2.39
SKI4.1.6	sub	Reconcentration	AECL2.46
SKI4.1.7	G	Thermochemical changes	
SKI4.1.8	R	Change of groundwater chemistry in nearby rock	NAGRA5.8
SKI4.1.9		Complexing agents	
SKI4.2.1	Е	Mechanical failure of repository	
SKI4.2.2.1	sub	Excavation/backfilling effects on nearby rock	AECL2.33
SKI4.2.2.2	sub	Hydraulic conductivity change - excavation effect	AECL2.33
SKI4.2.2.3	sub	Mechanical effects - backfilling effects	AECL2.33
SKI4.2.3	sub	Extreme channel flow of oxidants and nuclides	DOE2.2.7.3
SKI4.2.4	sub	Thermal buoyancy	DOE2.2.11
SKI4.2.5	R	Changes of groundwater flow	DOE2.4.1
SKI4.2.6	R	Faulting	PGA2.6
SKI4.2.7	sub	Thermo-hydro-mechanical effects	DOE2.2.11
SKI4.2.8	sub	Enhanced rock fracturing	PGA2.6
SKI4.2.9	sub	Creeping of rock mass	AECL2.51
SKI4.2.10	sub	Chemical effects of rock reinforcement	NAGRA5.8
SKI5.1		Saline (or fresh) groundwater intrusion	
SKI5.9	Е	Unsealed boreholes and/or shafts	
SKI5.11	Е	Degradation of hole- and shaft seals	
SKI5.12	Е	Future boreholes and undetected past boreholes	
SKI5.13	Е	Volcanism	
SKI5.15	Е	Earthquakes	
SKI5.16	R	Uplift and subsidence	IAEA1.14
SKI5.17	sub	Permafrost	AECL2.8
SKI5.18	sub	Enhanced groundwater flow	DOE2.4.1
SKI5.19	Е	Effect of plate movements	
SKI5.20	Е	Changes of the magnetic field	
SKI5.22	sub	Accumulation of gases under permafrost	AECL2.26
SKI5.24	sub	Stress changes of conductivity	AECL2.33
SKI5.25	R	Dissolution of fracture fillings/precipitations	AECL2.46
SKI5.29	Е	Meteorite	
SKI5.30	Е	Underground test of nuclear devices	
SKI5.31	sub	Change in sealevel	HMIP2.2.1
SKI5.33	Е	Waste retrieval, mining	
SKI5.34	Е	Geothermal energy production	
SKI5.35	Е	Other future uses of crystalline rock	
SKI5.36	Е	Reuse of boreholes	
SKI5.39	Е	Postclosure monitoring	
SKI5.40	Е	Unsuccessful attempt of site improvement	
SKI5.41	Е	Water producing well	
SKI5.42	sub	Glaciation	AECL2.8
SKI5.43	Е	Methane intrusion	
SKI5.44	R	Solubility and precipitation	AECL2.46
SKI5.45	R	Colloid generation and transport	AECL2.9
SKI5.46	sub	Groundwater recharge/discharge	HMIP2.2.1

CODE	Screen	FEP NAME	SEE
SKI6.1	Е	Undetected fracture zones	
SKI6.2	R	Gas transport	AECL2.26
SKI6.3	R	Far field hydrochemistry - acids, oxidants, nitrate	NAGRA5.8
SKI6.4	R	Dispersion	AECL2.17
SKI6.5	sub	Dilution	AECL2.17
SKI6.6	sub	Weathering of flow paths	DOE2.2.7.3
SKI6.11	Е	Intruding dykes	
SKI6.12	Е	Undetected discontinues	
SKI6.13	sub	Geothermally induced flow	DOE2.2.11
SKI6.14	Е	Tectonic activity - large scale	
SNL2.4	R	Sea-Level Variations	HMIP2.2.1
SNL2.8	R	Regional Subsidence or Uplift	IAEA1.14
SNL3.1	Е	Diapirism	
SNL3.2	R	Seismic Activity	NAGRA9.5
SNL3.3	Е	Volcanic Activity	
SNL3.4	Е	Magmatic Activity	
SNL3.5	Е	Formation of Dissolution Cavities	
SNL3.6	sub	Formation of Interconnected Fracture Systems	DOE2.2.7.3
SNL3.7	R	Faulting	PGA2.6
SNL4.1	Е	Inadvertent Intrusions: Explosions	
SNL4.2	Е	Inadvertent Intrusions: Drilling	
SNL4.3	Е	Inadvertent Intrusions: Mining	
SNL4.4	Е	Inadvertent Intrusions: Injection Wells	
SNL4.5	Е	Inadvertent Intrusions: Withdrawal Wells	
SNL6.1	R	Subsidence and Caving	IAEA1.14
SNL6.2	Е	Shaft and Borehole Seal Degradation	
SNL6.3	sub	Thermally Induced Stress/Fracturing in Host Rock	DOE1.4.2
SNL6.4	sub	Excavation-Induced Stress/Fracturing in Host Rock	DOE1.4.2
UKN1.1.1	Е	Meteorite Impact	
UKN1.2.1	Е	Plate movement/tectonic change	
UKN1.2.3	Е	Magmatic activity (intrusive, extrusive)	
UKN1.2.4	Е	Metamorphic activity	
UKN1.2.5	Е	Diagenesis	
UKN1.2.6	R	Uplift and subsidence (e.g. orogenic, isostatic)	IAEA1.14
UKN1.2.7	Е	Diapirism	
UKN1.2.8	R	Seismicity	NAGRA9.5
UKN1.2.9	sub	Fault activation	PGA2.6
UKN1.2.10	sub	Fault generation	PGA2.6
UKN1.2.11	R	Rock heterogeneity affecting water flow	AECL2.33
UKN1.2.12	Е	Undetected features (e.g. faults, fracture networks, shear zones, brecciation, g	as pockets)
UKN1.2.13	Е	Natural gas intrusion	
UKN1.3.4	R	Sea-level rise/fall	HMIP2.2.1
UKN1.3.5	sub	Periglacial effects (eg. permafrost, high seasonality)	AECL2.8
UKN1.3.6	sub	Glaciation	AECL2.8
UKN1.3.7	sub	No ice age	AECL2.8
UKN1.5.3	R	Recharge to groundwater	HMIP2.2.1
UKN1.5.4	R	Groundwater discharge	HMIP2.2.1
UKN1.5.5	R	Groundwater flow (Darcy, non-Darcy, intergranular fracture, channelling and	DOE2.4.1
UKN1.5.6	R	Groundwater conditions (saturated/unsaturated)	AECL2.55

CODE	Screen	FEP NAME	SEE
UKN1.5.7	R	Saline or freshwater intrusion	SKI5.1
UKN1.5.8	sub	Effects at saline-freshwater interface	SKI5.1
UKN1.5.9	R	Natural thermal effects	DOE2.2.11
UKN1.6.1	G	Advection and dispersion	AECL2.17
UKN1.6.2	R	Diffusion	AECL2.15
UKN1.6.3	R	Matrix diffusion	AECL2.39
UKN1.6.4	R	Gas mediated transport	AECL2.26
UKN1.6.5	sub	Multiphase flow and gas driven flow	AECL2.26
UKN1.6.6	R	Solubility limit	AECL2.46
UKN1.6.7	R	Sorption (linear/non-linear, reversible/irreversible)	AECL2.58
UKN1.6.8	sub	Dissolution, precipitation and crystalisation	AECL2.46
UKN1.6.9	R	Colloid formation, dissolution and transport	AECL2.9
UKN1.6.10	R	Complexing agents	SKI4.1.9
UKN1.6.11	sub	Fracture mineralisation and weathering	DOE2.2.7.3
UKN1.6.13	sub	Mass, isotopic and species dilution	AECL2.17
UKN1.6.14	sub	Chemical gradients	NAGRA5.8
UKN1.7.6	?	Chemical transformations	
UKN1.7.7	R	Microbial interactions	AECL2.43
UKN2.1.1	Е	Undetected past intrusions, (eg. boreholes, mining)	
UKN2.1.2	Е	Investigation borehole seal failure and degradation	
UKN2.1.3	Е	Shaft or access tunnel seal failure and degradation	
UKN2.1.5	sub	Dewatering of host rock	AECL2.55
UKN2.3.2	Е	Malicious intrusion, e.g. sabotage, act of war	
UKN2.3.3	Е	Exploratory drilling	
UKN2.3.4	Е	Exploitation drilling	
UKN2.3.5	Е	Geothermal energy production	
UKN2.3.6	Е	Resource mining	
UKN2.3.7	Е	Tunnelling	
UKN2.3.8	Е	Underground construction	
UKN2.3.10	Е	Injection of liquid wastes	
UKN2.3.11	Е	Groundwater abstraction	
UKN2.3.12	Е	Underground nuclear testing	
UKN3.1.1	sub	Differential elastic response	DOE1.4.2
UKN3.1.2	sub	Non-elastic response	DOE1.4.2
UKN3.1.3	sub	Host rock fracture aperture changes	DOE2.2.7.3
UKN3.1.4	G	Induced hydrological changes	AECL2.33
UKN3.1.5	G	Induced chemical changes	NAGRA5.8
UKN3.2.4	R	Non-radioactive solute plume in geosphere	NAGRA5.20
UKN3.3.2	R	Changes in in-situ stress field	DOE1.4.2
UKN3.3.4	R	Subsidence/collapse	IAEA1.14
UKN3.3.5	sub	Fracturing	PGA2.6
UKN3.3.6	G	Gas effects	AECL2.26
UKN3.4.3	H	Nuclear criticality	
UKN3.4.4	R	Radioactive decay and ingrowth (chain decay)	AECL2.48

CODE	Screen	FEP NAME	SEE
HMIP2.1	G	Geological	
HMIP2.1.1	Е	Regional tectonic	
HMIP2.1.2	Е	Magmatic activity	
HMIP2.1.3	Е	Metamorphism	
HMIP2.1.4	Е	Diagenesis	
HMIP2.1.5	Е	Diapirism	
HMIP2.1.6	R	Seismicity	NAGRA9.5
HMIP2.1.7	R	Faulting/fracturing	PGA2.6
HMIP2.1.8	Е	Major incision	
HMIP2.1.9	sub	Effects of natural gases	AECL2.26
HMIP2.2	G	Hydrogeological	
HMIP2.2.1		Geometry and driving forces of the flow system	
HMIP2.2.2	R	Rock property changes	AECL2.51
HMIP2.2.3	R	Groundwater flow	DOE2.4.1
HMIP2.3	G	Transport and Geochemical	
HMIP2.3.1	R	Advection	DOE2.4.1
HMIP2.3.2	R	Diffusion	AECL2.15
HMIP2.3.3	R	Hydrodynamic dispersion	AECL2.17
HMIP2.3.4	sub	Solubility constraints	AECL2.46
HMIP2.3.5	R	Sorption including ion-exchange	AECL2.58
HMIP2.3.6	R	Changes in sorptive surfaces	AECL2.58
HMIP2.3.7	?	Changes in groundwater chemistry and flow	ALCL2.38
HMIP2.3.8	R	Colloid transport	AECL2.9
HMIP2.3.9	sub	Transport of radionuclides bound to microbes	AECL2.9
HMIP2.3.9 HMIP2.3.10	sub	Transport of active gases	AECL2.45 AECL2.26
HMIP2.3.11	sub	Gas induced groundwater transport	AECL2.26 DOE2.2.11
HMIP2.3.12	sub	Thermal effects on hydrochemistry	
HMIP2.3.13 HMIP2.4	sub	Biogeochemical changes	AECL2.43
	G	Geomorphology	
HMIP2.4.1	sub	Generalised denudation	AECL2.21
HMIP2.4.2	sub	Localised denudation	AECL2.21
HMIP5.1.1 HMIP5.1.2	E	Loss of integrity of borehole seals	_
	E	Loss of integrity of shaft or access tunnel seals	
HMIP5.2.1	E	Meteorite impact	
HMIP5.2.2	E	Deliberate intrusion	
HMIP5.2.3	E	Malicious intrusion	
HMIP5.2.4	E	Accidental intrusion	
NAGRA0.1	R	Radioactive decay	AECL2.48
NAGRA0.2	sub	Speciation (including gases/volatiles)	SKI4.19
NAGRA1.14	sub	Coprecipitates/solid solutions	AECL2.46
NAGRA1.15	sub	Elemental solubility limits	AECL2.46
NAGRA1.16	?	Solute transport resistance	
NAGRA1.21	sub	Colloid formation	AECL2.9
NAGRA1.22	R	Microbial activity	AECL2.43
NAGRA4.6	R	Groundwater chemistry	NAGRA5.8
NAGRA4.7	?	Water flow at the bentonite/host rock interface	
NAGRA4.8	?	Radionuclide migration	
NAGRA4.9	?	Radionuclide retardation	
NAGRA4.10	sub	Elemental solubility	AECL2.46
NAGRA4.11	sub	Gas transport/dissolution	AECL2.26
NAGRA4.12	sub	Colloids	AECL2.9

CODE	Screen	FEP NAME	SEE
NAGRA5.1	?	Low permeability domain effective	
NAGRA5.2	?	Water-conducting features (types)	
NAGRA5.3	sub	Groundwater flow in low permeability domain	DOE2.4.1
NAGRA5.4	sub	Groundwater flowpath	DOE2.4.1
NAGRA5.5	?	Radionuclide transport through low permeability domain	
NAGRA5.6	R	Matrix diffusion	AECL2.39
NAGRA5.7	sub	Mineralogy	AECL2.51
NAGRA5.8		Groundwater chemistry	
NAGRA5.9	R	Sorption	AECL2.58
NAGRA5.10	sub	Non-linear sorption	AECL2.58
NAGRA5.11	R	Intrusion of saline groundwater	SKI5.1
NAGRA5.12	sub	Density-driven groundwater flow (thermal)	DOE2.2.11
NAGRA5.13	sub	Geothermal regime	DOE2.2.11
NAGRA5.14	R	Regional stress regime	DOE1.4.2
NAGRA5.15	sub	Natural colloids	AECL2.9
NAGRA5.16	G	Solubility limits/colloid formation	
NAGRA5.17	sub	Gas pressure effects	AECL2.26
NAGRA5.18	R	Hydraulic gradient changes (magnitude, direction)	HMIP2.2.1
NAGRA5.19	R	Influx of oxidising water	SKI5.1
NAGRA5.20		TRU alkaline or organic plume	
NAGRA5.21	sub	Organics	SKI4.1.9
NAGRA5.22	R	Microbial activity	AECL2.43
NAGRA5.23	sub	Dilution of radionuclides in groundwater	AECL2.17
NAGRA5.24	sub	Geogas	AECL2.26
NAGRA5.25	E	Exploratory boreholes	
NAGRA6.1	?	MCWF effective hydraulic properties	
NAGRA6.2	?	Water-conducting features (types)	
NAGRA6.3	sub	Groundwater flow in low permeability domain	DOE2.4.1
NAGRA6.4	sub	Groundwater flowpath in major water-conducting faults	DOE2.4.1
NAGRA6.5	sub	Radionuclide transport in major water-conducting faults	DOE2.4.1
NAGRA6.6	R	Matrix diffusion	AECL2.39
NAGRA6.7	sub	Mineralogy	AECL2.51
NAGRA6.8	R	Groundwater chemistry	NAGRA5.8
NAGRA6.9	R	Sorption	AECL2.58
NAGRA6.10	sub	Non-linear sorption	AECL2.58
NAGRA6.11	R	Intrusion of saline groundwater	SKI5.1
NAGRA6.12	sub	Density-driven groundwater flows (thermal)	DOE2.2.11
NAGRA6.13	sub	Geothermal regime	DOE2.2.11
NAGRA6.14	R	Regional stress regime	DOE1.4.2
NAGRA6.15	sub	Natural colloids	AECL2.9
NAGRA6.16	?	Solubility limits/colloid formation	
NAGRA6.17	v	Gas pressure effects	AECL2.26
NAGRA6.18	R	Hydraulic gradient changes (magnitude, direction)	HMIP2.2.1
NAGRA6.19	R	Influx of oxidising water	SKI5.1
NAGRA6.20	R	TRU alkaline or organics plume	NAGRA5.20
NAGRA6.21	sub	Organics	SKI4.1.9
NAGRA6.22	R	Microbial activity	AECL2.43
NAGRA6.23	sub	Dilution of radionuclides in groundwater	AECL2.17
NAGRA6.24	sub	Geogas	AECL2.26

CODE	Screen	FEP NAME	SEE
NAGRA7.1	?	Higher-permeability domain effective hydraulic properties	
NAGRA7.2	Е	Mesozoic sedimentary cover	
NAGRA7.3	Е	Permo-Carboniferous Trough	
NAGRA7.4	R	Groundwater flow	DOE2.4.1
NAGRA7.5	R	Boundary conditions for flow	HMIP2.2.1
NAGRA7.6	sub	Groundwater flow path	DOE2.4.1
NAGRA7.7	?	Dilution of radionuclides in HPD	
NAGRA7.8	R	Groundwater chemistry	NAGRA5.8
NAGRA7.9	R	Radionuclide sorption	AECL2.58
NAGRA7.10	R	Stress regime	DOE1.4.2
NAGRA7.11	R	Erosion	AECL2.21
NAGRA7.12	sub	Hydraulic gradient	AECL2.33
NAGRA7.13	sub	Density-driven groundwater flows	AECL2.33
NAGRA9.1	Е	Regional horizontal movements	
NAGRA9.2	sub	Regional vertical movements	IAEA1.14
NAGRA9.3	sub	Movements along major faults	PGA2.6
NAGRA9.4	sub	Movements along small-scale faults	PGA2.6
NAGRA9.5	В	Seismic activity	
NAGRA9.6	sub	Stress-changes - hydrogeological effects	DOE1.4.2
NAGRA9.7	R	Erosion/denudation	AECL2.21
NAGRA9.8	Е	Basement alteration	
NAGRA9.9	Е	Magmatic activity (volcanism and plutonism)	
NAGRA9.10	Е	Hydrothermal activity	
NAGRA9.11	Е	Extraterrestrial events	
NAGRA10.4	sub	Future climatic conditions	AECL2.8
NAGRA10.6	sub	Glacial climate	AECL2.8
NAGRA10.7	sub	Warmer climate - arid	AECL2.8
NAGRA10.8	sub	Warmer climate - seasonal humid	AECL2.8
NAGRA10.9	sub	Warmer climate - equable humid	AECL2.8
NAGRA10.13	sub	Permafrost	AECL2.8
NAGRA10.14	sub	Glacial erosion/sedimentation	AECL2.21
NAGRA10.15	sub	Glacial-fluvial erosion/sedimentation	AECL2.21
NAGRA10.16	sub	Ice-sheet effects (loading, melt water recharge)	HMIP2.2.1
NAGRA11.1	Е	Exploratory drilling	
NAGRA11.2	Е	Mining activities	
NAGRA11.3	Е	Geothermal exploitation	
NAGRA11.4	Е	Liquid waste injection	
NAGRA11.5	Е	Deep groundwater abstraction	
NAGRA11.6	Е	Water management schemes	
NAGRA11.7	Е	Groundwater pollution	
NAGRA11.9	Е	Human-induced climate change	

Appendix E: *Reduced List of Far-Field FEPs: Sorted by Category*⁹

FEP NAME FROM RAW FEPs LIST	FEP TITLE/COMMENT
Sorted/reduced list from Appendix A FEPs	
Electrochemical gradients	Electrochemical gradients
Climate change	Climate change / BOUNDARY CONDITION [=B]
Colloid formation	Colloid generation and transport
Diffusion	Diffusion
Dispersion	Dispersion
Erosion	Erosion of the surface / BOUNDARY CONDITION [=B]
Gases and gas transport	Gas generation & Gas pressure & Gas flow and transport
Rock properties (hydrogeological)	Properties of rock
Matrix diffusion	Matrix diffusion
Microbes	Microbial activity
Radionuclide precipitation - dissolution	Precipitation/dissolution & Radionuclide reconcentration
Radioactive decay	Radioactive decay and ingrowth
Rock properties - physical	Properties of rock
Saturation	Hydraulic saturation/unsaturation
Sorption	Sorption
Changes in situ stress field	Stress field (in situ)
Fracture properties	Properties of rock
Geothermal effects	Thermal field
Groundwater flow (advection)	Groundwater flow
Uplift/Subsidence	Uplift/subsidence
Movements at faults	Fault movement and activation
Complexing agents	Groundwater chemistry
Saline (or fresh) groundwater intrusion	Saline (or fresh) groundwater intrusion
Geometry and driving forces of the flow system	Geometry and driving force
Groundwater chemistry	Groundwater chemistry
TRU alkaline or organic plume	Groundwater chemistry
Seismic activity	Seismic activity
	Additional FEPs from near-field PID
	Anion exclusion
	Transport and release of radionuclides
	Fast pathways
	Recoil of alpha decay
	Redox front
	Radiolysis
	Alteration/weathering of flowpaths

⁹ Some of the above FEPs in the right-hand column were either renamed or deleted following discussions at one of the SKI PID Workshops (Stenhouse et al., 2000), as shown in *Appendix F*.

Appendix F: *FEP List for Far-Field PID for SFR-1*

Alteration/weathering of flow paths Anion exclusion [subsequently deleted following Workshop discussions (Stenhouse et al., 2000)]

Climate change (BOUNDARY CONDITION) Colloid generation and transport

Diffusion Dispersion

Electrochemical gradients [*subsequently deleted following Workshop discussions (Stenhouse et al., 2000)*] Erosion of surface (BOUNDARY CONDITION)

Fast pathways [*subsequently deleted following Workshop discussions (Stenhouse et al., 2000)*] Fault movement and activation [*subsequently renamed "Rock movement/collapse"*]

Gas generation [subsequently renamed "Bulk gas"] Gas flow and transport Gas pressure (bulk gas formation) [incorporated in "Bulk gas"; see above] Geometry and driving force of flow system [renamed "Geometry/driving forces for groundwater flow"] Groundwater chemistry Groundwater flow

Hydraulic saturation/unsaturation

Matrix diffusion Microbial activity

Precipitation/dissolution Properties of rock (physical + hydrogeological)

Radioactive decay and ingrowth of nuclides Radiolysis [subsequently deleted following Workshop discussions (Stenhouse et al., 2000)] Radionuclide reconcentration [subsequently deleted following Workshop discussions (Stenhouse et al., 2000)] Recoil of alpha decay [subsequently deleted following Workshop discussions Stenhouse et al., 2000)] Redox front/Redox heterogeneity

Saline (or fresh) groundwater intrusion Seismic activity Sorption Stress field (*in situ*)

Thermal field Transport and release of nuclides

Uplift/subsidence (BOUNDARY CONDITION)

Appendix G: Influences in the Reference Case L/ILW Near- Field Section of PID

NOTE: Codes in bold type signify Influences directly related to the transport of radionuclides. All such Influences are given an Importance Level of 10.

Alteration/weathering of flow paths in near-field rock

N20 (10) Water chemistry, near-field rock

N28 (10) Properties of near-field rock

N47 (10) Colloid generation and transport in near-field rock

N121 (10) Fast pathways in near-field rock

Bentonite swelling in backfill

B116 (10) Gas flow and transport in backfill

B117 (2) Degradation/alteration of backfill

B124 (10) Properties of backfill

B132 (2) Properties of near-field rock

B133 (6) Stress field in near-field rock

B145 (10) Bulk gas formation in backfill

Bulk gas formation in waste package

C7 (10) Water movement in and through waste package

C8 (10) Mechanical Stress Distribution in the waste package

C13 (10) Gas flow and transport in waste package

C51 (10) Bulk gas formation in mortar [NOT BTF/BLA/BMA]

W65 (6) Evolving properties of cement matrix

W78 (2) Evolving properties of bitumen matrix

Bulk gas formation in backfill

B7 (10) Bulk gas formation in shell

B10 (10) Gas flow and transport in backfill

B38 (10) Water movement in and through backfill

B65 (10) Water chemistry in backfill

B70 (10) Bulk gas, near-field rock

B91 (10) Mechanical stress distribution in backfill

B140 (10) Bulk gas formation in mortar [NOT BTF/BLA/BMA]

Bulk gas formation in mortar [NOT BTF/BLA/BMA]

M7 (10) Bulk gas formation in waste package

M10 (10) Gas flow and transport in mortar

M38 (10) Water movement in and through mortar

M65 (10) Water chemistry in mortar

M70 (10) Bulk gas formation in shell

M83 (2) Mechanical Stress Distribution in the waste package

M91 (2) Mechanical stress distribution in mortar

M97 (10) Mechanical stress distribution in shell

M102 (10) Bulk gas formation in backfill

Bulk gas formation in shell

S7 (10) Bulk gas formation in mortar [NOT BTF/BLA/BMA]

S10 (10) Gas flow and transport in shell S38 (10) Water movement in and through shell S65 (10) Water chemistry in shell S70 (10) Bulk gas formation in backfill S91 (6) Mechanical stress distribution in shell S97 (2) Mechanical stress distribution in backfill S102 (2) Bulk gas, near-field rock Bulk gas, near-field rock N40 (10) Groundwater flow through near-field rock N72 (10) Bulk gas formation in backfill N107 (10) Gas flow and transport in near-field rock N23 (6) Water chemistry, near-field rock N73 (10) Bulk gas formation in shell Cave-in N64 (2) Properties of shell N88 (10) Properties of near-field rock N124 (10) Groundwater flow through near-field rock Colloid generation and transport in near-field rock NT5 (10) Transport and release of nuclides from near-field rock N128 (2) Water chemistry, near-field rock Colloid generation and transport in backfill BT5 (10) Transport and release of nuclides from backfill B131 (10) Colloid generation and transport in near-field rock B158 (2) Water chemistry in backfill Colloid generation and transport in mortar [NOT BTF/BLA/BMA] MT5 (10) Transport and release of nuclides from mortar M128 (2) Water chemistry in mortar M131 (10) Colloid generation and transport in shell Colloid generation and transport in shell ST5 (10) Transport and release of nuclides from shell S128 (2) Water chemistry in shell S131 (10) Colloid generation and transport in backfill Colloid generation in waste package CT9 (10) Transport and release of nuclides from waste package C128 (2) Water chemistry in waste package C131 (10) Colloid generation and transport in mortar Degradation/alteration of backfill B12 (10) Water chemistry in backfill B27 (10) Properties of backfill B130 (10) Colloid generation and transport in backfill Degradation of inorganic waste WT7 (10) Release from L/ILW waste W50 (2) Evolving properties of bitumen matrix W52 (2) Gas generation in waste package W57 (2) Evolving properties of cement matrix W59 (10) Water chemistry in waste package W61 (6) Microbial activity in waste package

Degradation of metal waste [NOT BTF/BMA] WT5 (10) Release from L/ILW waste W29 (6) Evolving properties of bitumen matrix W31 (10) Gas generation in waste package Degradation of metal waste (continued) [NOT BTF/BMA] W34 (6) Evolving properties of cement matrix W36 (10) Water chemistry in waste package W38 (6) Microbial activity in waste package Degradation of mortar [NOT BTF/BLA/BMA] M12 (10) Water chemistry in mortar M27 (10) Properties of mortar Degradation of organic waste WT6 (10) Release from L/ILW waste W39 (2) Evolving properties of bitumen matrix W41 (10) Gas generation in waste package W45 (10) Evolving properties of cement matrix W47 (10) Water chemistry in waste package W48 (10) Microbial activity in waste package Degradation of rock reinforcement and grout, near-field N17 (6) Water chemistry, near-field rock N46 (2) Colloid generation and transport in near-field rock N86 (2) Gas generation in near-field rock N87 (10) Properties of near-field rock Degradation of shell S12 (10) Water chemistry in shell S27 (10) Properties of shell Degradation of steel reinforcement in cell walls of shell [NOT BTF/BLA/BMA] S84A (10) Gas generation in mortar S104A (10) Degradation of mortar S106A (10) Properties of mortar S111A (10) Water chemistry in mortar Degradation of steel reinforcement in shell S84 (10) Gas generation in shell S104 (10) Degradation of shell S106 (10) Properties of shell S111 (10) Water chemistry in shell Diffusion through backfill BT3 (10) Transport and release of nuclides from backfill B44 (10) Water chemistry in backfill Diffusion through mortar [NOT BTF/BLA/BMA] MT3 (10) Transport and release of nuclides from mortar M44 (10) Water chemistry in mortar Diffusion through shell ST3 (10) Transport and release of nuclides from shell S44 (10) Water chemistry in shell Diffusion in and through waste package **CT5** (10) Transport and release of nuclides from waste package C15 (10) Water chemistry in waste package C23 (10) Water chemistry in mortar [NOT BTF/BLA/BMA]

Diffusion through near-field rock

NT8 (2) Transport and release of nuclides from near-field rock N91 (6) Water chemistry, near-field rock

Dispersion in near-field rock

NT11 (2) Transport and release of nuclides from near-field rock

Evolving radionuclide inventory

WT3 (10) Release from L/ILW waste

Evolving properties of bitumen matrix

CT2 (2) Transport and release of nuclides from waste package

C42 (10) Mechanical Stress Distribution in the waste package

W51 (2) Degradation of inorganic waste

W77 (10) Gas generation in waste package

W79 (10) Microbial activity in waste package

W81 (6) Water chemistry in waste package

W84 (10) Water movement in and through waste package

W85 (10) Gas flow and transport in waste package

W86 (10) Colloid generation in waste package

W87 (2) Sorption on waste package

Evolving properties of cement matrix

CT1 (10) Transport and release of nuclides from waste package

C40 (10) Mechanical Stress Distribution in the waste package

W33 (2) Degradation of metal waste [NOT BTF/BMA]

W44 (2) Degradation of organic waste

W56 (2) Degradation of inorganic waste

W69 (10) Water chemistry in waste package

W72 (10) Water movement in and through waste package

W73 (10) Gas flow and transport in waste package

W74 (10) Colloid generation in waste package

W75 (10) Sorption on waste package

Evolving Properties of container

C6 (6) Gas generation in waste package

C14 (10) Sorption on waste package

C17 (10) Diffusion in and through waste package

C52 (2) Mechanical stress distribution in mortar [NOT BTF/BLA/BMA]

C53 (10) Water chemistry in mortar [NOT BTF/BLA/BMA]

CT10 (10) Transport and release of nuclides from waste package

CT12 (10) Colloid generation in waste package

C4 (10) Water chemistry in waste package

C9 (10) Water movement in and through waste package

C12 (10) Bulk gas formation in waste package

C35 (2) Microbial activity in waste package

C37 (6) Mechanical Stress Distribution in the waste package

Excavation effects on near-field rock

N54 (10) Properties of near-field rock

N99 (10) Stress field in near-field rock

N100 (6) Water chemistry, near-field rock

N126 (10) Fast pathways in near-field rock

Filtration in backfill (bentonite)

B151 (2) Properties of backfill

B152 (10) Colloid generation and transport in backfill

Gas generation in waste package

- C5 (10) Bulk gas formation in waste package C32 (10) Water chemistry in waste package W5 (6) Degradation of metal waste [NOT BTF/BMA] W42 (6) Degradation of organic waste W54 (6) Degradation of inorganic waste Gas flow and transport in backfill **BT11** (10) Transport and release of nuclides from backfill B11 (10) Bulk gas formation in backfill Gas flow and transport in mortar [NOT BTF/BLA/BMA] MT11 (10) Transport and release of nuclides from mortar M11 (10) Bulk gas formation in mortar Gas flow and transport in shell ST11 (10) Transport and release of nuclides from shell S11 (10) Bulk gas formation in shell Gas flow and transport in waste package **CT11** (10) Transport and release of nuclides from waste package C48 (10) Water movement in and through waste package C57 (10) Bulk gas formation in waste package Gas flow and transport in near-field rock NT13 (10) Transport and release of nuclides from near-field rock N106 (10) Bulk gas in near-field rock N131 (10) Bulk gas in far-field Gas generation in shell S86 (10) Bulk gas formation in shell Groundwater flow through near-field rock NT12 (10) Transport and release of nuclides from near-field rock N53 (10) Water chemistry, near-field rock N55 (2) Degradation/alteration of backfill N60 (10) Water movement in and through backfill N80 (10) Resaturation state of near-field rock N82 (10) Colloid generation and transport in near-field rock Matrix diffusion in near-field rock NT9 (10) Transport and release of nuclides from near-field rock N92 (2) Water chemistry, near-field rock Mechanical Stress Distribution in the waste package C36 (10) Evolving Properties of container C39 (2) Evolving properties of cement matrix C41 (2) Evolving properties of bitumen matrix Mechanical stress distribution in backfill B32 (10) Properties of backfill B74 (2) Stress field in near-field rock B80 (10) Mechanical stress distribution in shell
- Mechanical stress distribution in mortar [NOT BTF/BLA/BMA]
 - M32 (6) Properties of mortar

M74 (6) Mechanical stress distribution in shell M80 (10) Mechanical stress distribution in the waste package M100 (6) Mechanical stress distribution in backfill Mechanical stress distribution in shell S32 (10) Properties of shell S74 (6) Mechanical stress distribution in backfill S80 (6) Mechanical stress distribution in mortar [NOT BTF/BLA/BMA] Microbial activity in waste package C20 (10) Water chemistry in waste package C21 (10) Colloid generation in waste package C31 (6) Sorption on waste package C50 (2) Microbial activity in mortar [NOT BTF/BLA/BMA] Microbial activity in waste package (continued) C54 (10) Gas generation in waste package W49 (10) Degradation of organic waste W80 (6) Evolving properties of bitumen matrix Microbial activity in mortar [NOT BTF/BLA/BMA] M9 (2) Gas generation in mortar M16 (6) Water chemistry in mortar M48 (6) Colloid generation and transport in mortar M55 (2) Sorption on mortar Microbial activity in shell S9 (2) Gas generation in shell S16 (2) Water chemistry in shell S48 (2) Colloid generation and transport in shell Microbial activity, backfill B9 (2) Gas generation backfill B16 (6) Water chemistry in backfill B48 (2) Colloid generation and transport in backfill Microbial activity in near-field rock N2 (2) Water chemistry, near-field rock N45 (2) Colloid generation and transport in near-field rock N74 (2) Properties of near-field rock Precipitation/dissolution in backfill **BT1** (10) Transport and release of nuclides from backfill **BT9** (10) Colloid generation and transport in backfill B23 (10) Water chemistry in backfill Precipitation/dissolution in mortar [NOT BTF/BLA/BMA] MT1 (10) Transport and release of nuclides from mortar MT9 (10) Colloid generation and transport in mortar M23 (10) Water chemistry in mortar Precipitation/dissolution in shell ST1 (10) Transport and release of nuclides from shell **ST9** (10) Colloid generation and transport in shell [NOT BTF/BLA/BMA] S23 (10) Water chemistry in shell Precipitation/dissolution in waste package CT3 (10) Transport and release of nuclides from waste package CT8 (6) Colloid generation in waste package W89 (10) Sorption on waste package

W91 (10) Water chemistry in waste package

Precipitation/dissolution in near-field rock

NT6 (10) Transport and release of nuclides from near-field rock

NT10 (10) Colloid generation and transport in near-field rock

N12 (10) Water chemistry, near-field rock

Properties of backfill

B156 (10) Water chemistry in backfill

B150 (10) Filtration in backfill

B31 (10) Mechanical stress distribution in backfill

B35 (10) Water movement in and through backfill

B42 (10) Sorption on backfill

B45 (10) Diffusion through backfill

B66 (10) Gas flow and transport in backfill

B95 (6) Microbial activity, backfill

B96 (10) Colloid generation and transport in backfill

B115 (10) Bentonite swelling in backfill

Properties of mortar [NOT BTF/BLA/BMA]

M33 (2) Mechanical Stress Distribution in the waste package

M35 (10) Water movement in Microbial activity in waste package through mortar

M42 (10) Sorption on mortar

M45 (10) Diffusion through mortar

M89 (10) Degradation of steel reinforcement in mortar

M95 (6) Microbial activity in mortar

M96 (10) Colloid generation and transport in mortar

M118 (10) Water chemistry in mortar

M31 (10) Mechanical stress distribution in mortar

M66 (10) Gas flow and transport in mortar

Properties of near-field rock

N37 (10) Groundwater flow through near-field rock

N41 (10) Sorption on near-field rock

N44 (10) Colloid generation and transport in near-field rock

N48 (10) Matrix diffusion in near-field rock

N52 (10) Gas flow and transport in near-field rock

N67 (10) Water chemistry, near-field rock

N75 (10) Diffusion through near-field rock

N84 (10) Stress field in near-field rock

N112 (10) Dispersion in near-field rock

N113 (10) Cave-in

Properties of shell

S31 (10) Mechanical stress distribution in shell

S35 (10) Water movement in and through shell

S42 (10) Sorption on shell

S45 (10) Diffusion through shell

S66 (10) Gas flow and transport in shell

S89 (10) Degradation of steel reinforcement in shell

S95 (6) Microbial activity in shell

S96 (10) Colloid generation and transport in shell

S119 (10) Water chemistry in shell

Radioactive decay in waste

W7 (10) Radiolysis in waste package W14 (10) Evolving radionuclide inventory W16 (2) Radiolysis in mortar [NOT BTF/BLA/BMA] W17 (2) Evolving Properties of container W18 (2) Degradation of metal waste [NOT BTF/BMA] W21 (2) Radiation effects on mortar [NOT BTF/BLA/BMA] W22 (2) Degradation of metal waste [NOT BTF/BMA] W24 (6) Microbial activity in waste package W25 (2) Degradation of organic waste W26 (2) Degradation of inorganic waste W27 (2) Evolving properties of cement matrix W28 (2) Evolving properties of bitumen matrix Radioactive decay and ingrowth of nuclides in backfill **BT4** (10) Transport and release of nuclides from backfill Radioactive decay and ingrowth of nuclides in matrix and container CT6 (10) Transport and release of nuclides from waste package C56 (6) Radiolysis in waste package Radioactive decay and ingrowth of nuclides in mortar [NOT BTF/BLA/BMA] MT4 (10) Transport and release of nuclides from mortar Radioactive decay and ingrowth of nuclides in near-field rock NT4 (10) Transport and release of nuclides from near-field rock Radioactive decay and ingrowth of nuclides in shell ST4 (10) Transport and release of nuclides from shell S30 (10) Radiation effects on shell S85 (2) Gas generation in shell S115 (10) Radiolysis in shell S107 (10) Recoil of alpha decay Radiolysis in waste package W8 (2) Water chemistry in waste package W11 (2) Gas generation in waste package Redox heterogeneity in backfill B21 (10) Precipitation/dissolution in backfill B75 (6) Colloid generation and transport in backfill B85 (10) Water chemistry in mortar Redox heterogeneity in mortar [NOT BTF/BLA/BMA] M21 (10) Precipitation/dissolution in mortar M75 (6) Colloid generation and transport in mortar M85 (10) Water chemistry in mortar Redox heterogeneity in near-field rock N16 (10) Precipitation/dissolution in near-field rock N94 (6) Colloid generation and transport in near-field rock N103 (10) Water chemistry in near-field rock Redox heterogeneity in shell S21 (10) Precipitation/dissolution in shell S75 (6) Colloid generation and transport in shell S76(10) Water chemistry in shell Release from L/ILW waste WT1 (10) Transport and release of nuclides from waste package WT4 (10) Evolving radionuclide inventory

Resaturation state of backfill

B40 (10) Water chemistry in backfill

B60 (10) Water movement in and through backfill

B61 (10) Diffusion through backfill

B114 (10) Bentonite swelling in backfill

Resaturation state of mortar [NOT BTF/BLA/BMA]

M40 (10) Water chemistry in mortar

M60 (10) Water movement in and through mortar

M61 (10) Diffusion through mortar

M103 (10) Degradation of steel reinforcement in mortar

Resaturation state of near-field rock

N30 (10) Water chemistry, near-field rock

N38 (10) Groundwater flow through near-field rock

N49 (10) Matrix diffusion in near-field rock

N85 (10) Gas flow and transport in near-field rock

Resaturation state of shell

S40 (10) Water chemistry in shell

S60 (10) Water movement in and through shell

S61 (10) Diffusion through shell

S103 (10) Degradation of steel reinforcement in shell

Resaturation of waste package

C40 (10) Water chemistry in waste package

C60 (10) Water movement in and through waste package

C61 (10) Diffusion through s waste package

C85 (10) Gas flow and transport in waste package

C100 (10) Degradation of cement matrix

C101 (10) Degradation of bitumen matrix

C102 (10) Degradation of metal waste

C103 (10) Degradation of organic waste

C104 (10) Degradation of inorganic waste

Shaft and tunnel seal degradation

N116 (6) Redox heterogeneity in near-field rock

N117 (2) Water movement in and through backfill

N97 (6) Groundwater flow, near-field

N98 (6) Gas flow and transport, near-field

Sorption on backfill

BT2 (10) Transport and release of nuclides from backfill B159 (10) Water chemistry in backfill

Sorption on mortar [NOT BTF/BLA/BMA]

MT2 (10) Transport and release of nuclides from mortar

M76 (10) Water chemistry in mortar

Sorption on near-field rock

N129 (6) Water chemistry, near-field rock

NT16 (10) Transport and release of nuclides from near-field rock Sorption on shell

ST2 (10) Transport and release of nuclides from shell

S90 (10) Water chemistry, near-field rock

Sorption on waste package

CT4 (10) Transport and release of nuclides from waste package

W90 (10) Water chemistry, waste package

Stress field in near-field rock

N26 (10) Properties of near-field rock

N83 (10) Mechanical stress distribution in backfill

N125 (10) Cave-in

N127 (2) Alteration/weathering of flow paths in near-field rock

Temperature of backfill

B3 (2) Resaturation state of backfill

B5 (2) Degradation/alteration of backfill

B24 (10) Water chemistry in backfill

B25 (2) Precipitation/dissolution in backfill

B26 (10) Temperature of shell

B39 (2) Water movement in and through backfill

B47 (2) Diffusion through backfill

B71 (2) Sorption on backfill

B92 (2) Mechanical stress distribution in backfill

B93 (10) Microbial activity, backfill

B98 (2) Temperature of near-field rock

B136 (2) Bentonite swelling in backfill

B143 () Temperature of mortar [NOT BTF/BLA/BMA]

Temperature of mortar [NOT BTF/BLA/BMA]

M3 (2) Resaturation state of mortar

M5 (2) Degradation of mortar

M87 (2) Degradation of steel reinforcement in cell walls

M24 (10) Water chemistry in mortar

M25 (6) Precipitation/dissolution in mortar

M26 (10) Temperature in waste package

M39 (2) Water movement in and through mortar

M47 (2) Diffusion through mortar

M71 (2) Sorption on mortar

M72 (2) Matrix diffusion in mortar

M92 (6) Mechanical stress distribution in mortar

M93 (10) Microbial activity in mortar

M98 (2) Temperature of shell

M101 (2) Temperature of backfill

Temperature of shell

S3 (2) Resaturation state of shell

S5 (2) Degradation of shell

S24 (10) Water chemistry in shell

S25 (2) Precipitation/dissolution in shell

S26 (10) Temperature of mortar [NOT BTF/BLA/BMA]

S39 (2) Water movement in and through shell

S47 (2) Diffusion through shell

S71 (2) Sorption on shell

S72 (2) Matrix diffusion in shell

S87 (2) Degradation of steel reinforcement in shell

S92 (2) Mechanical stress distribution in shell

S93 (10) Microbial activity in shell

S98 (2) Temperature of backfill

S101 (10) Temperature of near-field rock

Temperature in waste package

C2 (6) Precipitation/dissolution in waste package

C38 (2) Mechanical stress distribution in the waste package

C43 (2) Bulk gas formation in waste package

C44 (2) Diffusion in and through waste package

W9 (10) Water chemistry in waste package

W12 (2) Water movement in and through waste package

W13 (2) Evolving properties of container

W15 (6) Temperature of mortar [NOT BTF/BLA/BMA]

W20 (2) Sorption on waste package

W23 (10) Microbial activity in waste package

W32 (2) Degradation of metal waste [NOT BTF/BMA]

W43 (2) Degradation of organic waste

W53 (2) Degradation of inorganic waste

W62 (2) Evolving properties of cement matrix

W76 (2) Evolving properties of bitumen matrix

Temperature of near-field rock

N33 (2) Stress field in near-field rock

N34 (10) Water chemistry, near-field rock

N36 (2) Groundwater flow through near-field rock

N56 (10) Temperature of backfill

N68 (2) Sorption on near-field rock

N69 (2) Precipitation/dissolution in near-field rock

N70 (2) Diffusion through near-field rock

N71 (2) Matrix diffusion in near-field rock

N76 (2) Alteration/weathering of flow paths in near-field rock

N89 (10) Microbial activity in near-field rock

N132 (2) Thermal field, far-field

Transport and release of nuclides from backfill

BT15 (10) Transport and release of nuclides from near-field rock

Transport and release of nuclides from mortar [NOT BTF/BLA/BMA]

MT13 (10) Transport and release of nuclides from backfill

MT15 (10) Transport and release of nuclides from shell

Transport and release of nuclides from shell

ST13 (10) Transport and release of nuclides from near-field rock

ST15 (10) Transport and release of nuclides from backfill

Transport and release of nuclides from waste package

CT14 (10) Transport and release of nuclides from mortar [NOT BTF/BLA/BMA] Transport and release of nuclides from near-field

NT15 (10) Transport and release of nuclides in far-field

Transport and release of nuclides from near-field rock

NT15 (10) Transport and release of nuclides from far-field

Water chemistry in backfill

B13 (10) Degradation/alteration of backfill

B14 (10) Microbial activity, backfill

B20 (10) Redox heterogeneity in backfill

B22 (10) Precipitation/dissolution in backfill

B41 (10) Sorption on backfill

B50 (10) Colloid generation and transport in backfill

B56 (6) Water chemistry in shell

B68 (10) Water chemistry, near-field rock

B141 (10) Water chemistry in mortar [NOT BTF/BLA/BMA]

Water chemistry in mortar [NOT BTF/BLA/BMA]

M2 (10) Evolving Properties of container

M13 (10) Degradation of mortar

M14 (10) Microbial activity in mortar

M20 (10) Redox heterogeneity in mortar

M22 (10) Precipitation/dissolution in mortar

M41 (10) Sorption on mortar

M50 (10) Colloid generation and transport in mortar

M56 (10) Water chemistry in waste package

M68 (10) Water chemistry in shell

M88 (10) Degradation of steel reinforcement in mortar

M99 (10) Water chemistry in backfill

Water chemistry in shell

S51 (10) Precipitation/dissolution in shell

S13 (10) Degradation of shell

S14 (10) Microbial activity in shell

S20 (10) Redox heterogeneity in shell

S22 (10) Precipitation/dissolution in shell

S68 (10) Water chemistry in backfill

S41 (10) Sorption on shell

S50 (10) Colloid generation and transport in shell

S56 (6) Water chemistry in mortar [NOT BTF/BLA/BMA]

S68 (10) Water chemistry in backfill

S88 (10) Degradation of steel reinforcement in shell

S99 (6) Water chemistry, near-field rock

S117 (10) Gas generation in shell

Water chemistry in waste package

C10 (10) Radiolysis in waste package

C16 (10) Water chemistry in mortar [NOT BTF/BLA/BMA]

C19 (10) Microbial activity in waste package

C11 (10) Sorption on waste package

C22 (10) Colloid generation in waste package

C27 (10) Precipitation/dissolution in waste package

C28 (10) Evolving properties of container

C33 (10) Electrochemical effects in waste package

C45 (10) Gas generation in waste package

C49 (10) Diffusion in and through waste package

W35 (10) Degradation of metal waste [NOT BTF/BMA]

W46 (10) Degradation of organic waste

W58 (10) Degradation of inorganic waste

W70 (10) Evolving properties of cement matrix

W82 (10) Evolving properties of bitumen matrix

Water chemistry, near-field rock

N1 (10) Microbial activity in near-field rock

N10 (10) Precipitation/dissolution in near-field rock

N13 (10) Sorption on near-field rock

N15 (10) Redox heterogeneity in near-field rock

N18 (10) Degradation of rock reinforcement and grout

N19 (10) Alteration/weathering of flow paths in near-field rock

N43 (10) Colloid generation and transport in near-field rock

N65 (10) Water chemistry in backfill

N66 (6) Water chemistry in shell

N95 (10) Shaft and tunnel seal degradation

N133 (2) Groundwater chemistry, far-field

Water movement in and through mortar [NOT BTF/BLA/BMA]

MT8 (10) Transport and release of nuclides from mortar

M34 (6) Water chemistry in mortar

M37 (2) Evolving properties of container

M67 (10) Water movement in and through waste package

M110 (10) Resaturation state of mortar

Water movement in and through waste package

CT7 (10) Transport and release of nuclides from waste package

C1 (2) Radiolysis in waste package

C3 (10) Water chemistry in waste package

C26 (6) Electrochemical effects in waste package

C47 (10) Bulk gas formation in waste package

Water movement in and through backfill

BT8 (10) Transport and release of nuclides from backfill

B34 (6) Water chemistry in backfill

B67 (10) Water movement in and through shell

B110 (10) Resaturation state of backfill

B113 (10) Resaturation state of shell

B139 (10) Water movement in and through mortar [NOT BTF/BLA/BMA]

B144 (10) Resaturation state of mortar [NOT BTF/BLA/BMA]

B157 (2) Groundwater flow through near-field rock

Water movement in and through shell

ST8 (10) Transport and release of nuclides from shell

S34 (10) Water chemistry in shell

S67 (10) Water movement in and through mortar [NOT BTF/BLA/BMA]

S110 (10) Resaturation state of shell

S113 (10) Resaturation state of mortar [NOT BTF/BLA/BMA]

Appendix H: Influences in the Far-Field Section of PID for SFR-1

NOTE: Codes in bold type signify Influences directly related to the transport of radionuclides. All such Influences are given an Importance Level of 10.

Alteration/weathering of flow paths in far-field rock G20 (10) Groundwater chemistry, far-field rock G28 (10) Properties of far-field rock G47 (10) Colloid generation and transport in near-field rock G121 (10) Fast pathways

Bulk gas, far-field rock

G23 (6) Water chemistry, far-field rockG32 (10) Hydraulic saturation/unsaturation of far-field rockG40 (10) Groundwater flow through far-field rockG107 (10) Gas flow and transport in far-field rock

Climate change (External Boundary Condition)

E1 (6) Stress field (in situ)

E2 (10) Hydraulic saturation/unsaturation

E3 (2) Alteration/weathering of flowpaths

E4 (10) Groundwater flow

E5 (6) Thermal field

Colloid generation and transport in far-field rock

GT5 (10) Transport and release of nuclides from far-field rock G128 (2) Groundwater chemistry, far-field rock

Diffusion of salt [FEP, not included in Business Modeller PID, added after 1999 Workshop (Stenhouse et al., 2000)]

> G?? (10) Groundwater chemistry, far-field [Influence not included in Business Modeller PID, added after 1999 Workshop (Stenhouse et al., 2000)]

Diffusion through far-field rock

GT8 (2) Transport and release of nuclides from far-field rock

G91 (6) Water chemistry, far-field rock

Dispersion in far-field rock

GT11 (10) Transport and release of nuclides from far-field rock

Electrochemical gradients in far-field rock

GT10 (2) Transport and release of nuclides from far-field rock

Erosion of the surface (External Boundary Condition)

E6 (2) Redox heterogeneity

E7 (6) Stress field (in situ)

E8 (2) Groundwater chemistry

Fault movement

G54 (10) Properties of far-field rock

G99 (10) Stress field (in situ)

G100 (6) Water chemistry, far-field rock

G126 (10) Fast pathways in far-field rock

Gas flow and transport in far-field rock

GT13 (10) Transport and release of nuclides from far-field rock

G8 (2) Gas pressure (bulk gas) in near-field rock

G106 (10) Gas pressure (bulk gas) in far-field rock

Geometry/driving force for groundwater flow

G73 (6) Stress field (in situ)

G83 (10) Groundwater flow

G86 (2) Properties of rock

Groundwater chemistry in far-field

G1 (10) Microbial activity in far-field rock

G2 (10) Water chemistry, near-field rock

G8 (10) Radiolysis in far-field rock

G10 (10) Precipitation/dissolution in far-field rock

G11 (10) Microbial activity in far-field rock

G13 (10) Sorption on far-field rock

G15 (10) Redox heterogeneity in far-field rock

G19 (10) Alteration/weathering of flow paths in far-field rock

G43 (10) Colloid generation and transport in far-field rock

Groundwater flow through far-field

GT12 (10) Transport and release of nuclides from far-field rock

G1 (10) Groundwater flow through near-field rock

G35 (6) Stress field (in situ)

G53 (6) Water chemistry, far-field rock

G55 (6) Geometry/driving force for groundwater flow

G77 (10) Dispersion in far-field rock

G78 (2) Thermal field, far-field

G79 (10) Gas flow and transport in far-field rock

G80 (10) Hydraulic saturation/unsaturation of far-field rock

G81 (10) Matrix diffusion in far-field rock

G82 (10) Colloid generation and transport in far-field rock

Hydraulic saturation, far-field rock

G30 (10) Groundwater chemistry, far-field

G38 (10) Groundwater flow through far-field

G49 (10) Matrix diffusion, far-field

G85 (10) Gas flow and transport, far-field

Matrix diffusion in far-field rock

GT9 (10) Transport and release of nuclides from far-field rock

G92 (2) Water chemistry, far-field rock

Microbial activity in far-field rock

G3 (2) Water chemistry, far-field rock

G4 (2) Gas generation, far-field

G9 (2) Sorption on far-field rock

G45 (2) Colloid generation and transport in far-field rock G74 (2) Properties of far-field rock

Precipitation/dissolution in far-field rock

GT1 (10) Radionuclide reconcentration in far-field rock

GT6 (10) Transport and release of nuclides from far-field rock

G12 (10) Water chemistry, far-field rock

Properties of far-field rock

G19 (2) Alteration/weathering of flowpaths, far-field

G37 (10) Groundwater flow through far-field rock

G41 (10) Sorption on far-field rock

G44 (10) Colloid generation and transport in far-field rock

G46 (10) Seismic activity

G48 (10) Matrix diffusion in far-field rock

Properties of far-field rock (continued)

G52 (10) Gas flow and transport in far-field rock

G67 (10) Water chemistry, far-field rock

G75 (10) Diffusion through far-field rock

G84 (10) Stress field (in situ)

G87 (6) Geometry/driving force for groundwater flow

G104 (10) Electrochemical gradients in far-field rock

- G112 (10) Dispersion in far-field rock
- G113 (10) Uplift/subsidence
- G122 (10) Fast pathways in far-field rock

Radioactive decay and ingrowth of nuclides in far-field rock

GT4 (10) Transport and release of nuclides from far-field rock

G108 (10) Radiolysis in far-field rock

G109 (2) Gas generation in far-field rock

G111 (2) Recoil of alpha decay

Redox heterogeneity in far-field rock

G16 (10) Precipitation/dissolution in far-field rock

G93 (2) Properties of far-field rock

G94 (6) Colloid generation and transport in far-field rock

Salt (or fresh) groundwater intrusion

G58 (10) Groundwater flow

G59 (10) Groundwater chemistry

G61 (6) Properties of rock

G?? (10) Diffusion of salt [*FEP and Influence added after 1999 Workshop* (*Stenhouse et al., 2000*)]

Seismic activity

G27 (10) Properties of far-field rock

G101 (10) Fast pathways, far-field rock

G114 (10) Stress field (in situ)

Sorption on far-field rock

GT16 (10) Transport and release of nuclides from far-field rock

G129 (6) Water chemistry, far-field rock

Stress field, far-field (*in situ*)

G5 (10) Stress field in near-field rock

G14 (2) Shaft and tunnel seal degradation

G21 (6) Geometry/driving force for groundwater flow

G24 (10) Fault movement/activation

G25 (2) Fast pathways in far-field rock

G26 (6) Properties of far-field rock

G29 (10) Seismic activity

G125 (10) Uplift/subsidence

G127 (2) Alteration/weathering of flow paths in far-field rock

Thermal field, far-field

G33 (6) Stress field (*in situ*)

G34 (10) Water chemistry, far-field

G36 (6) Groundwater flow through far-field

G42 (10) Temperature of near-field rock

G68 (2) Sorption on far-field rock

G69 (2) Precipitation/dissolution in far-field rock

G70 (2) Diffusion through far-field rock

G71 (2) Matrix diffusion, far-field

G76 (2) Alteration/weathering of flow paths in far-field rock

G89 (10) Microbial activity, far-field

Transport and release of nuclides from far-field

GT13 (10) Transport and release of nuclides from far-field

Uplift/subsidence

E9 (10) Seismic activity

E10 (10) Fast pathways

E11 (10) Fault movement/activation

E12 (2) Properties of far-field rock

E13 (2) Groundwater flow through far-field rock

Appendix I: FEPs From SPARTA PID for SFR-1 Repository: Near-Field

FEPs From SPARTA PID for SFR-1 Repository: Near-Field

FEP Title	Nat	ure of F	EP
	Super	True	Level
Repository zone			1
Crushed rock backfill			2
Near-field rock			2
Shafts and tunnels			2
BLA Section			1
Waste package			2
Concrete base			2
Backfill			2
BMA Section			1
Waste package			2
Concrete shell			2
Backfill			2
BTF Section			1
Waste package			2
Concrete shell			2
Backfill			2
Silo Section			1
Waste package			2
Porous concrete (grout)			2
Reinforced concrete shell			2
Backfill			2
Bentonite backfill			3
Sand-bentonite backfill			3
Sand backfill			3

FEP Title	Nature c "Super"	-	-	-	Relevant FEP from 2D PID
Cave-in		3			Cave-in
Excavation effects		3			Excavation effects on NFR
Gas pressure and flow		3			Gas pressure (bulk gas formation)
Geochemistry		3			N/A
Alkaline (pH) front		4			NOT INCLUDED
Alteration and weathering of flowpaths		4			Alteration/weathering of flowpaths
Degradation of shaft and tunnel seals		4			Shaft & tunnel seal degradation
Degradation and alteration of crushed rock backfill		4			Degradation/alteration of backfill
Colloid generation		4			Colloid generation and transport
Groundwater composition		4			Water chemistry
Microbial activity		4			Microbial activity
Precipitation and dissolution		4			Precipitation/dissolution
Redox heterogeneity		4			Redox front
Sulphate attack		4			NOT INCLUDED
Groundwater flow		3			Groundwater flow thruogh NFR
Rock properties FEPs		3			N/A
Fault activation		4			Fault movement and activation
Hydrogeological properties		4			Properties of NFR
Mechanical properties including stress field		4			Stress field in NFR
Mineralogy		4			Properties of NFR
Resaturation state		4			Resaturation state
Structural geometry properties		4			Properties of NFR
Thermal properties		4			Properties of NFR
Temperature and heat transfer		3			Temperature
Transport and release of radionuclides		3			N/A
Advective & dispersive transport of RN in groundwater		4			Transport & release of nuclides
Colloid transport		4			Colloid generation and transport
Diffusion		4			NOT INCLUDED IN NFR
Distribution & release of radionuclides		4			Transport & release of nuclides
Gas-mediated radionuclide transport		4			Gas flow and transport
Matrix diffusion		4			Matrix diffusion
Radioactive decay & ingrowth		4			Radioactive decay and ingrowth of nuclides
Radionuclide sorption		4			Sorption

FEP Title		re of F	EP	WASTE PACKAGE	Relevant FEP from 2D PID
	"Super"	True	Level	Silo BLA BMA BTF	
Chemistry FEPs			3		N/A
Colloid generation			4		Colloid generation and transport
Microbial activity			4		Microbial activity
Precipitation & dissolution			4		Precipitation/dissolution
Radiolysis			4		Radiolysis
Redox heterogeneity			4		NOT INCLUDED
Sulphate attack			4		NOT INCLUDED
Porewater composition			4		Water chemistry
Degradation of waste package			4		N/A
Corrosion of metallic waste			5		Corrosion of metal waste
Corrosion and degradation of waste container			5		Evolving properties of container
Degradation of inorganic waste			5		Degradation of inorganic waste
Degradation of organic waste			5		Degradation of organic waste
Degradation of bitumen matrix			5		Evolving properties of of bitumen matrix
Degradation of cement matrix			5		Evolving properties of cement matrix
Degradation of superplasticiser			5		NOT INCLUDED
Gas FEPs			3		N/A
Gas generation			4		Gas generation
Gas pressure and flow			4		Gas pressure (bulk gas formation)
Properties FEPs			3		N/A
Hydrogeological properties			4		Properties of WP
Mechanical properties including stress distribution			4		Mechanical stress distribution
Chemical comp. of waste, waste matrix + container			4		Properties of WP
Saturation state of waste package			4		Resaturation state
Structural geometry properties			4		Properties of WP
Thermal properties			4		Properties of WP
Temperature and heat transfer			3		Temperature
Transport and release of radionuclides			3		N/A
Water-mediated transport of radionuclides			4		Transport & release of nuclides
Colloid transport			4		Colloid generation and transport
Diffusion			4		Diffusion in and through WP
Distribution & release of radionuclides			4		Transport & release of nuclides
Gas-mediated radionuclide transport			4		Gas flow and transport
Radioactive decay & ingrowth			4		Radioactive decay and ingrowth of RN
Radionuclide sorption			4		Radionuclide sorption
Water flow in and through waste package			3		Water movement in and through WP

FEP Title	Nature of FEP			Silo backfill			Backfill	Relevant FEP from 2D PID
	Super	True	Level	В	S-B	S	BLA BMA BTF	
Gas pressure and flow			3/4					Gas pressure (bulk gas formation)
Geochemistry FEPs			3/4					N/A
Alkaline (pH) front			4/5					NOT INCLUDED
Colloid generation			4/5					Colloid generation and transport
Degradation and alteration			4/5					Degradation /alteration
Groundwater composition			4/5					Water chemistry
Microbial activity			4/5					Microbial activity
Precipitation & dissolution			4/5					Precipitation / dissolution
Redox heterogeneity			4/5					Redox front
Groundwater flow			3/4					Water movement in & through
Properties FEPs			3/4					N/A
Hydrogeological properties			4/5					Properties of NFR
lechanical properties including stress distribution			4/5					Mechnical stress distribution
Mineralogy			4/5					Properties of NFR
Resaturation/saturation state			4/5					Resaturation state
Structural geometry			4/5					Properties of NFR
Swelling of bentonite			4/5					Swelling of bentonite
Thermal properties			4/5					Properties of NFR
Temperature and heat transfer			3/4					Temperature
Transport and release of radionuclides			3/4					N/A
Advective& dispersive transport of RN			4/5					Transport & release of nuclides
Colloid transport			4/5					Colloid generation and transport
Diffusion			4/5					Diffusion
Distribution & release of radionuclides			4/5					Transport & release of nuclides
Filtration			4/5					Filtration
Gas-mediated radionuclide transport			4/5					Gas flow and transport
Radioactive decay & ingrowth			4/5					Radioactive decay and ingrowth of RN
Radionuclide sorption			4/5					Radionuclide sorption

NOTES

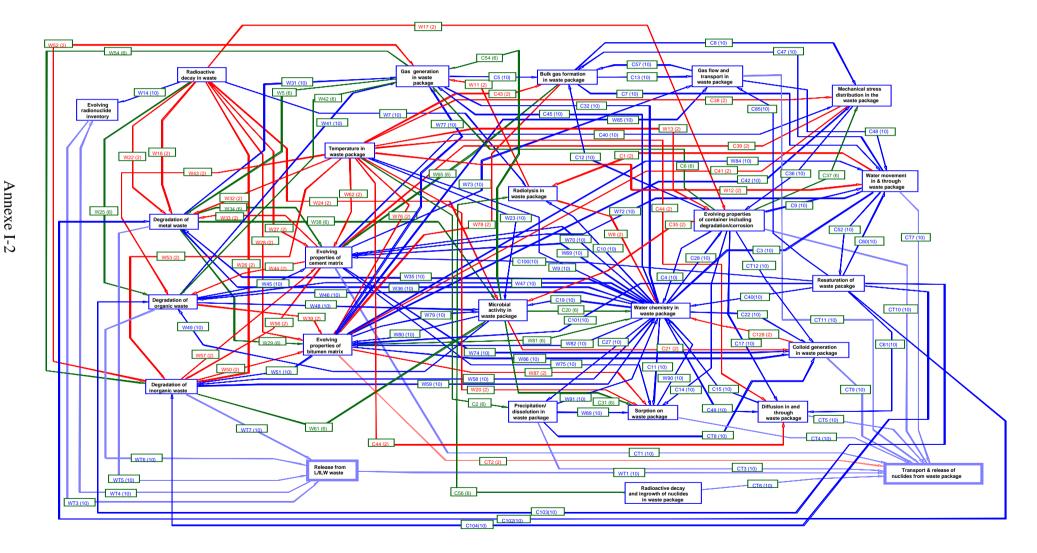
Level=3/4 signifies Level 4 for Silo, LEvel 3 for other sections; similarly for Level 4/5. Silo backfill: B=bentonite; S-B=sand-bentonite; S=sand.

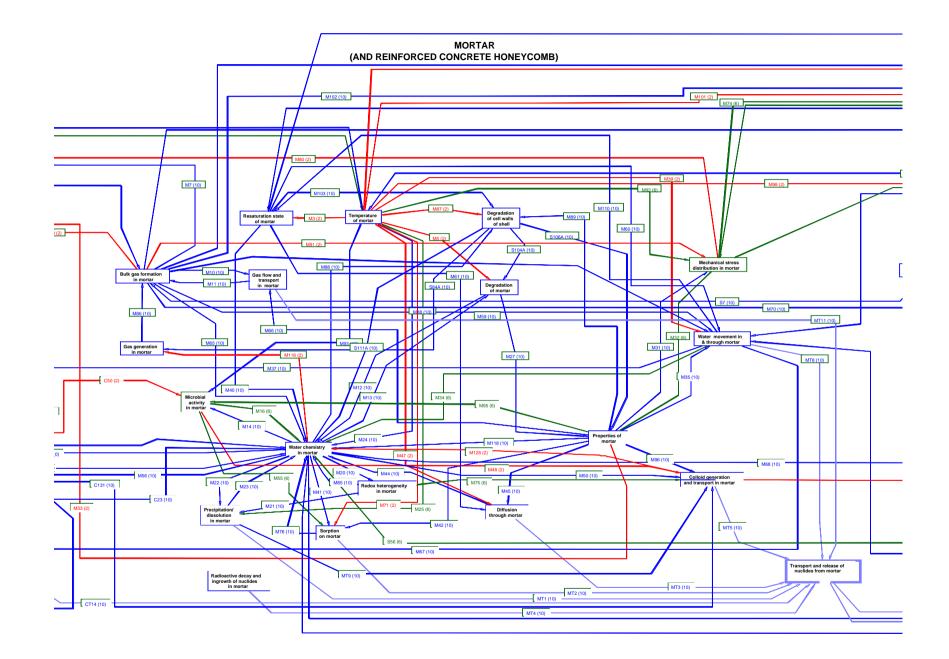
Appendix J: *FEPs Included in SPARTA PID for SFR-1 Repository: Far-Field*

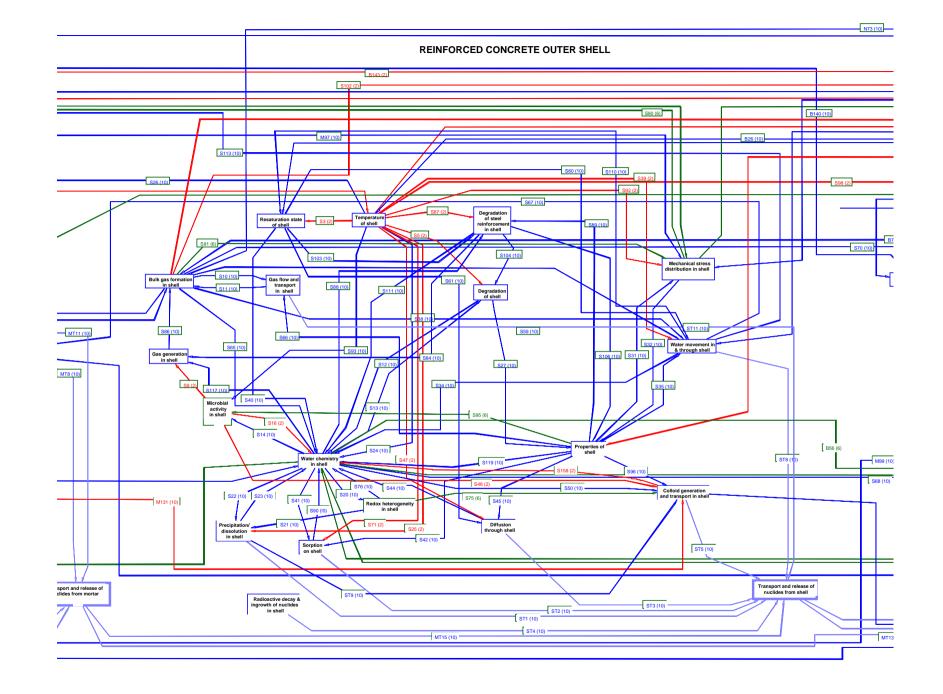
FEP Title	Nature of FEP		FEP	Relevant FEP from 2D PID
	Super	True	Level	
Gas pressure and flow			1	Gas pressure (bulk gas formation)
Geochemistry			1	N/A
Alteration & weathering of flowpaths			2	Alteration & weathering of flowpaths
Colloid generation			2	Colloid generation and transport
Groundwater composition			2	Groundwater chemistry
Microbial activity			2	Microbial activity
Precipitation and dissolution			2	Precipitation and dissolution
Redox heterogeneity			2	Redox front
Salt or fresh water intrusion			2	Saline (or fresh) groundwater intrusion
Groundwater flow			1	Groundwater flow
Rock movement			1	Fault movement and activation
Rock properties FEPs			1	N/A
Hydraulic saturation/unsaturation			2	Hydraulic saturation/unsaturation
Hydrogeological properties			2	Properties of rock (physical+hydrogeological)
Mechanical properties including stress field			2	Stress field (in situ)
Mineralogy			2	Properties of rock (physical+hydrogeological)
Structural geometry properties			2	Properties of rock (physical+hydrogeological)
Thermal properties			2	Thermal field
Temperature and heat transfer			1	Thermal field
Transport and release of radionuclides			1	N/A
Advective and dispersive transport of radionuclides in groundwater			2	Dispersion
Colloid transport			2	Colloid generation and transport
Distribution and release of radionuclides			2	Transport and release of nuclides
Gas-mediated radionuclide transport			2	Gas flow and transport
Matrix diffusion			2	Matrix diffusion
Radioactive decay			2	Radioactive decay and ingrowth of nuclides
Radionuclide sorption			2	Sorption
2D PID FEPs NOT INCLUDED		-	-	Comment
Anion exclusion		-		Considered not relevant to far field of SFR-1
Diffusion				Considered not relevant to far field of SFR-1
Electrochemical gradients				Considered insignificant
Fast pathways				Included within "Structural geometry properties"
Gas generation				Considered not relevant to far field of SFR-1
Geometry and driving force of flow system				Included within "Hydrogeological properties"
Radiolysis				Considered insignificant
Radionuclide reconcentration				Considered insignificant
Recoil of alpha decay		Considered insignificant		
Seismic activity				Considered EFEP
Uplift/subsidence				Considered EFEP

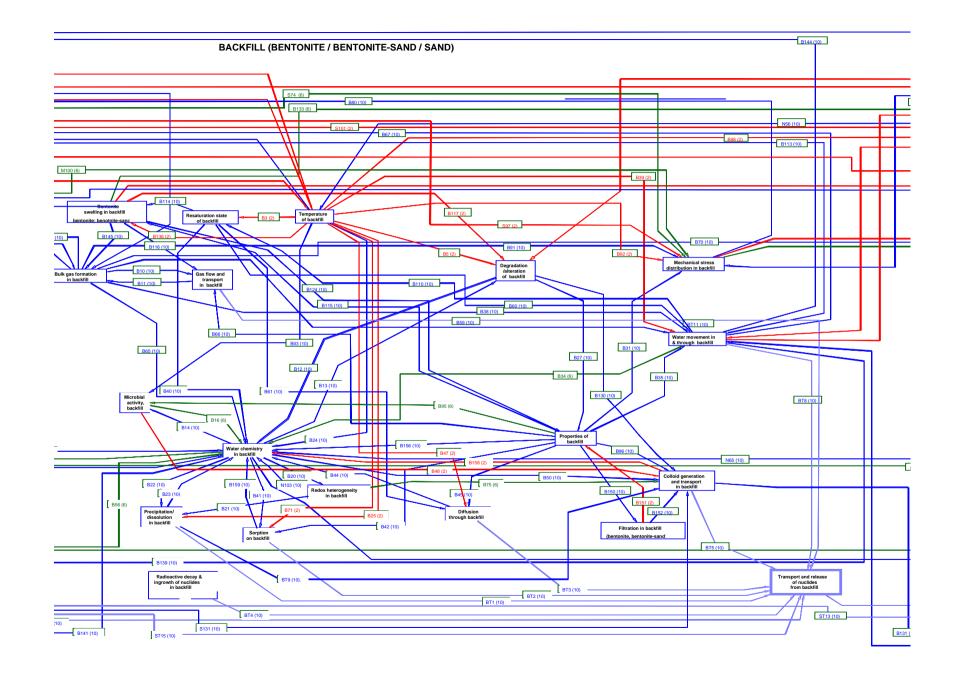
FEPs Included in SPARTA PID for SFR-1 Repository: Far-Field

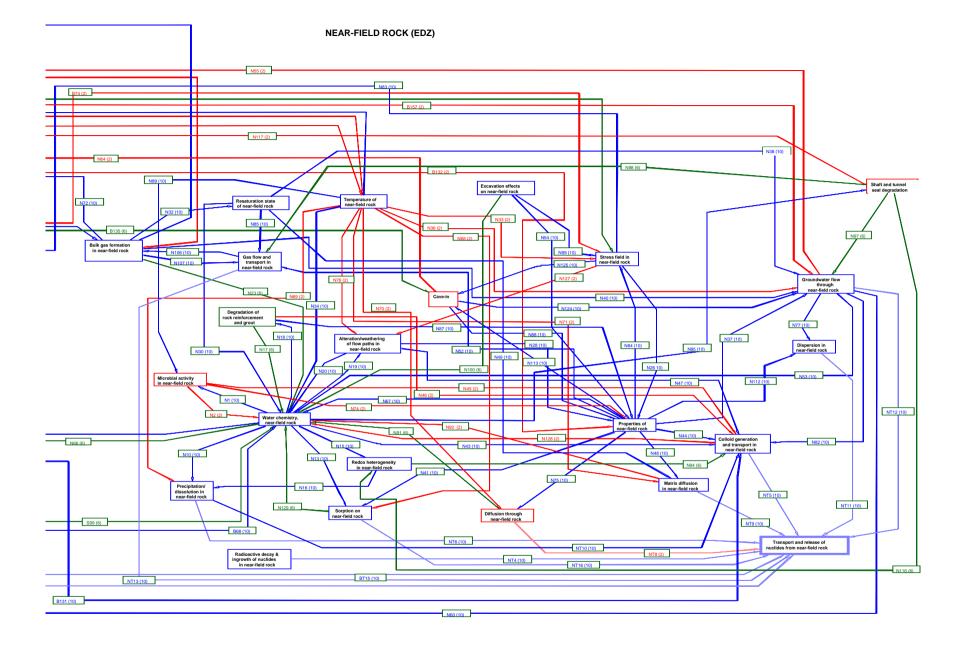
Annexe I: Extracts of PID for Near-Field Section of Silo, SFR-1 Repository

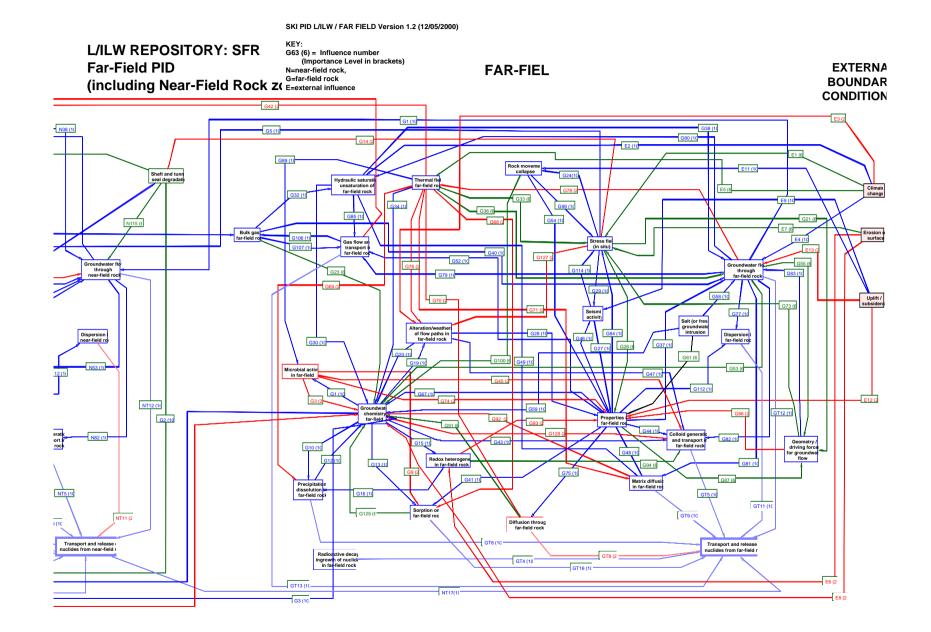

L/ILW REPOSITORY: SFR SILO Waste+Matrix+Container (Waste Package) Near-Field Reference Case PID


WASTE + MATRIX + STEEL DRUMS + CONCRETE (WASTE PACKAGE)


SKI PID L/ILW / SILO / 1.3 (12/04/2000)


KEY:


W63 (6) = Influence number (preliminary assignment of Importance Level in brackets) W = waste+matrix, C = container (concrete, steel), [C+W = waste package] M = mortar



Annexe I-6

Annexe II: Extracts of PID for Near-Field Rock Zone and Far-Field Sections of Silo, SFR-1 Repository

Annexe III: Reference Case PID for SFR-1 Repository: Individual Drawings from SPARTA

Layout of Drawings

The PID drawings for the SFR-1 repository system created using SPARTA are presented in this Annexe in the following sequence:

LEVEL 0

System Level (SFR-1 Repository System)

LEVEL 1

External FEPs¹ Geosphere-Biosphere Interface¹ Far Field Near Field

(Far Field)	LEVEL 2 Groundwater chemistry Rock properties Transport and release o	
(Near Field)	Repository zone Silo section BLA section BTF section BMA section	
	(Repository zone)	LEVEL 3 Near-field rock Shafts and tunnels Crushed rock backfill
	(Silo section)	Backfill Reinforced concrete shell Porous concrete (grout) Waste package
	(BLA section)	Backfill Concrete base Waste package
	(BTF section)	Roof backfill Concrete shell Waste package
	(BMA section)	Backfill Concrete shell

¹ The FEPs provided in this drawing should be viewed as preliminary, as a separate effort is being devoted to this topic. Similarly, the Geosphere-Biosphere Interface and Biosphere are being treated independently.

Layout of Drawings (continued)

(Repository zone/Near-field rock) (Repository zone/Shafts & tunnels) (Repository zone/Crushed rock)	LEVEL 4 Geochemistry Rock properties Transport and release of radionuclides Geochemistry Rock properties Transport and release of radionuclides Geochemistry
backfill) (Silo-Backfill)	Rock properties Transport and release of radionuclides Bentonite
(Silo-Reinforced concrete shell)	Sand-bentonite Sand Geochemistry Gas FEPs Properties of barrier
(Silo-Porous concrete - grout)	Transport and release of radionuclides Geochemistry Properties of porous concrete Transport and release of radionuclides
(Silo-Waste package)	Chemistry Gas FEPs Properties of waste package Transport and release of radionuclides
(BLA-Backfill)	Geochemistry Properties of backfill Transport and release of radionuclides
(BLA-Concrete base)	Geochemistry Properties of concrete base Transport and release of radionuclides
(BLA -Waste package)	Chemistry Gas FEPs Properties of waste package Transport and release of radionuclides
(BTF-Roof backfill)	Geochemistry Properties of roof backfill Transport and release of radionuclides
(BTF-Concrete shell)	Geochemistry Properties of concrete shell Transport and release of radionuclides
(BTF -Waste package)	Chemistry Gas FEPs Properties of waste package Transport and release of radionuclides

Annexe III-3

فيعر الأنجاج التناج متكفرك وأرأته ببعاد القاب

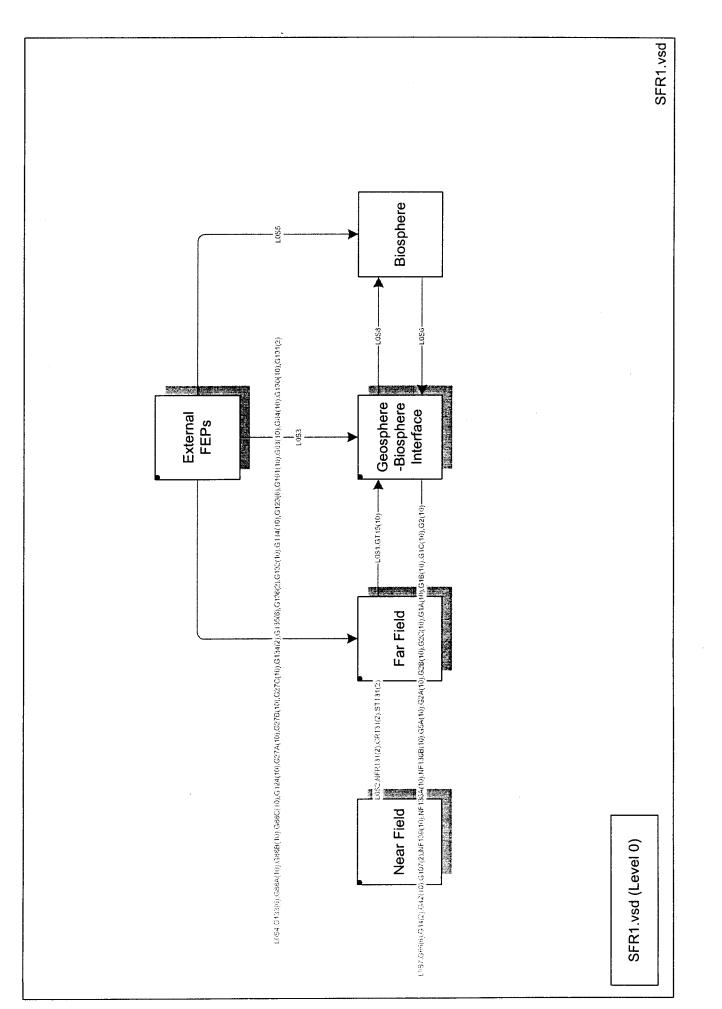
alatin data (Pata)

an and a submanife tax which it is a submanife the submanife

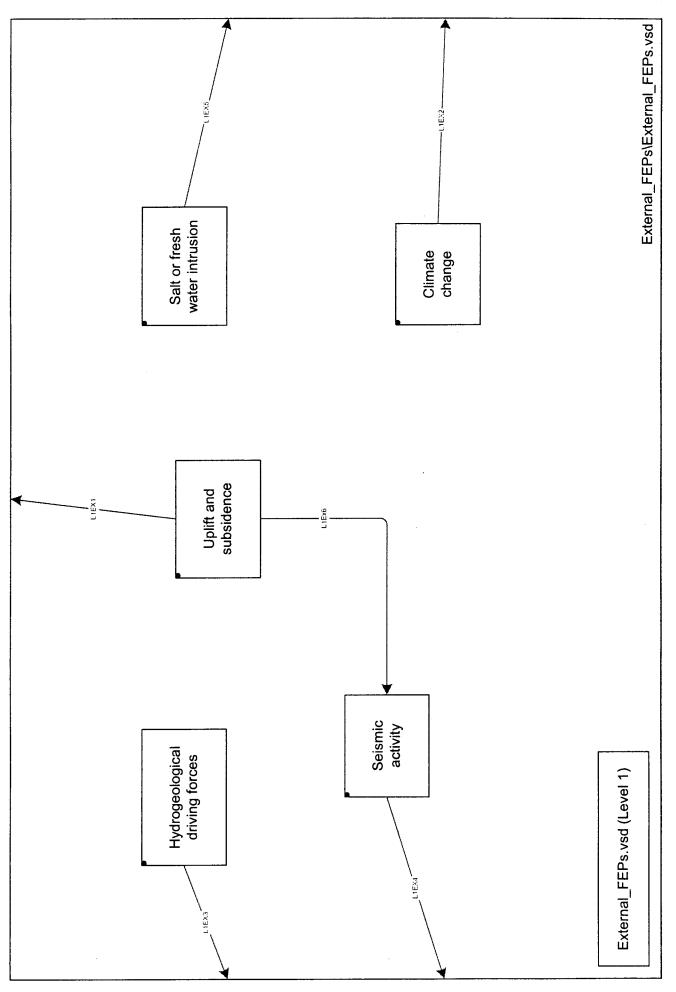
88 : 11<u>.</u>

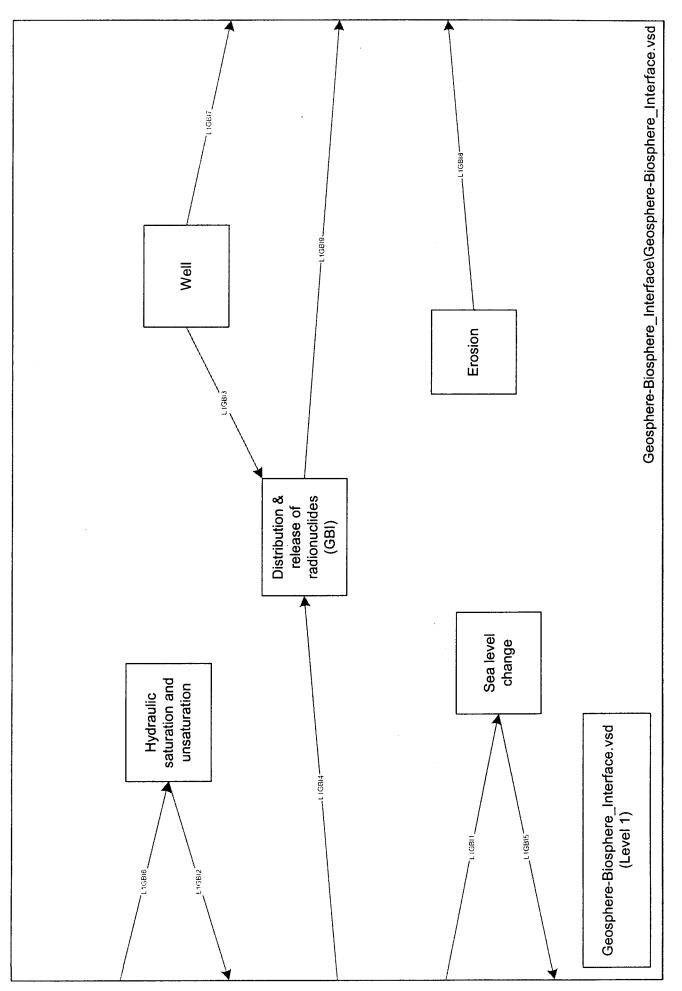
Layout of Drawings (continued)

	LEVEL 4
(BMA-Backfill)	Geochemistry
	Properties of backfill
	Transport and release of radionuclides
(BMA-Concrete shell)	Geochemistry
	Properties of concrete shell
	Transport and release of radionuclides
(BMA -Waste package)	Chemistry
	Gas FEPs
	Properties of waste package
	Transport and release of radionuclides

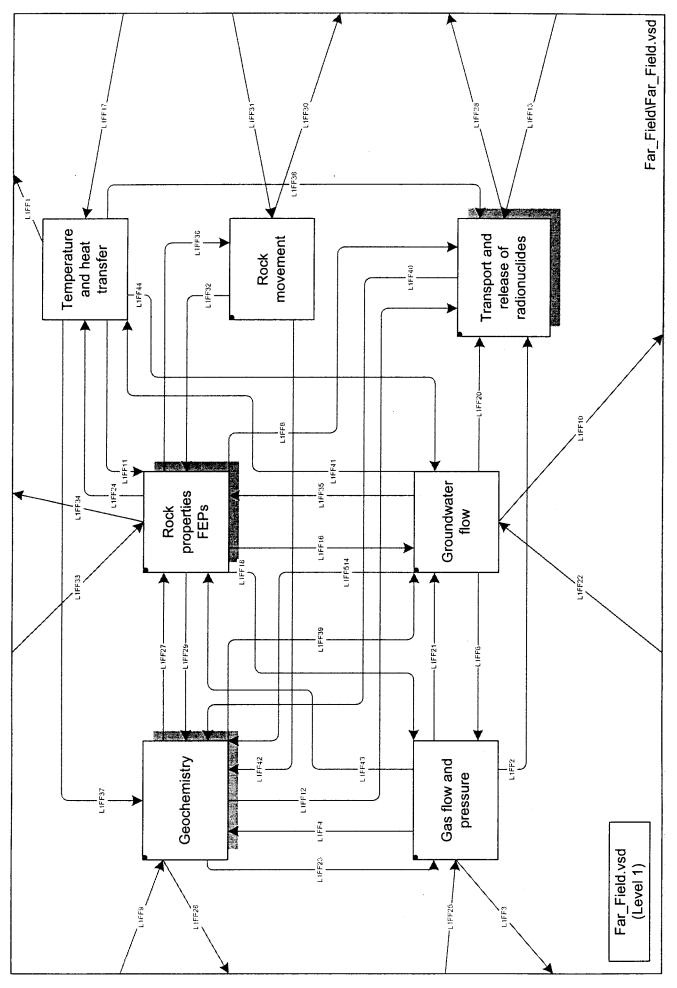

(Silo: Bentonite backfill) Geochemistry	
Properties of bentonite backfill	
Transport and release of radionuclic	les
(Silo: Sand-bentonite backfill) Geochemistry	
Properties of sand-bentonite backfil	1
Transport and release of radionuclic	les
(Silo: Sand backfill) Geochemistry	
Properties of sand backfill	
Transport and release of radionuclic	les
(Silo-Waste package-Chemistry) Degradation of waste package	
(BLA-Waste package-Chemistry) Degradation of waste package	
(BTF-Waste package-Chemistry) Degradation of waste package	
(BMA-Waste package-Chemistry) Degradation of waste package	

Annexe III-4

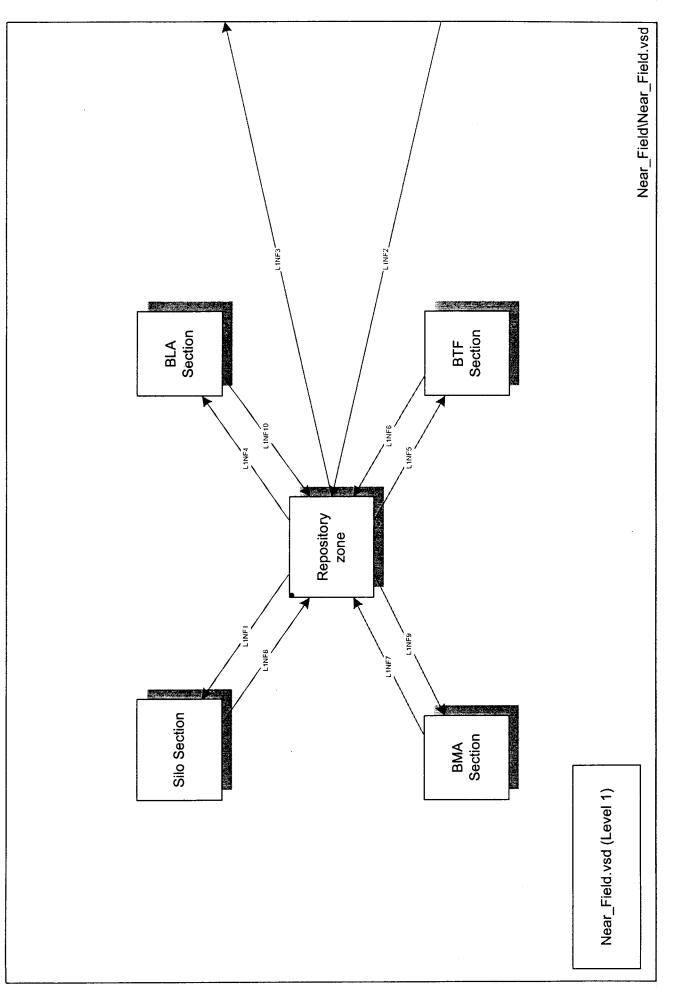

an algoridize sand discussion and

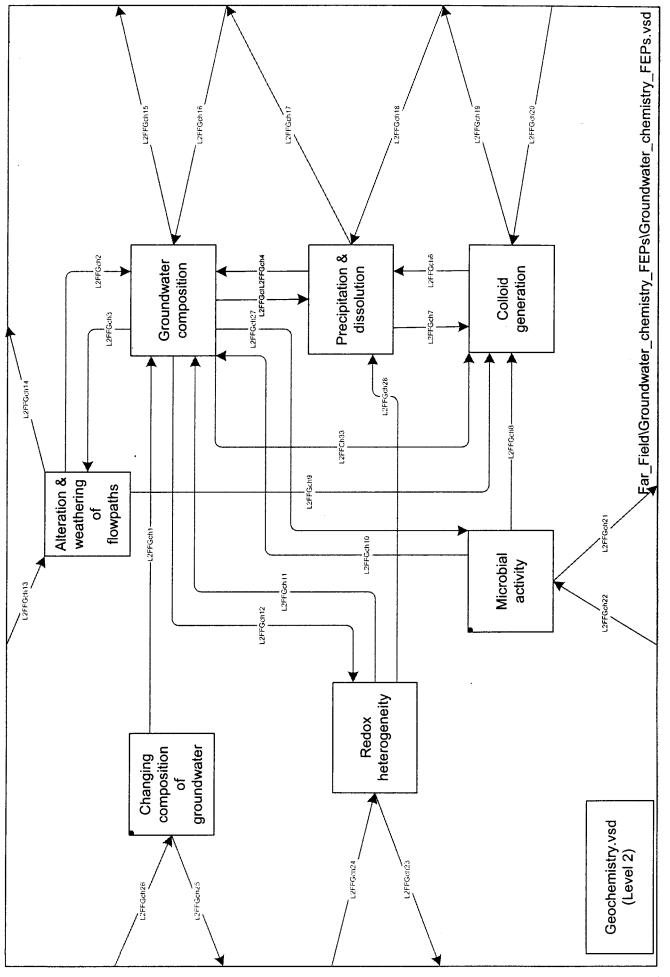

ule in cominante contra dans a sia comin

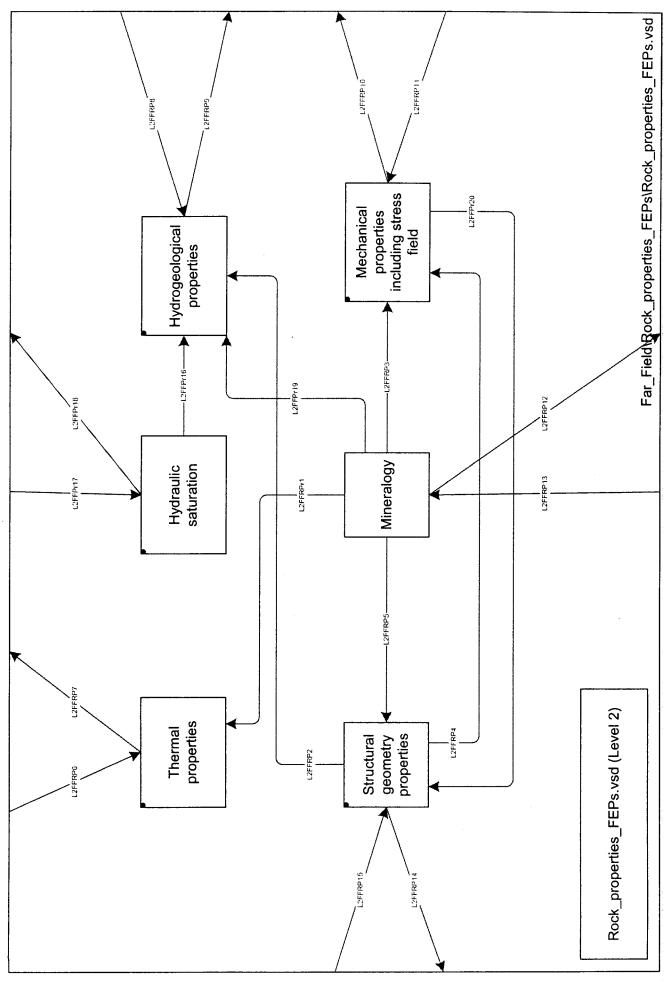
silaan dia

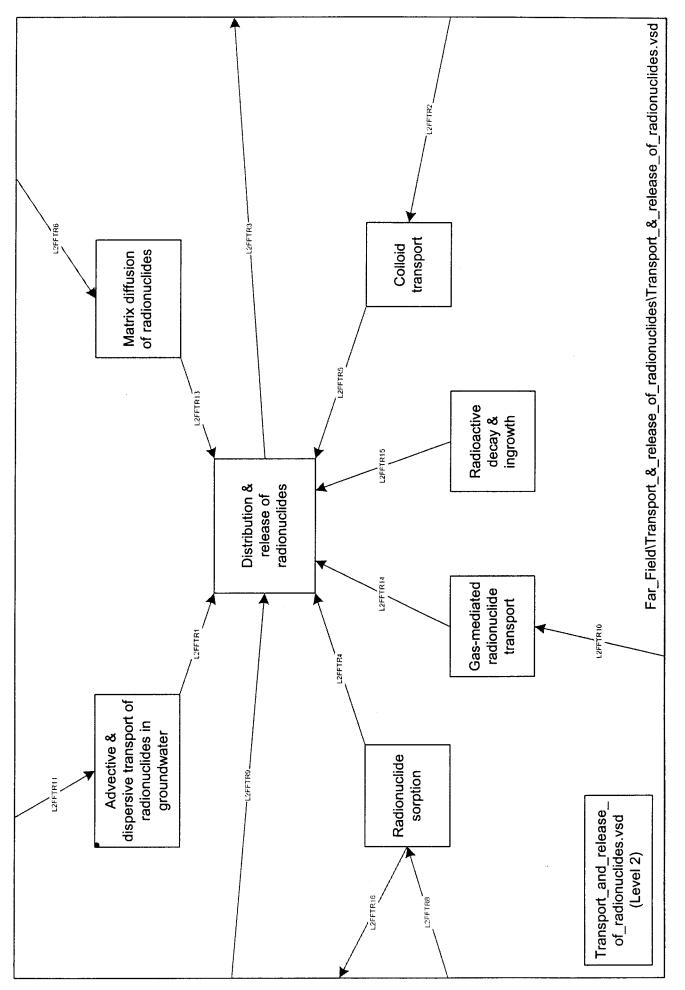


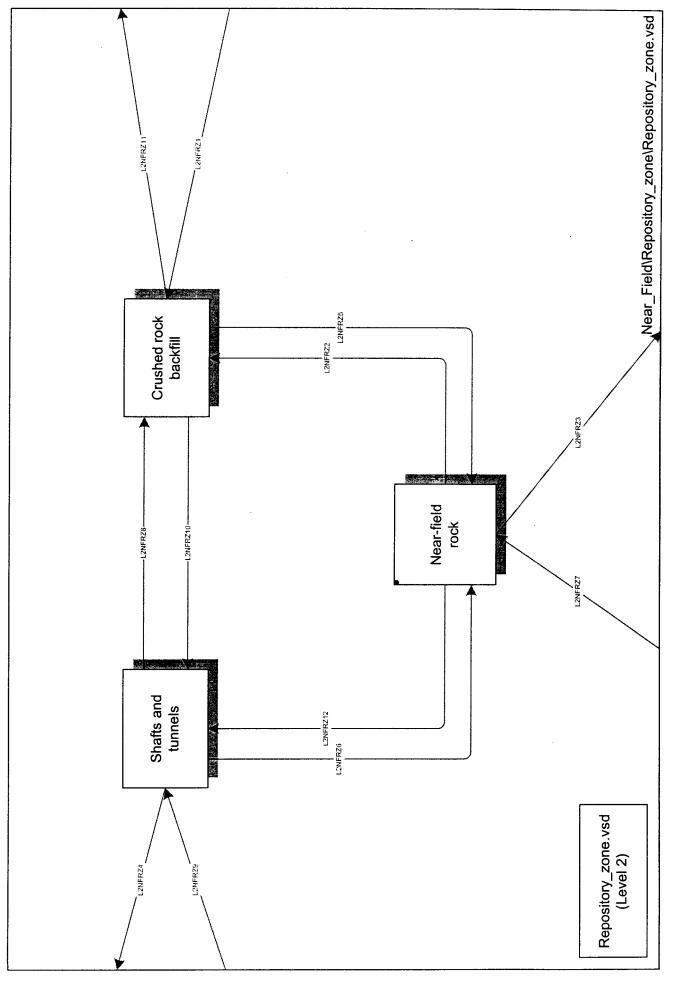
Annexe III-5

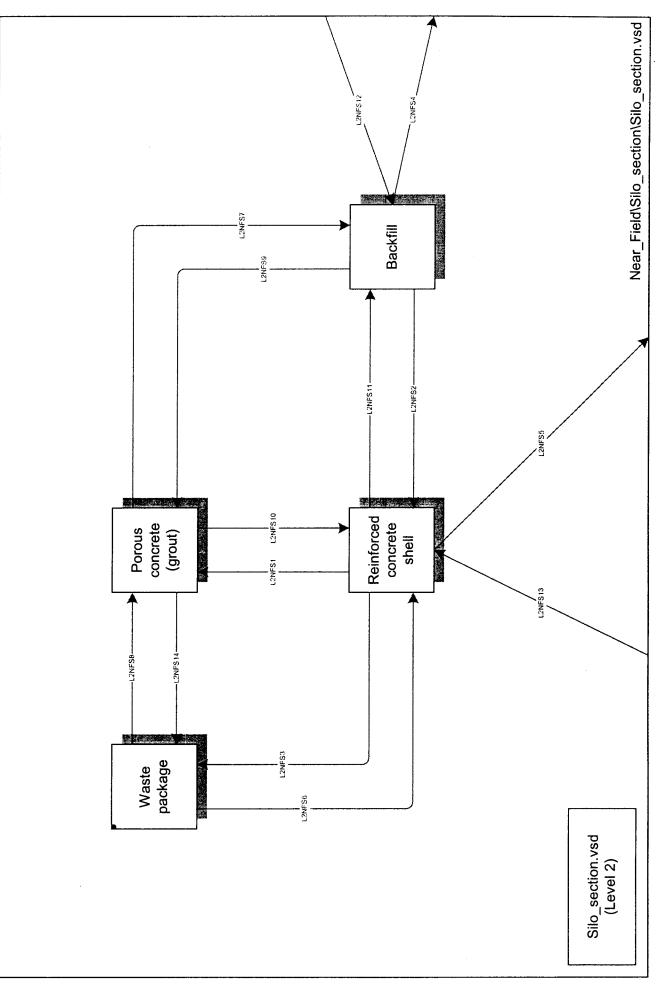


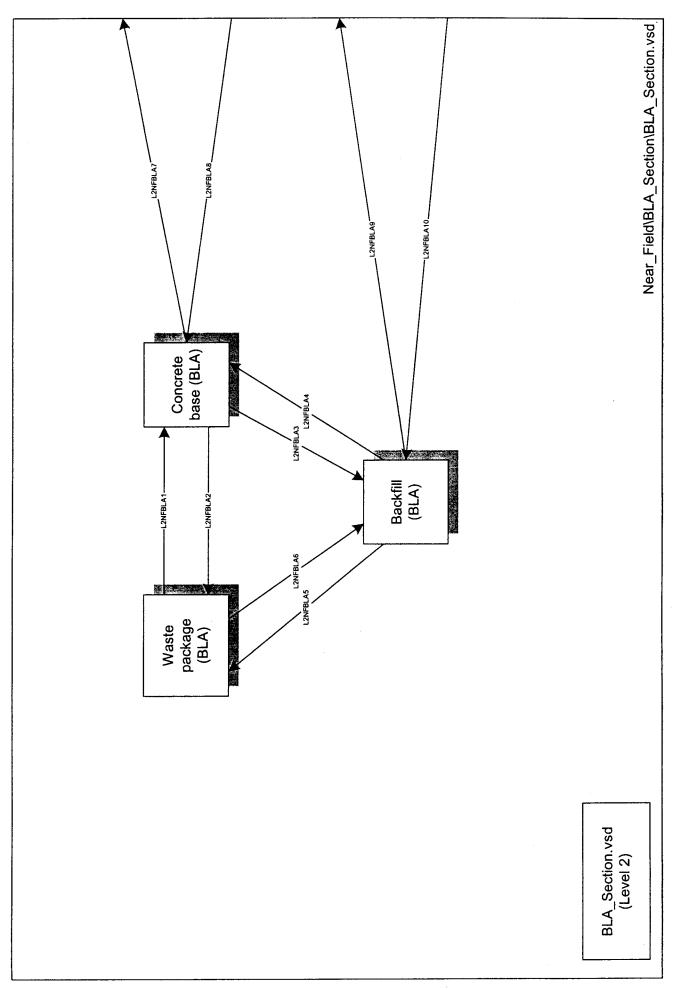

Annexe III-7

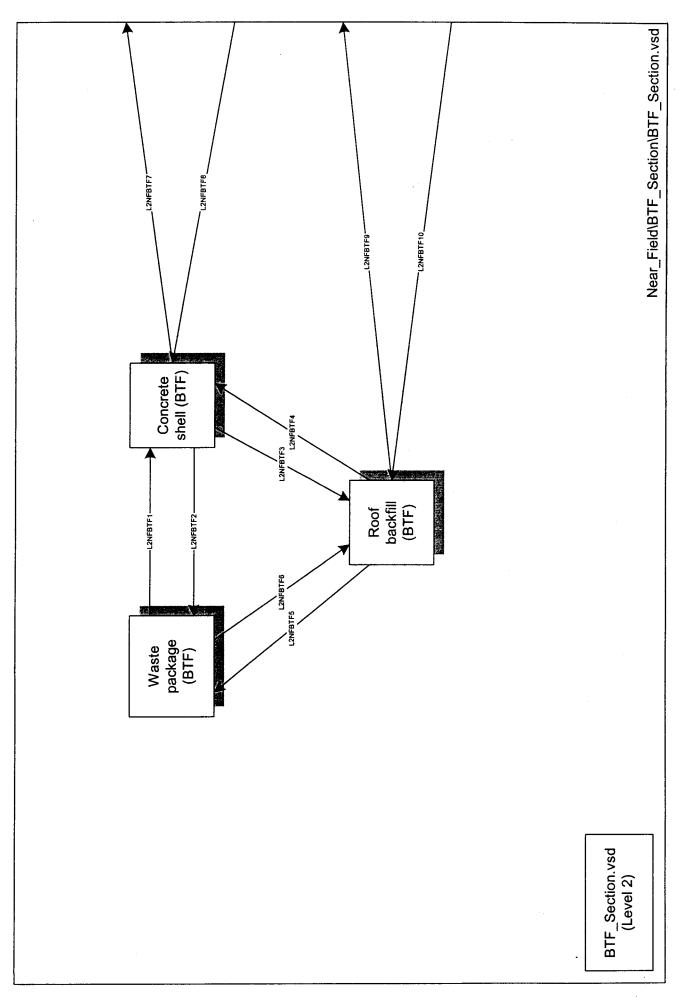

Annexe III-8

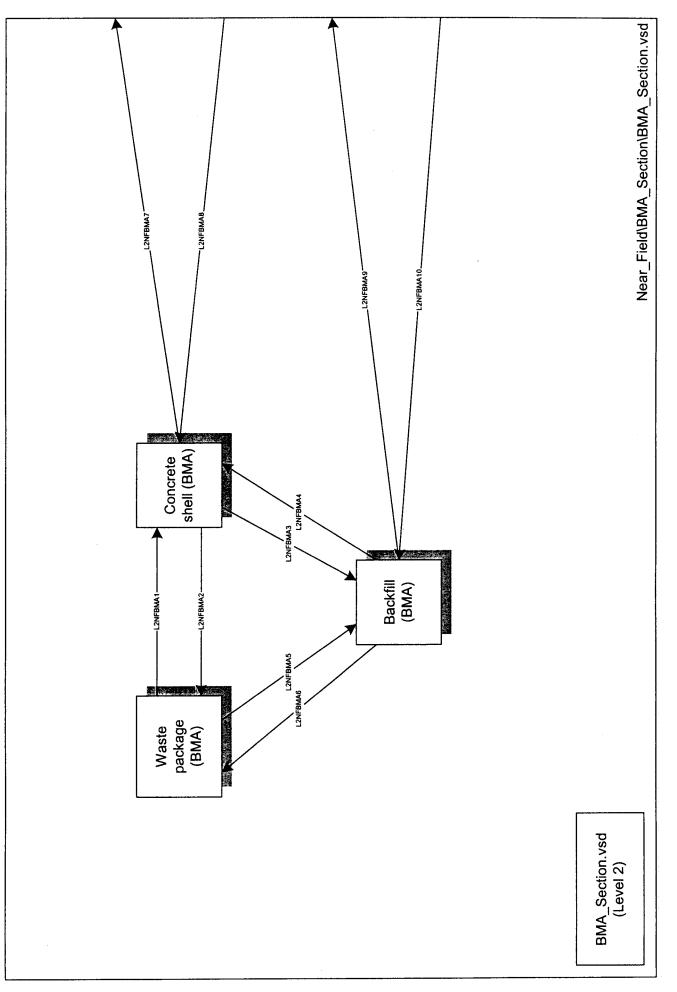

Annexe III-9

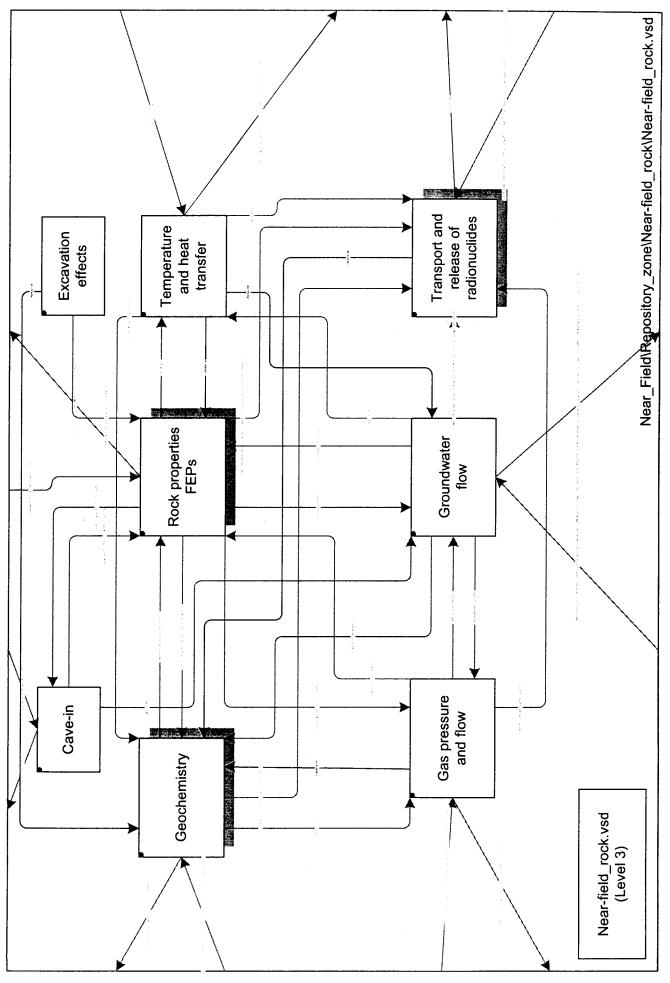

Annexe III-10

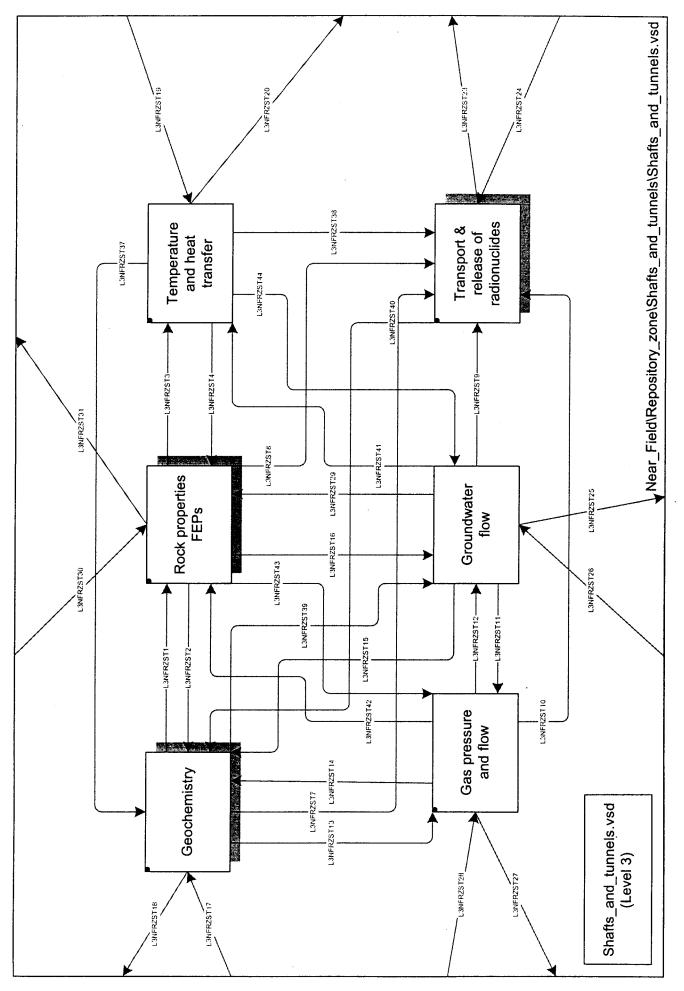

Annexe III-11

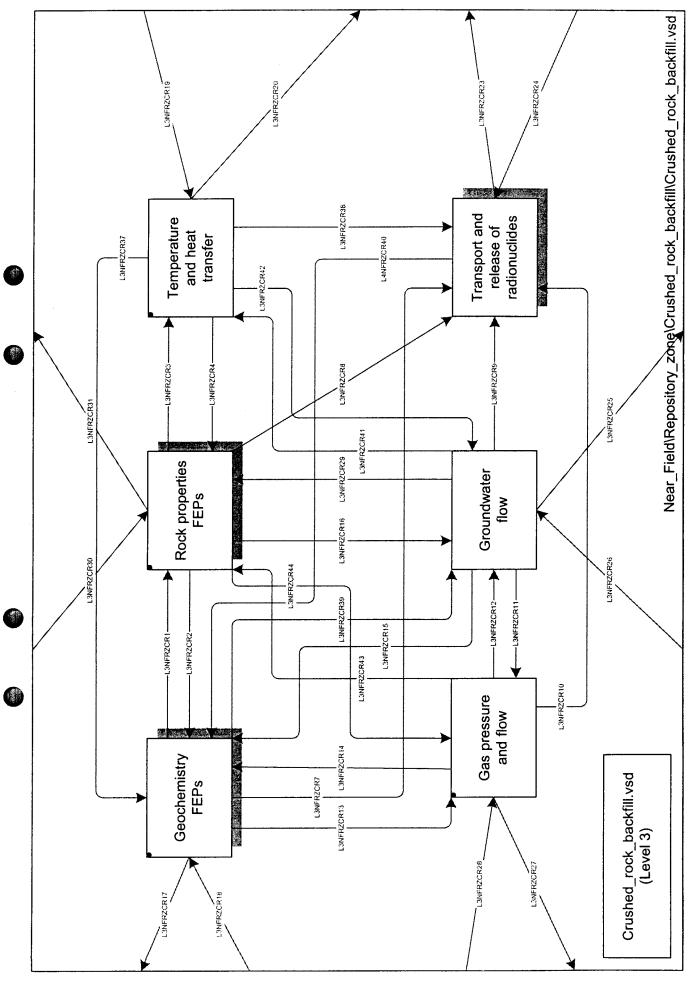

Annexe III-12

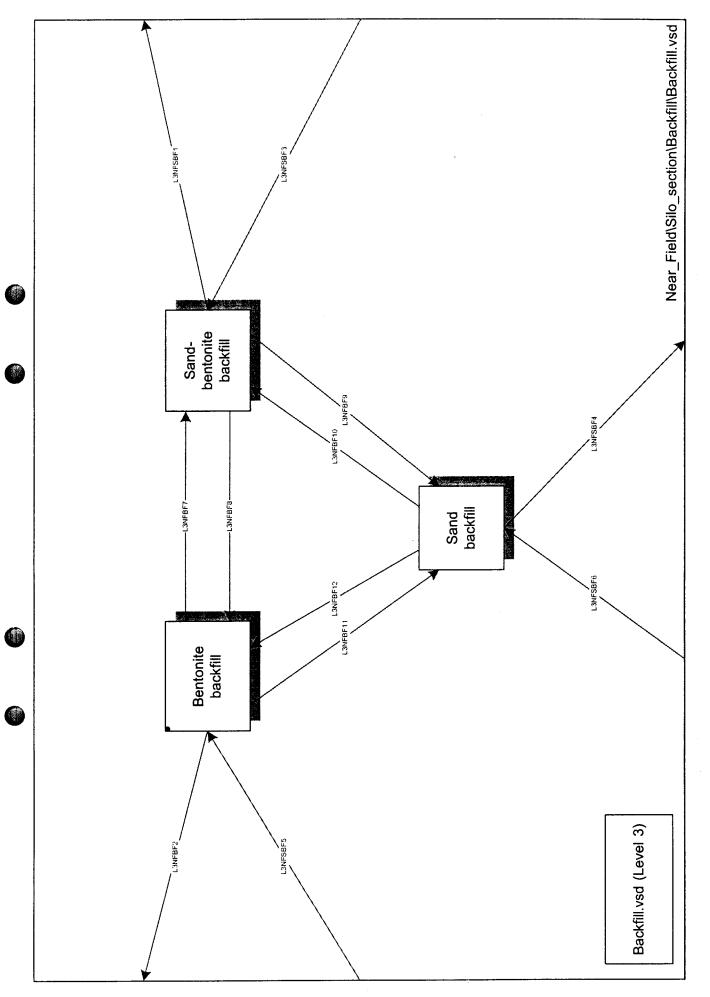

Annexe III-13


Annexe III-14

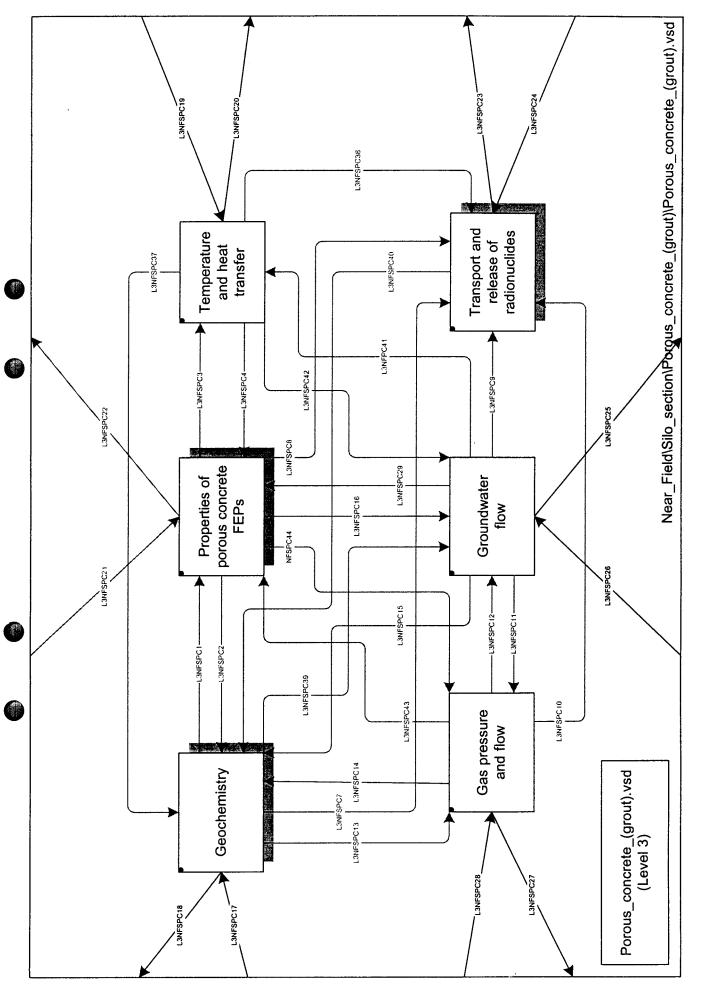

Annexe III-15

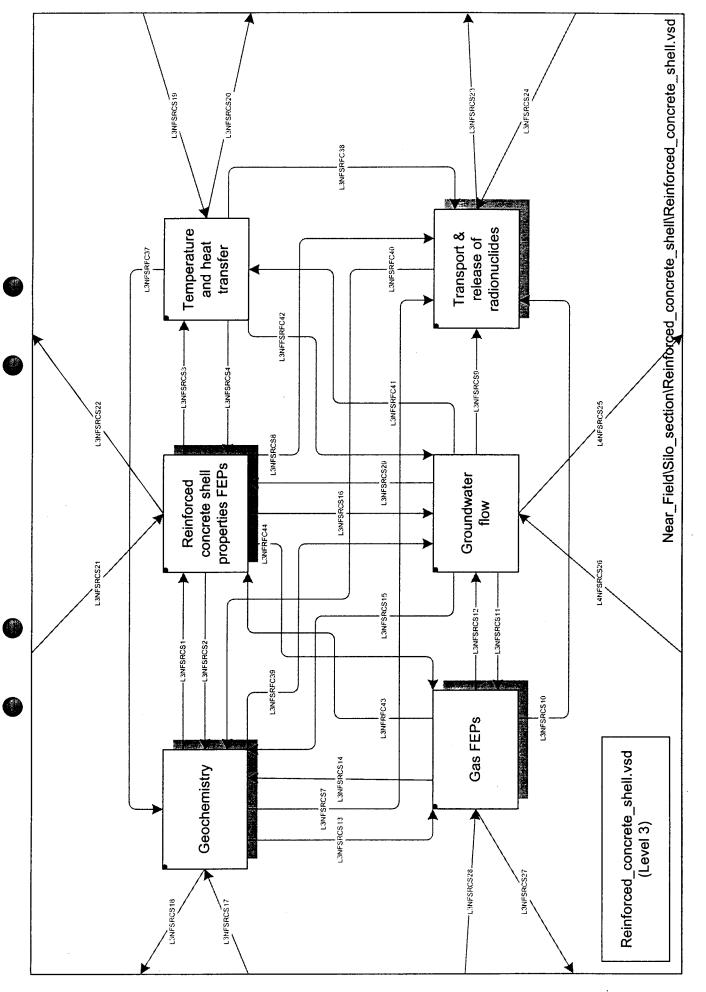


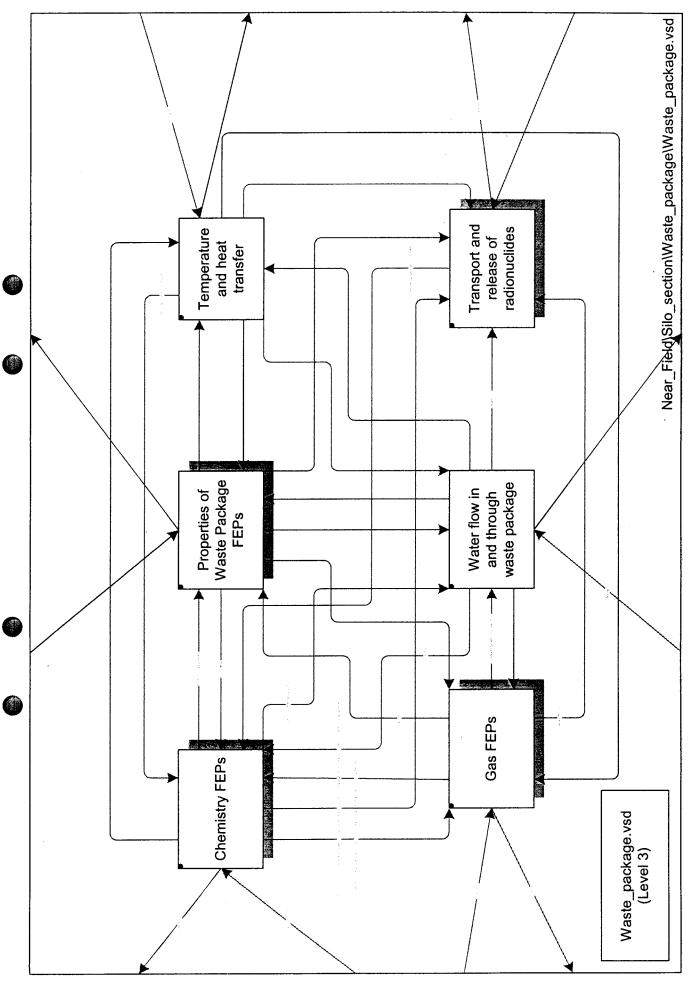

Annexe III-16

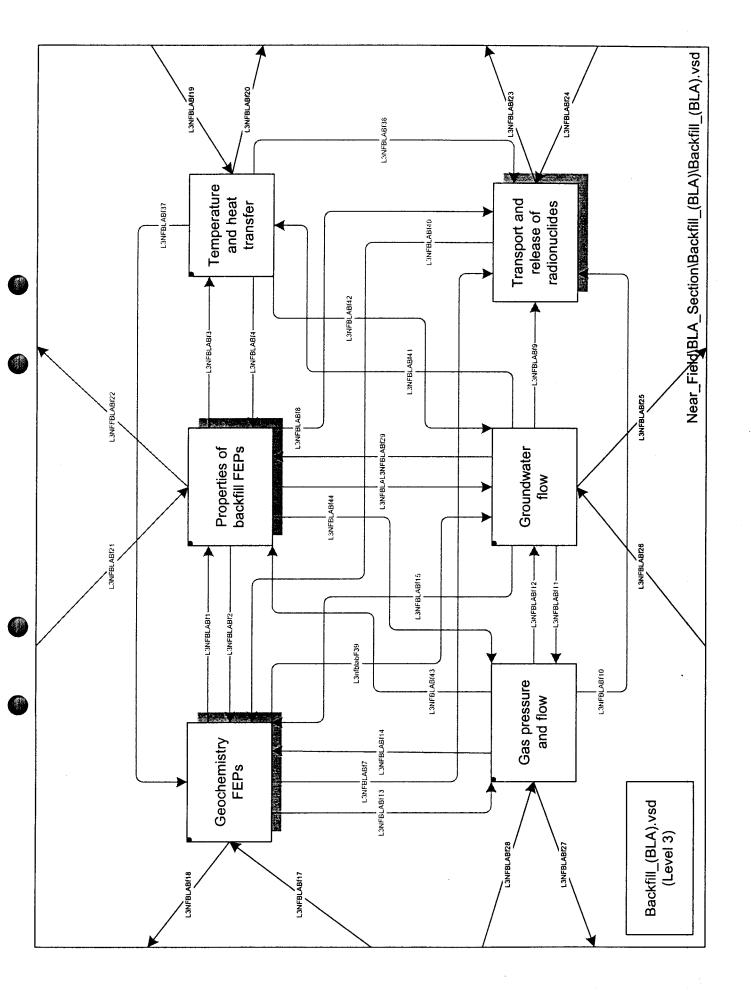


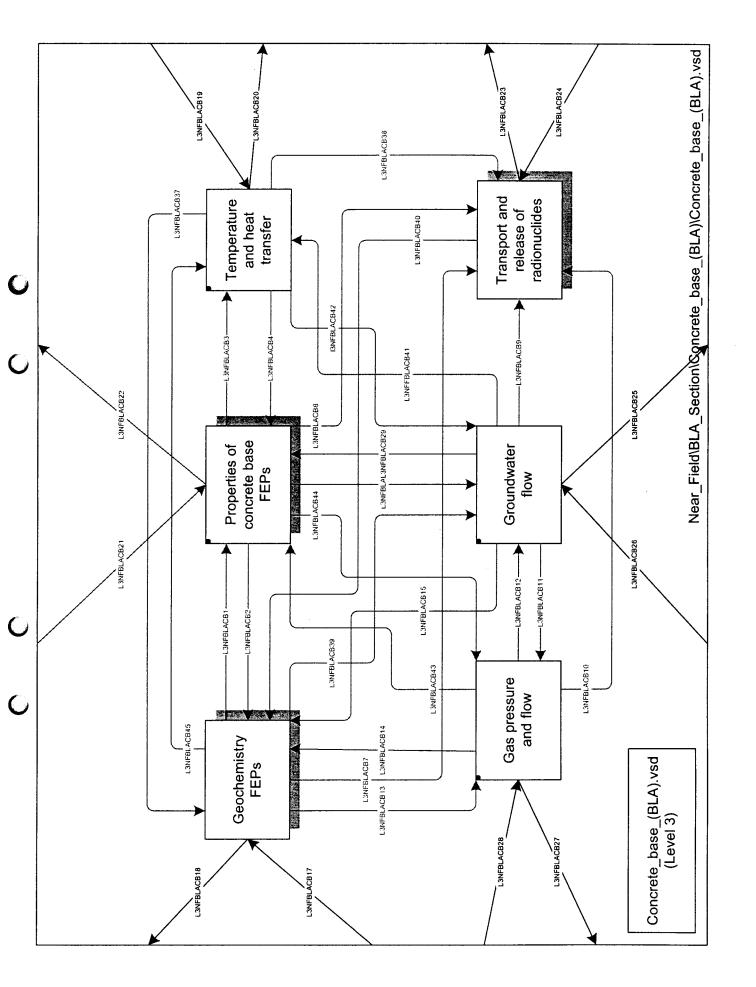
Annexe III-17

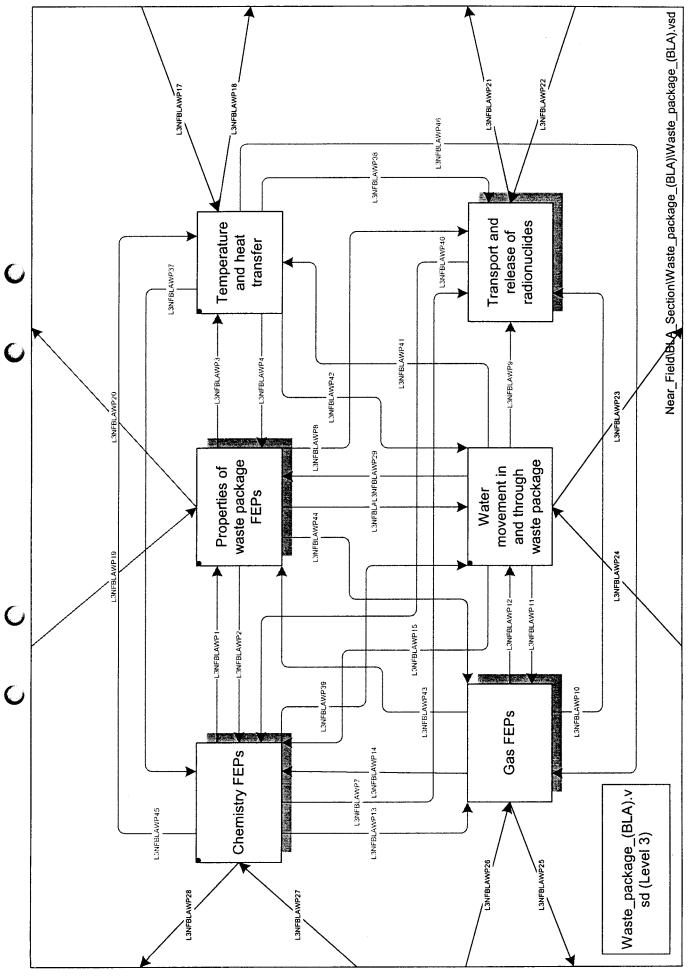


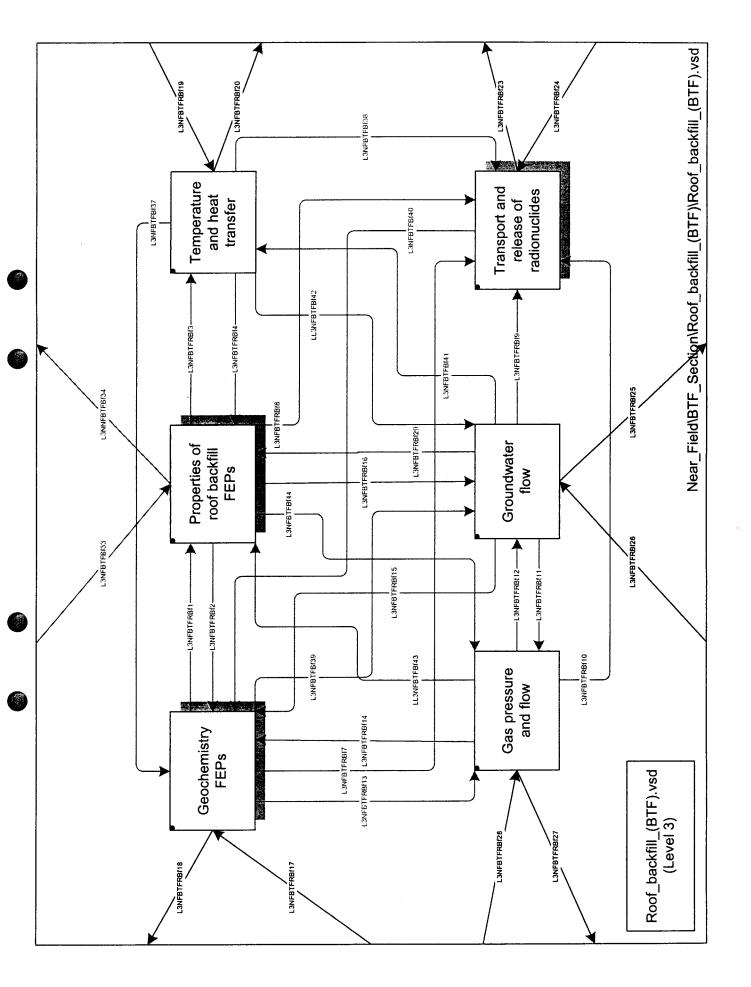


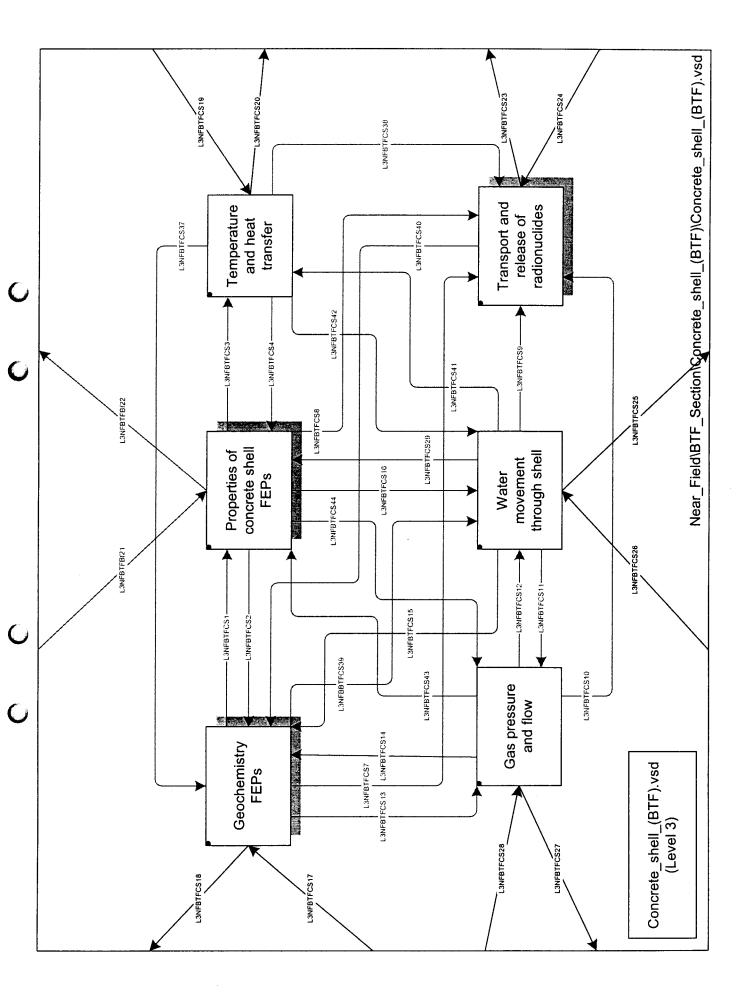

Annexe III-21


Annexe III-22

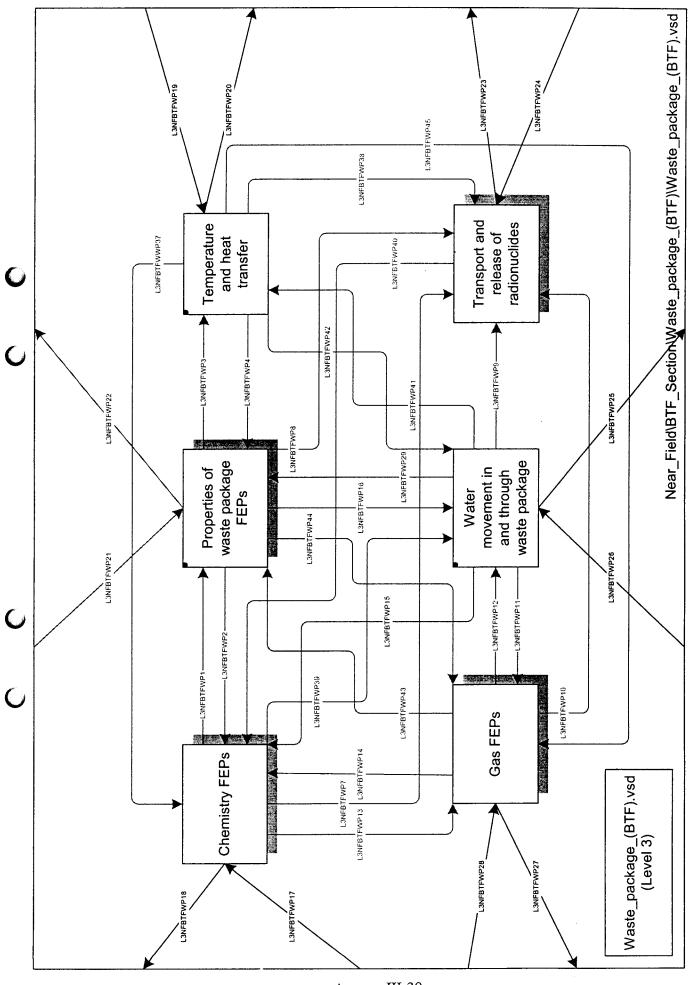




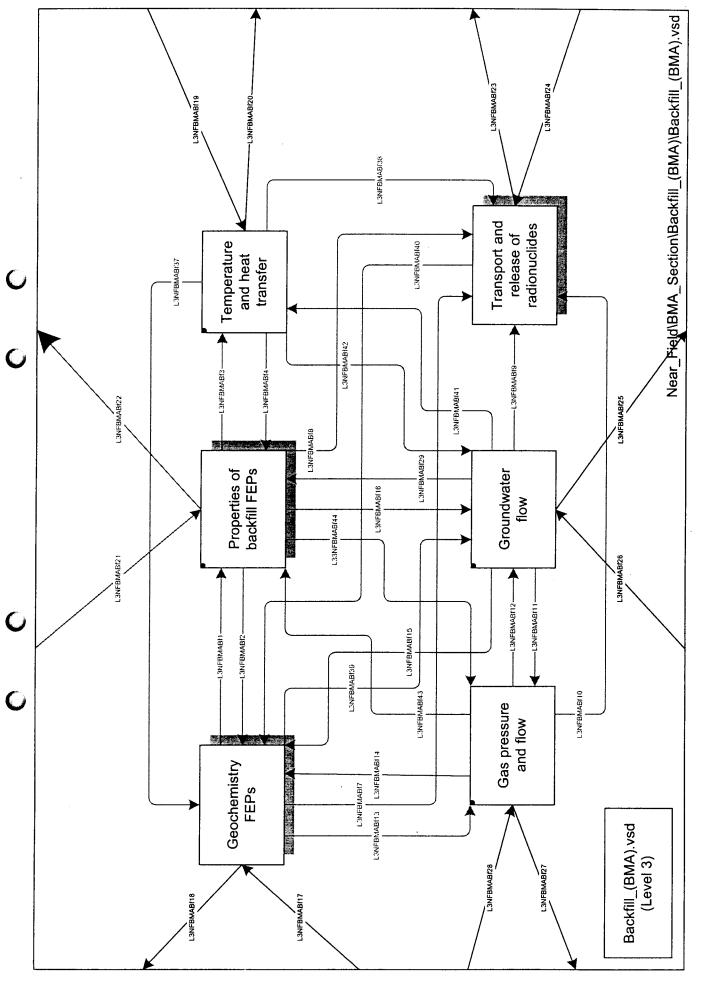


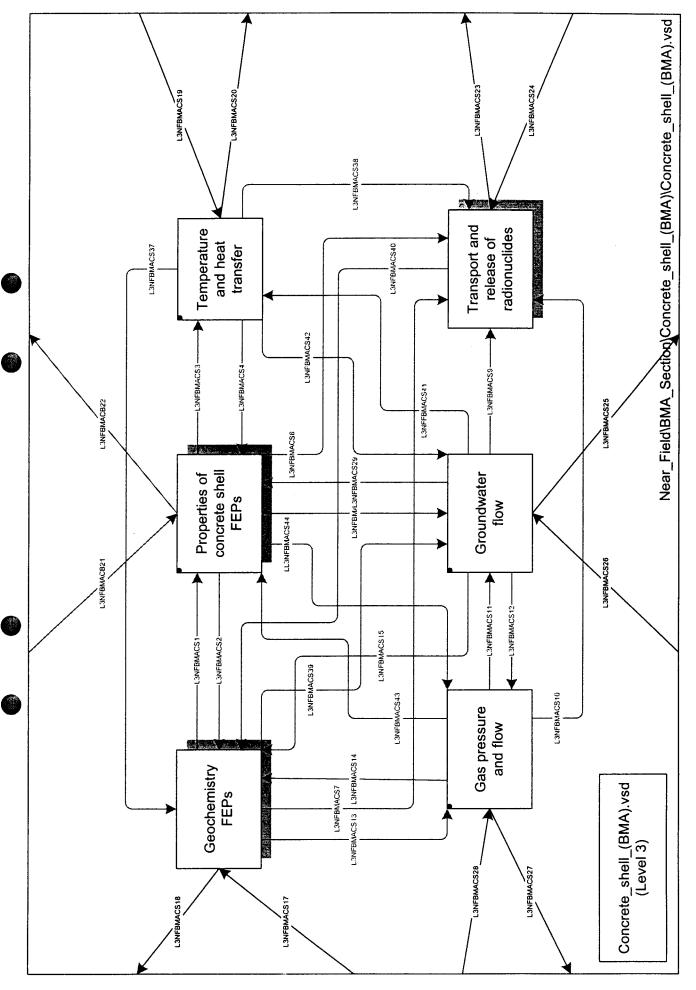

Annexe III-27

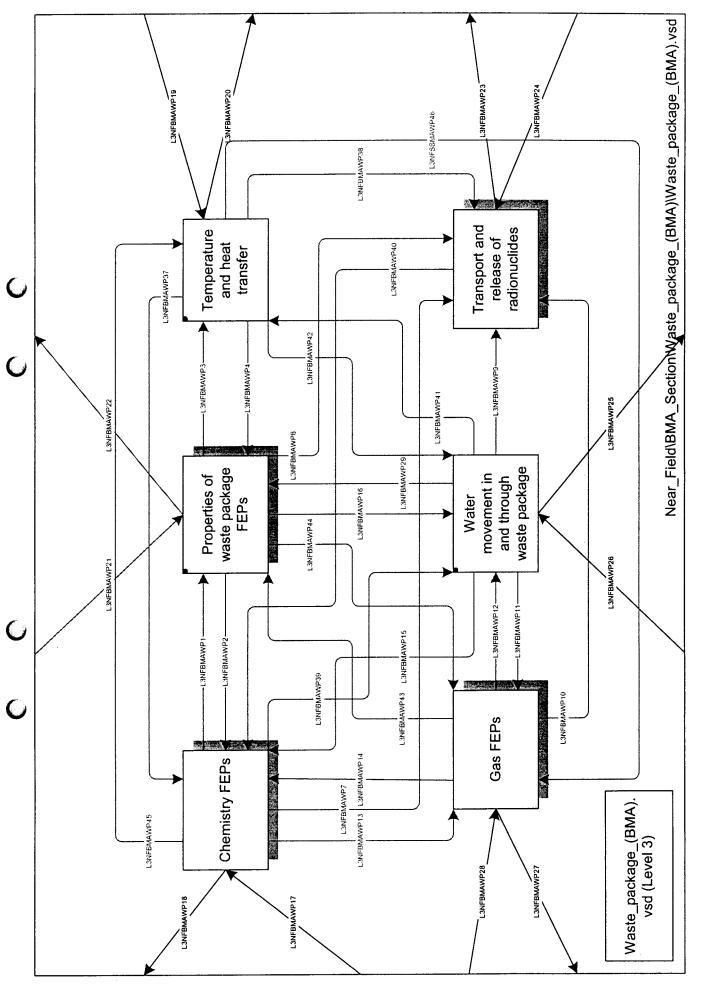
i

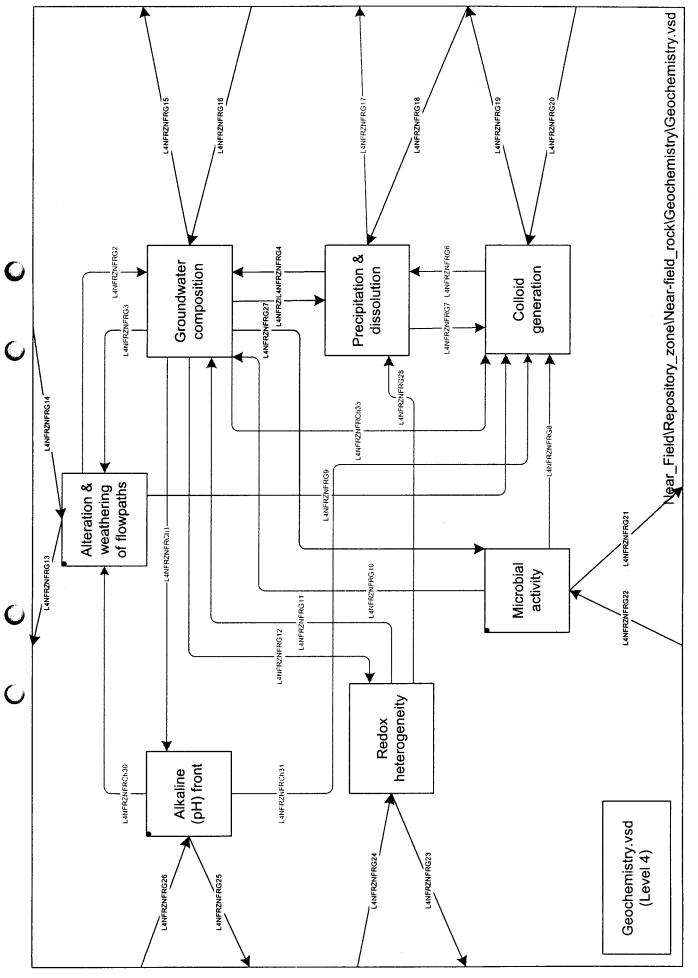

Γi.

a. 1



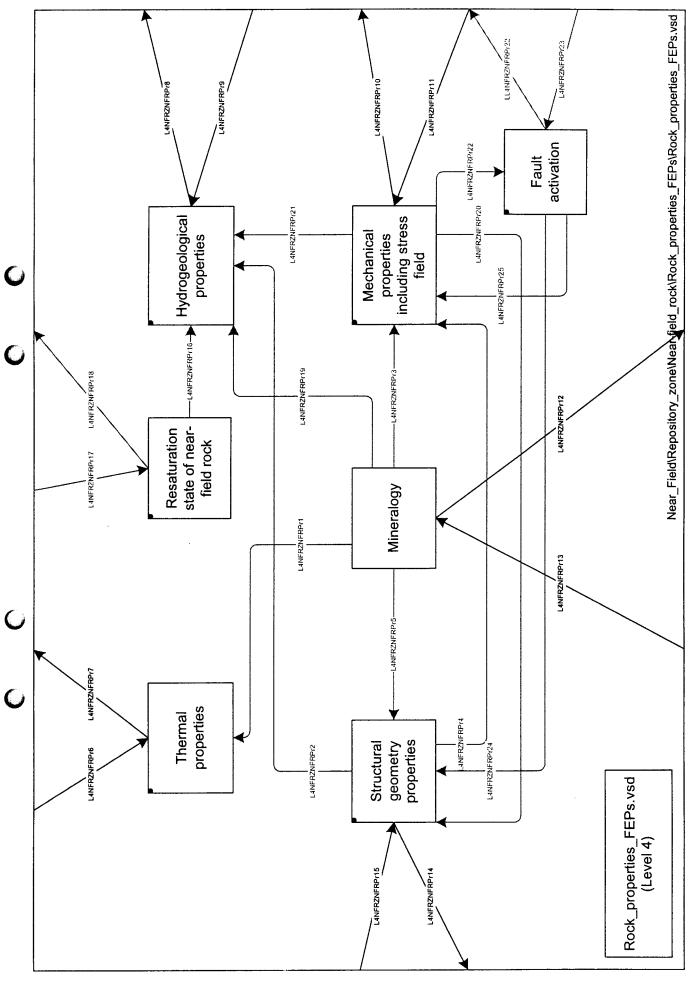

i ь


ĺ.

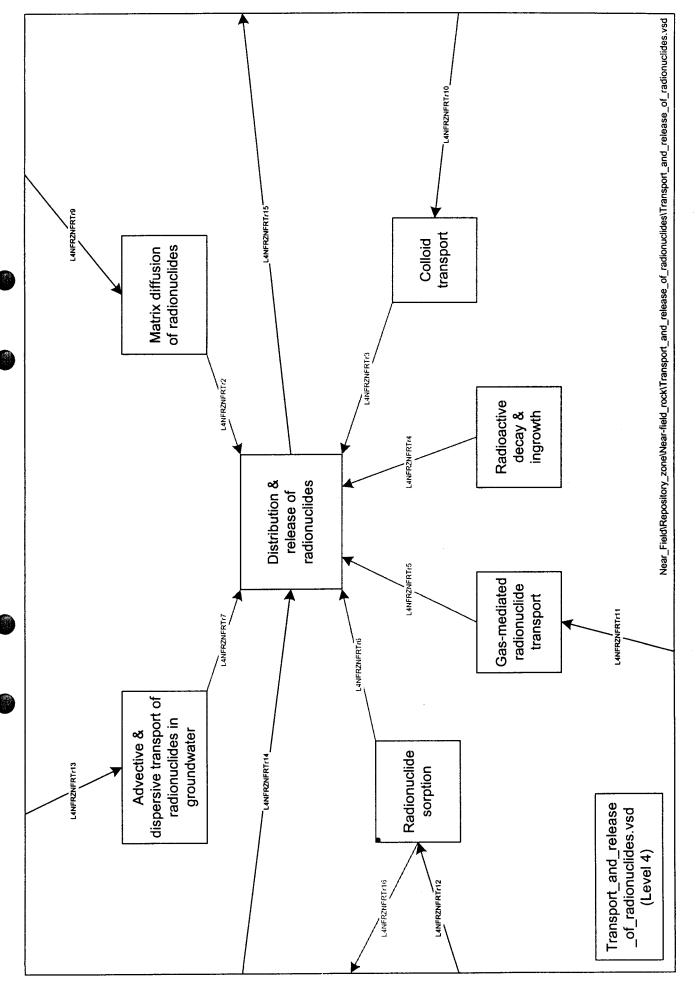

l. L

Annexe III-32

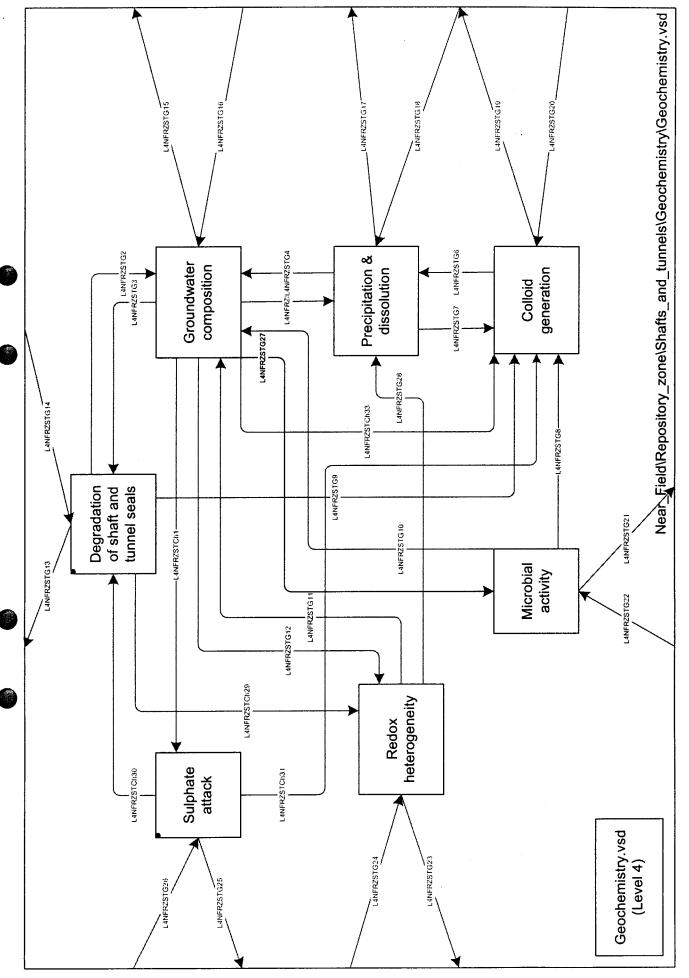
Annexe III-33

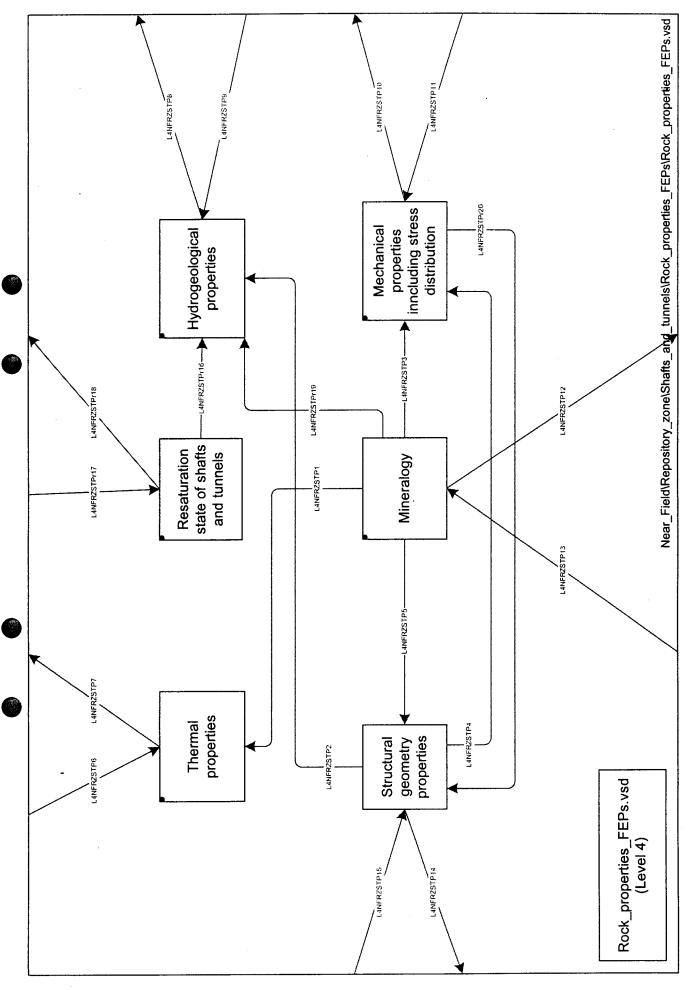

Annexe III-34

I

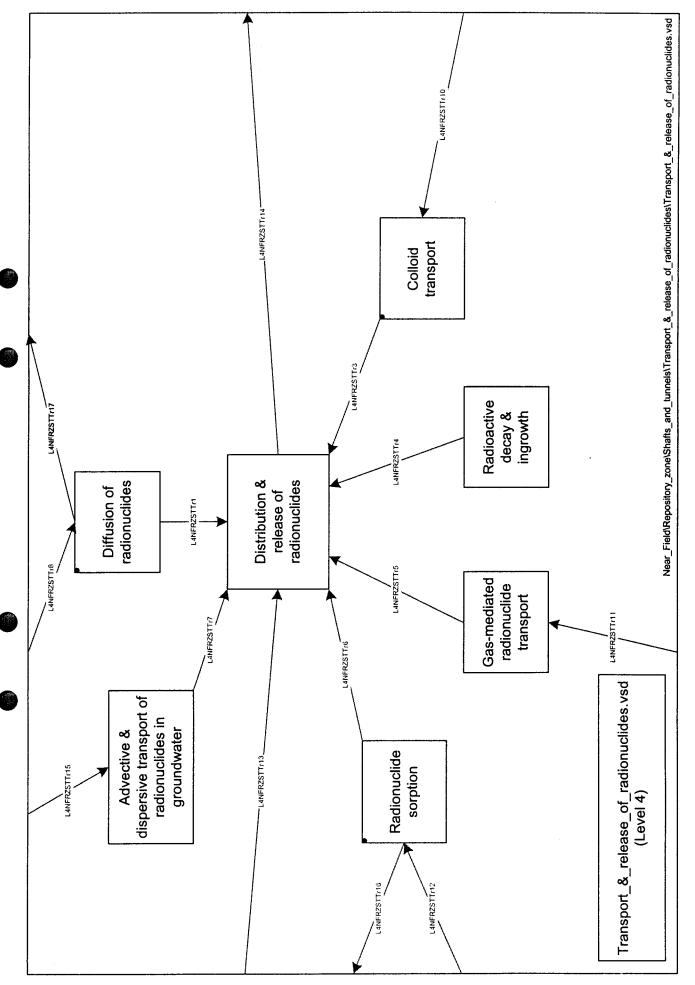

i

гi.

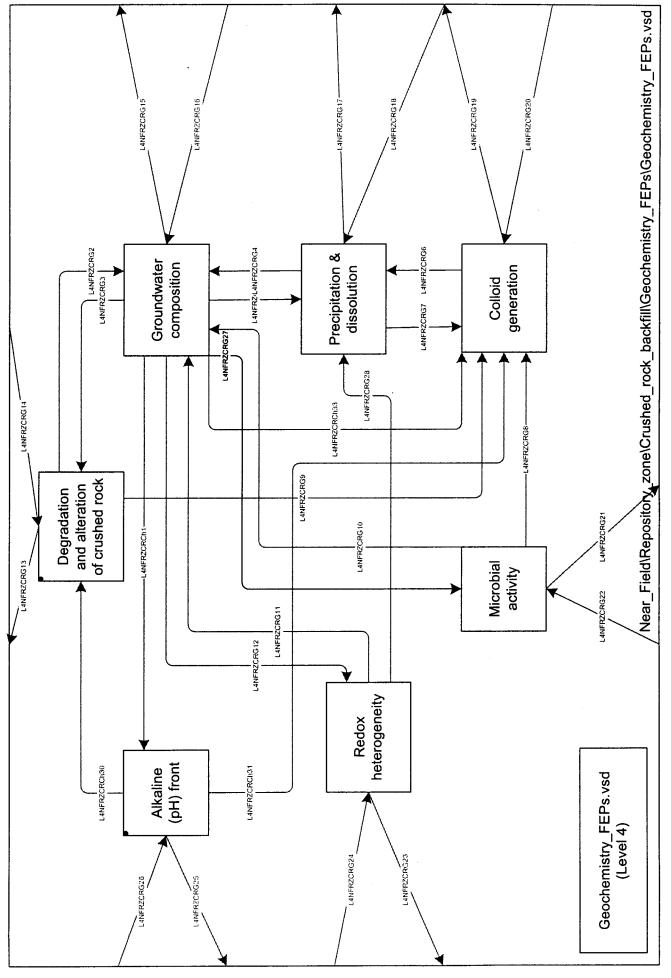

ł

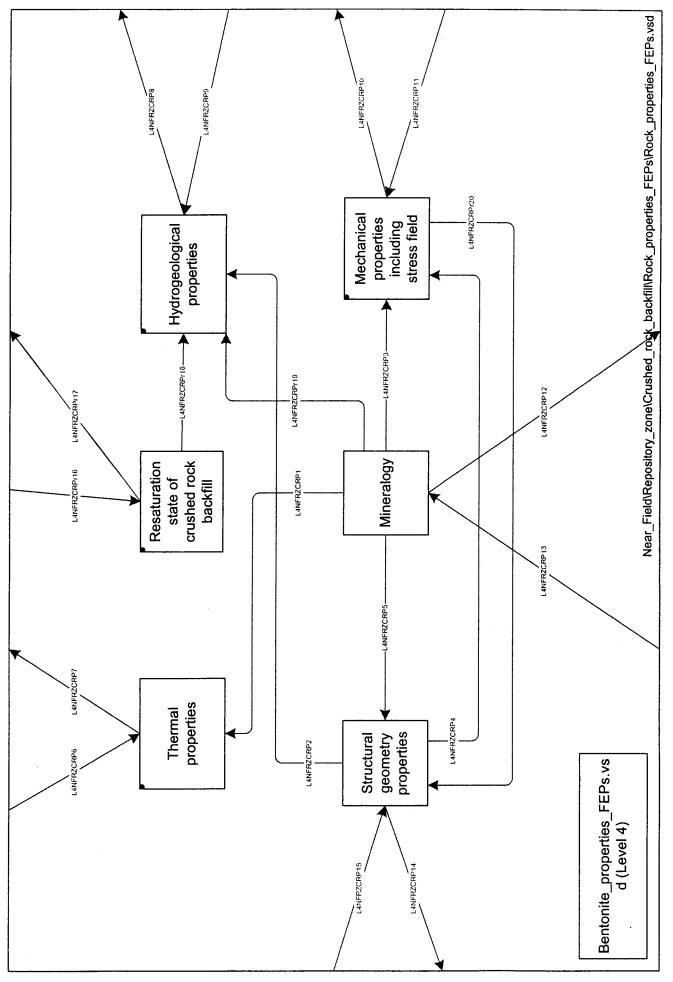


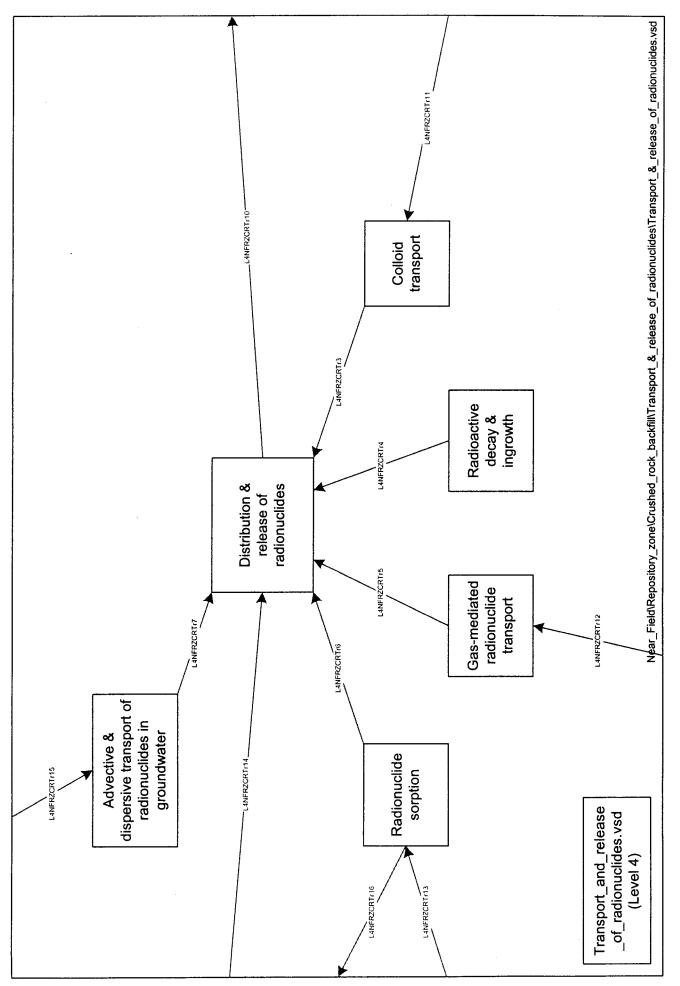
Annexe III-35

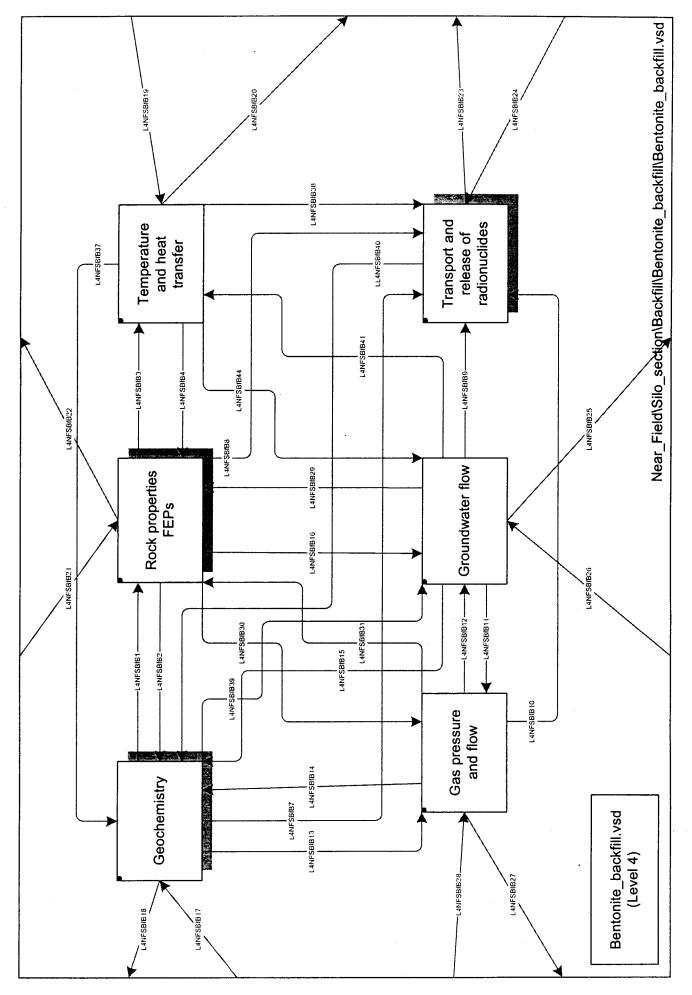


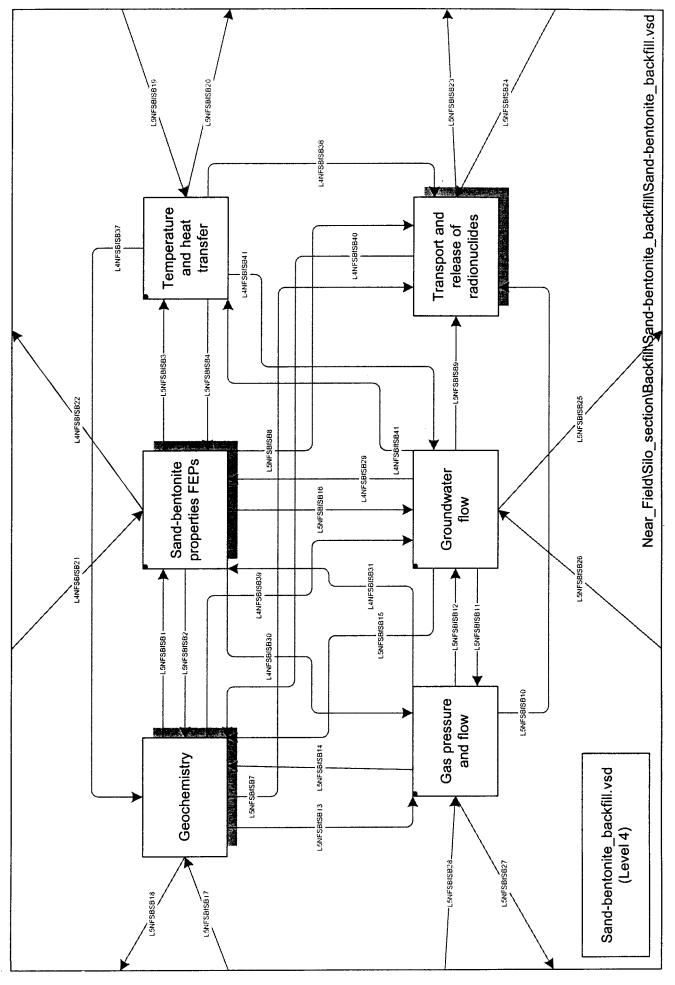
Annexe III-36

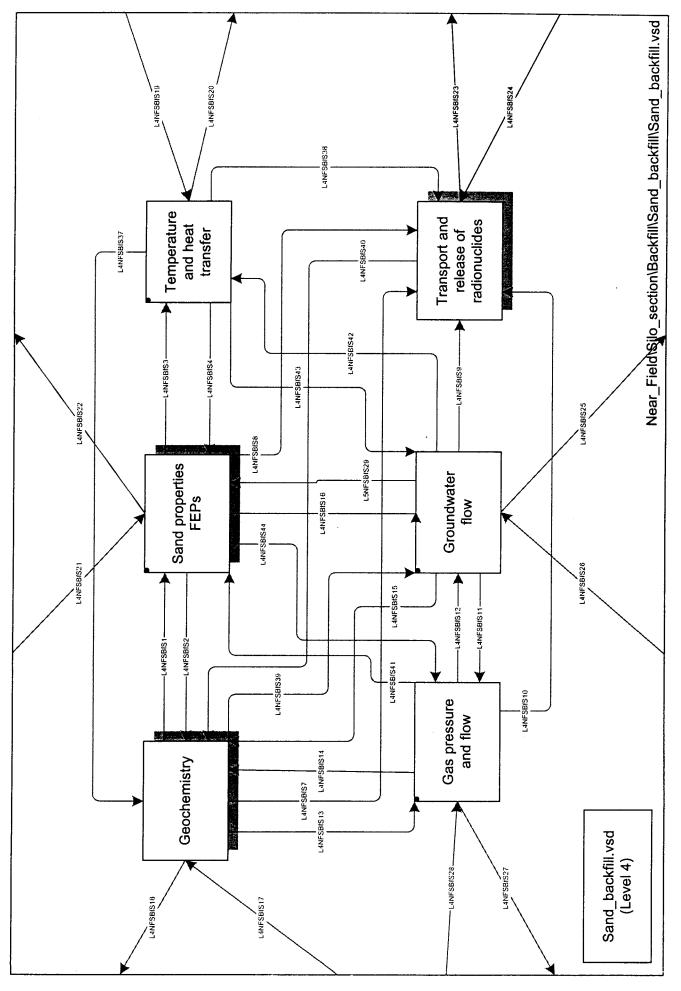


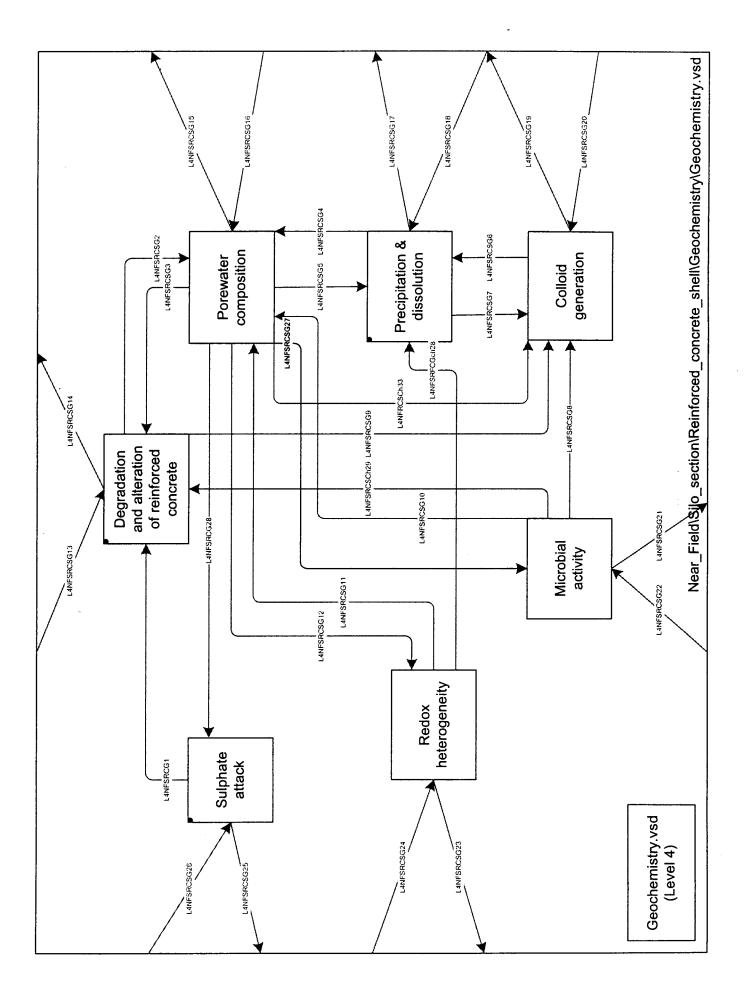

Annexe III-38

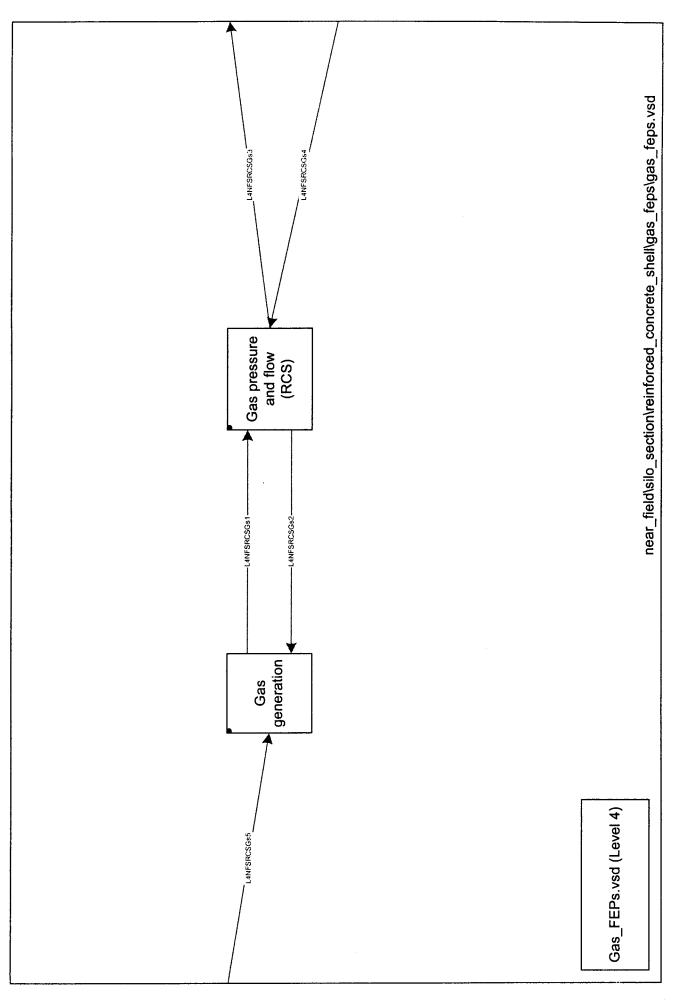

Annexe III-39


، بد

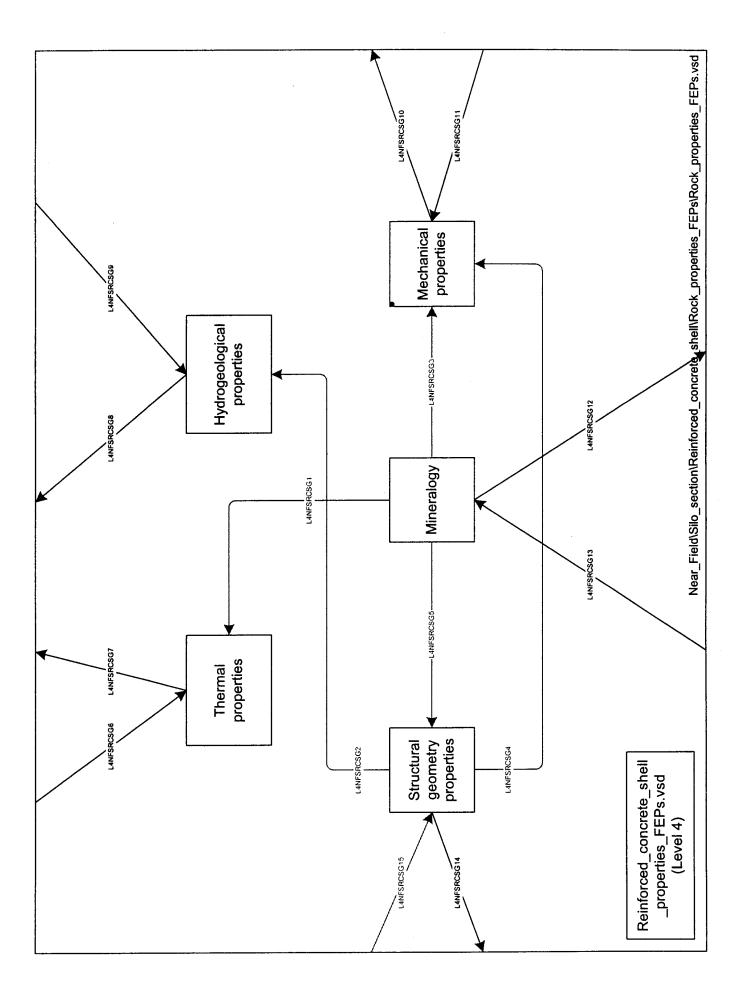

Annexe III-41

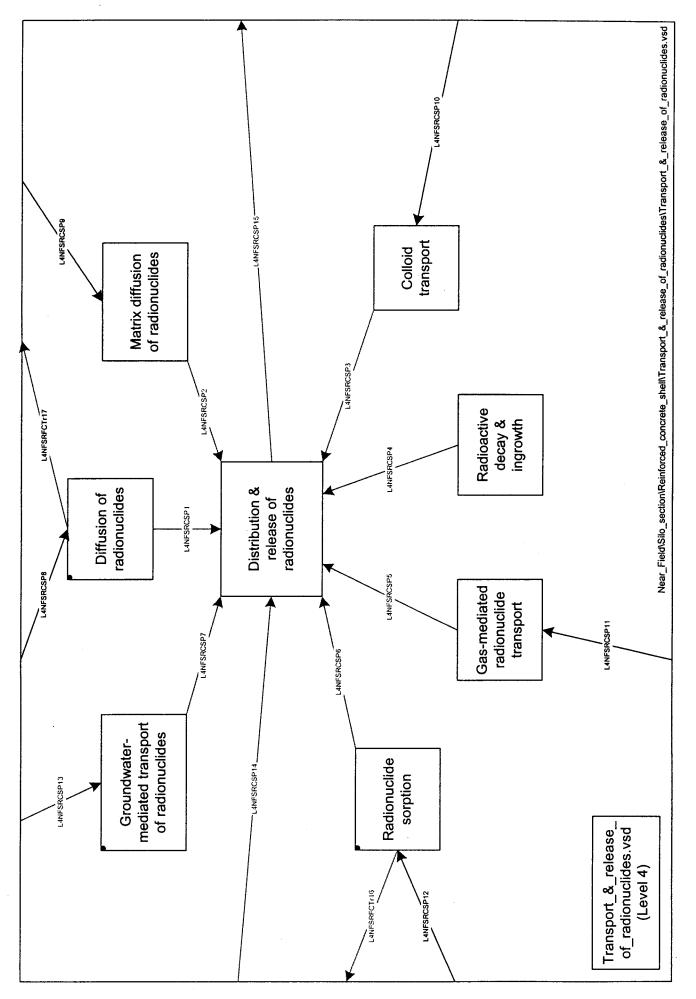

Annexe III-42

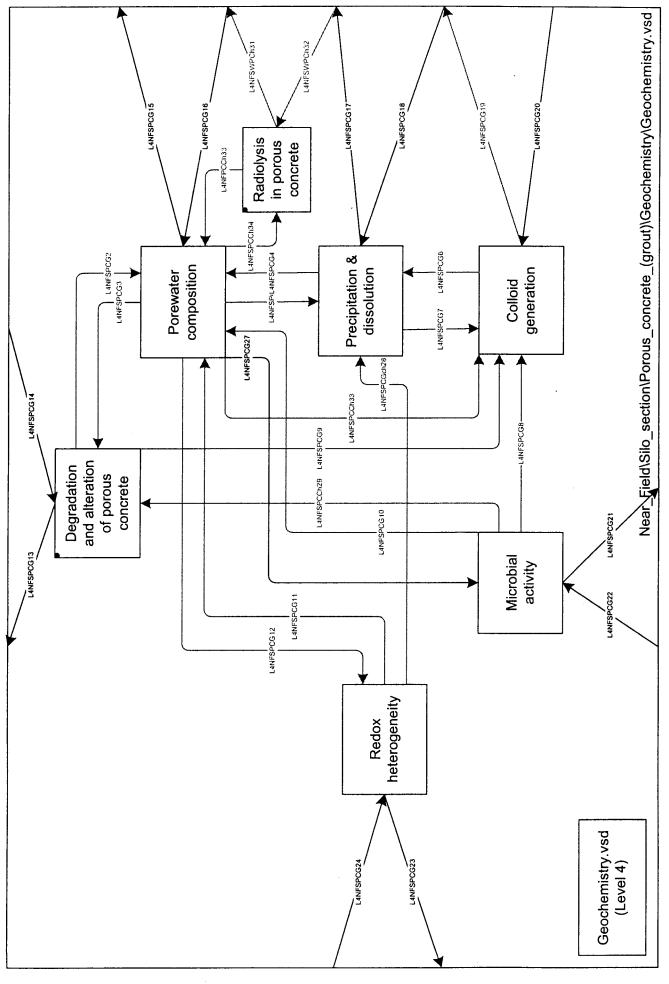

Annexe III-43



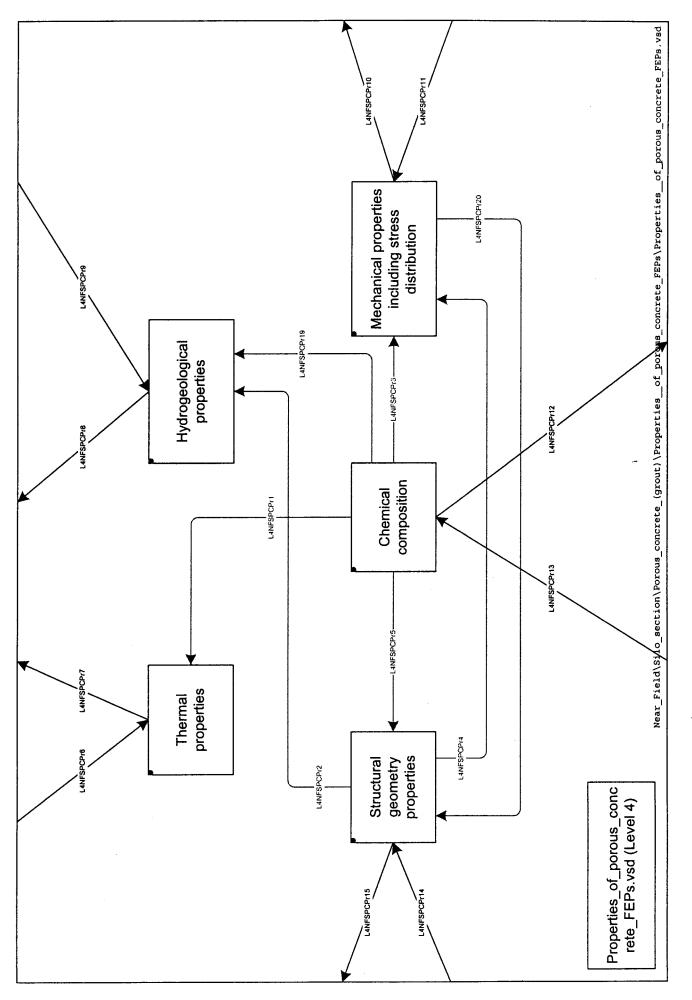
Annexe III-44



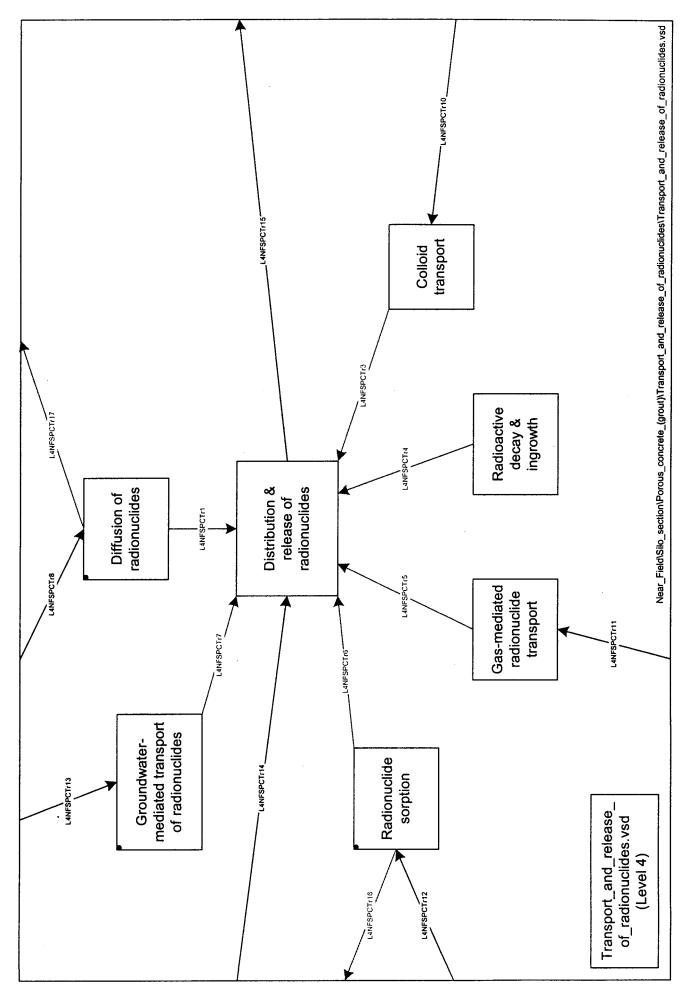

Annexe III-45

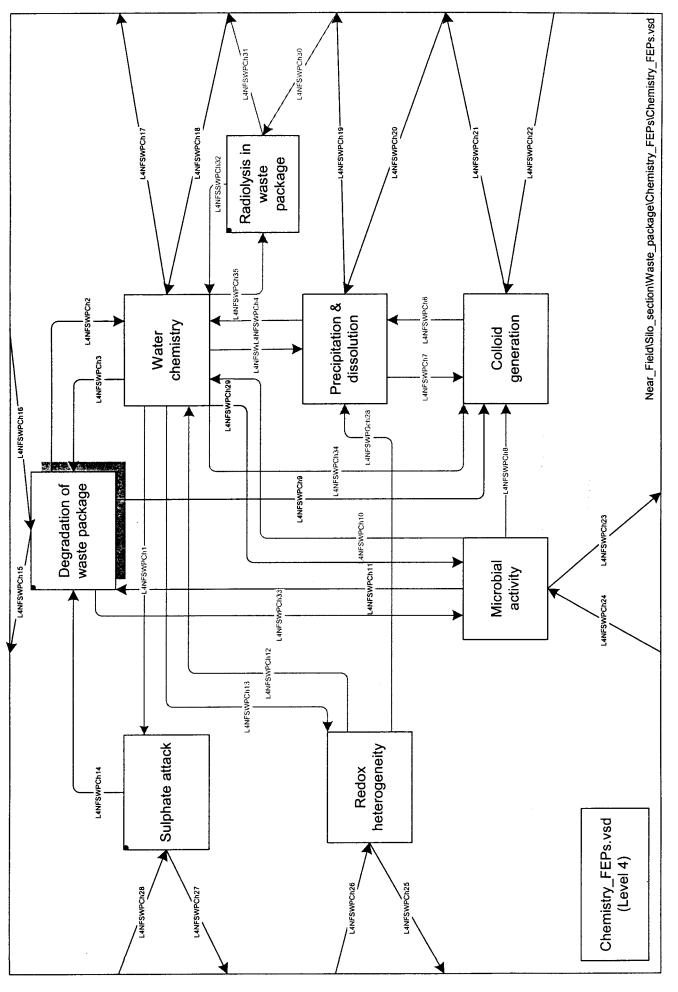


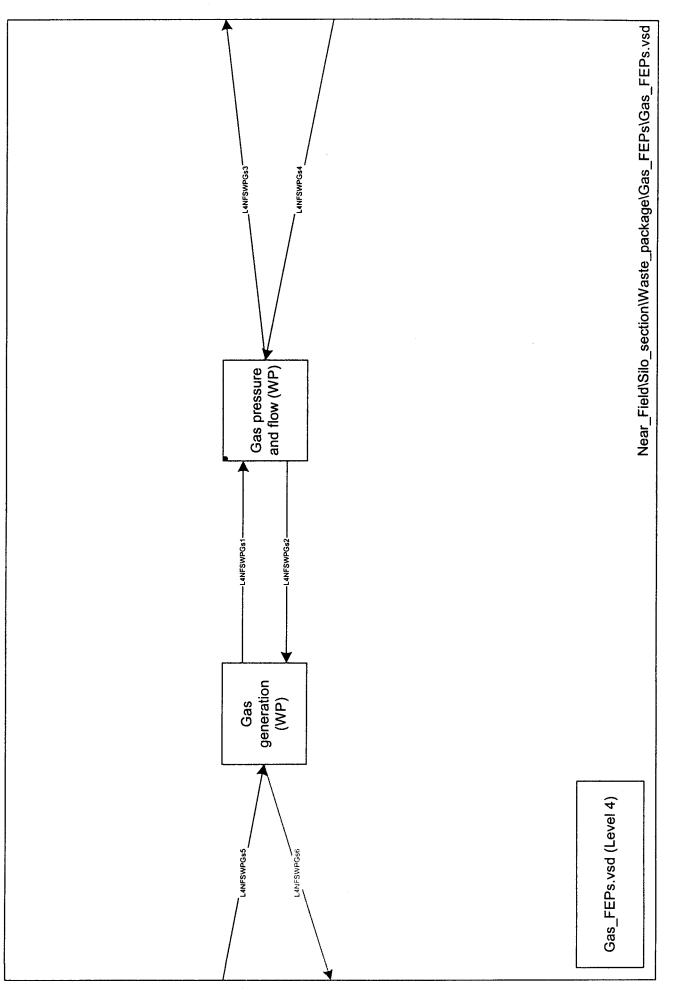
Annexe III-47



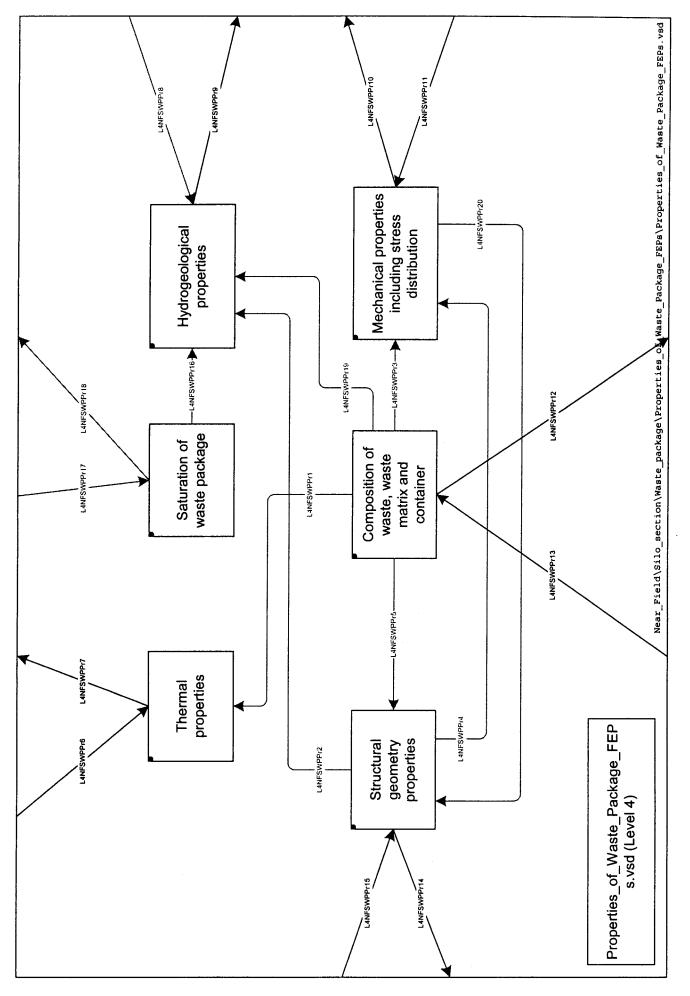
Annexe III-49



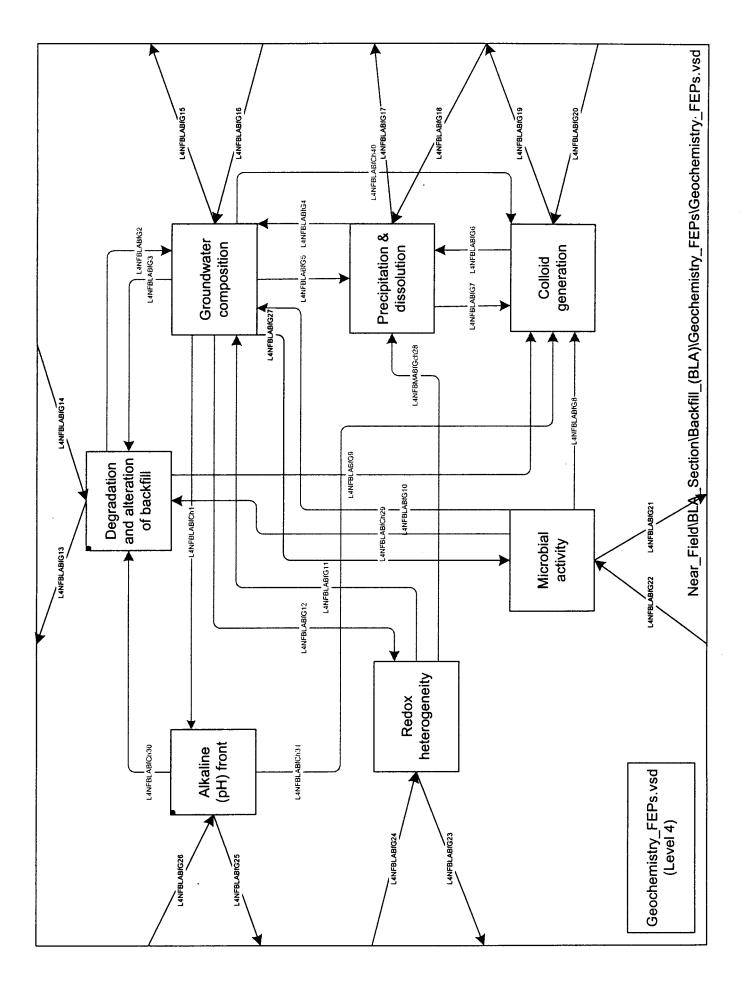

a i



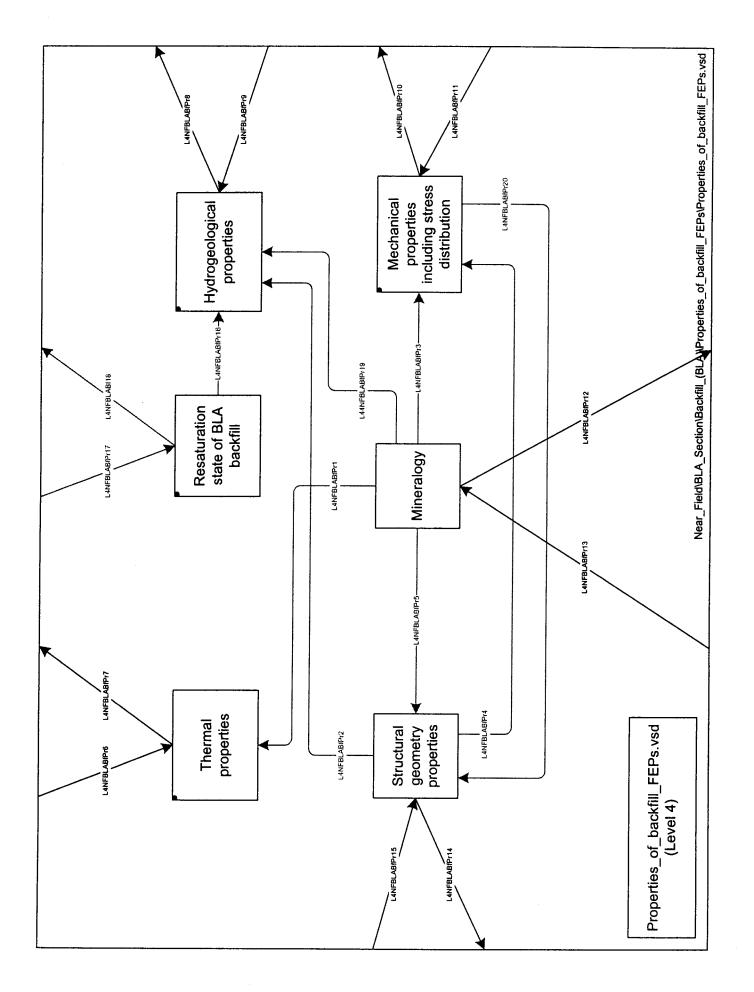
Annexe III-51

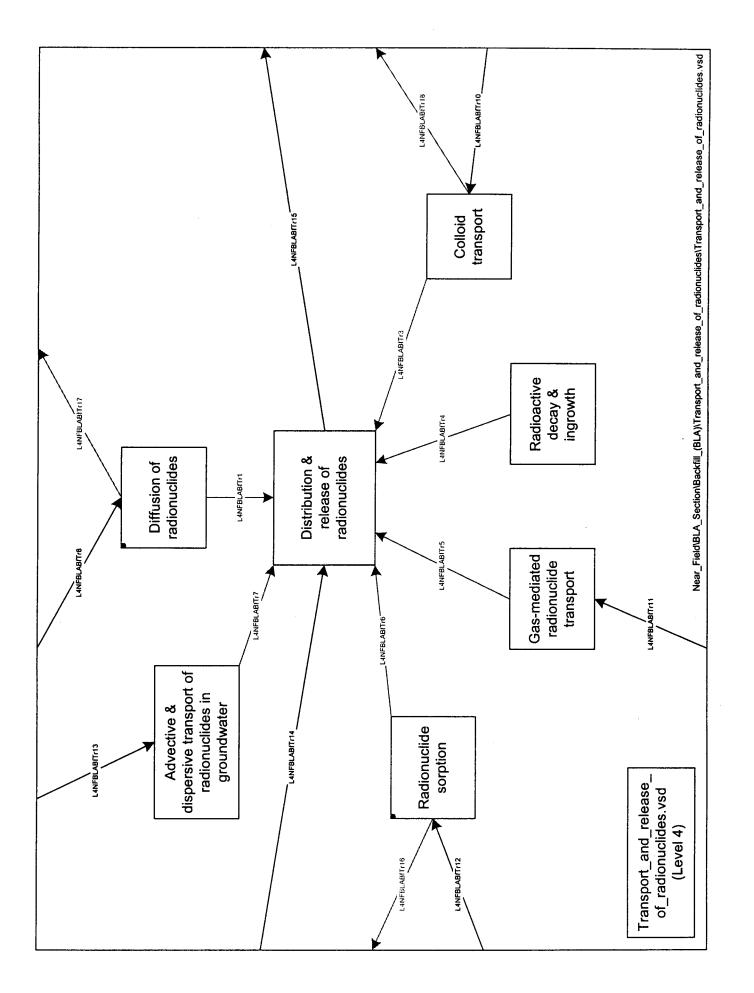

Annexe III-52

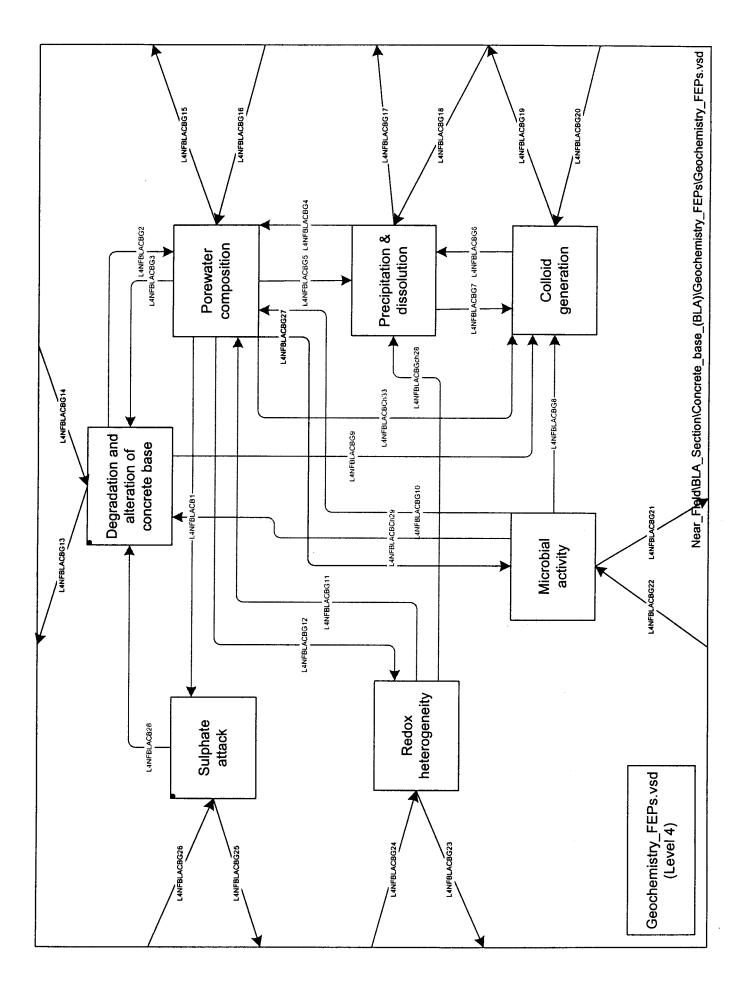


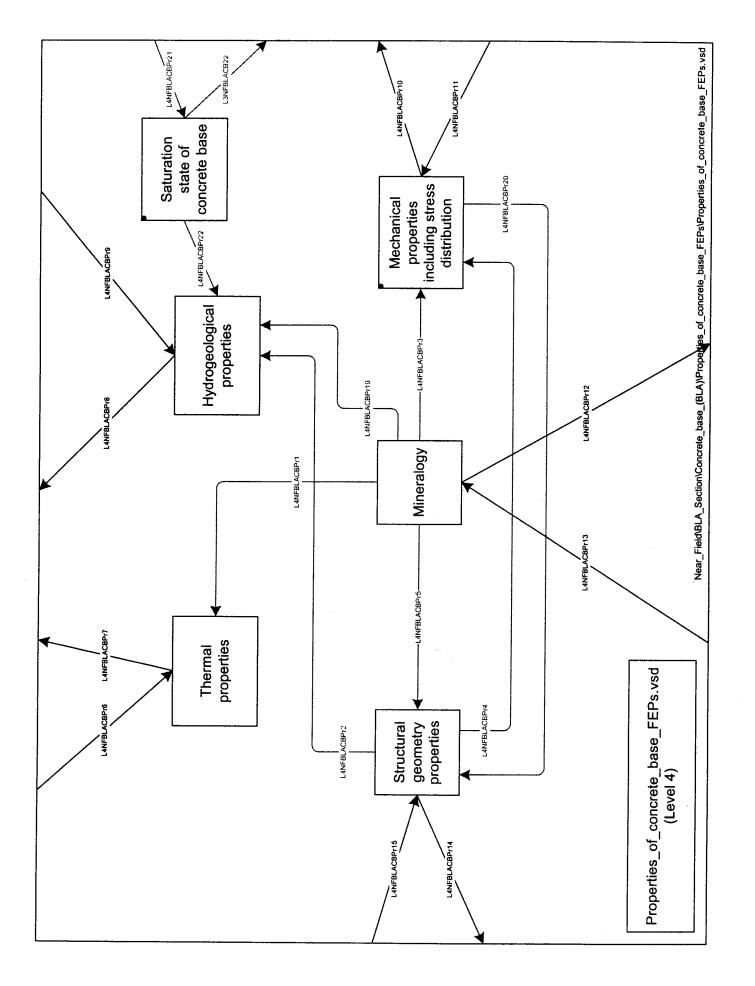

.

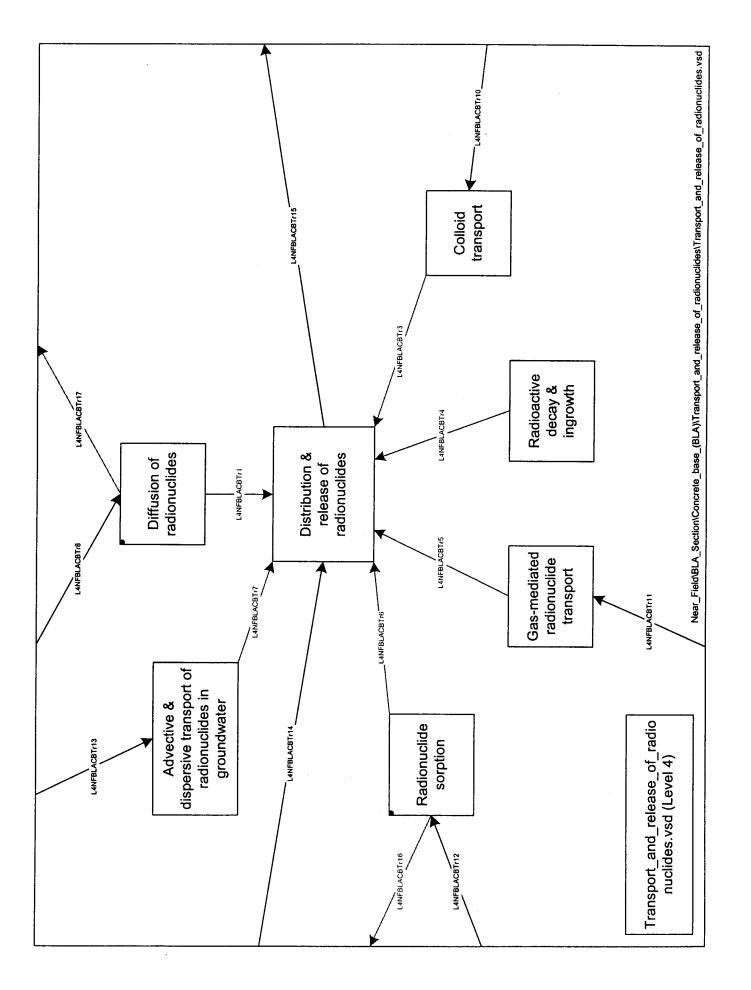
Annexe III-54

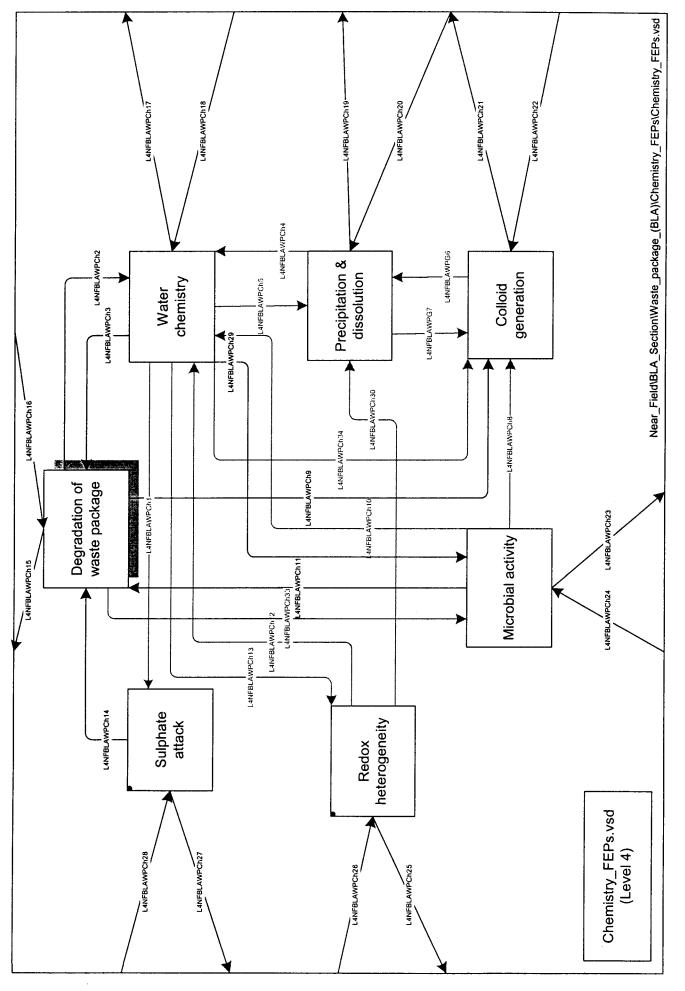


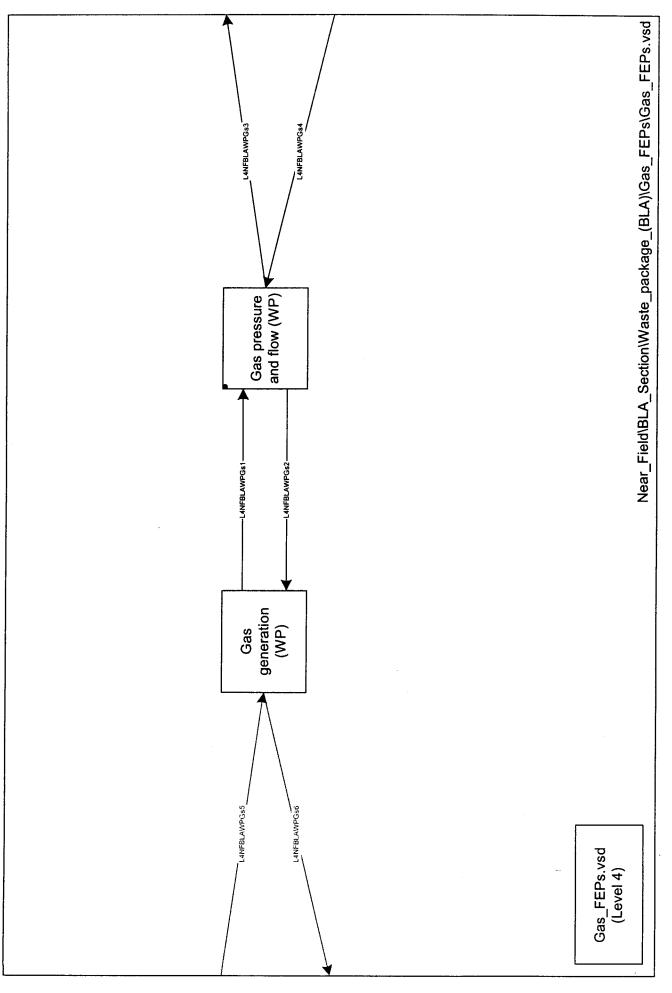

Annexe III-55

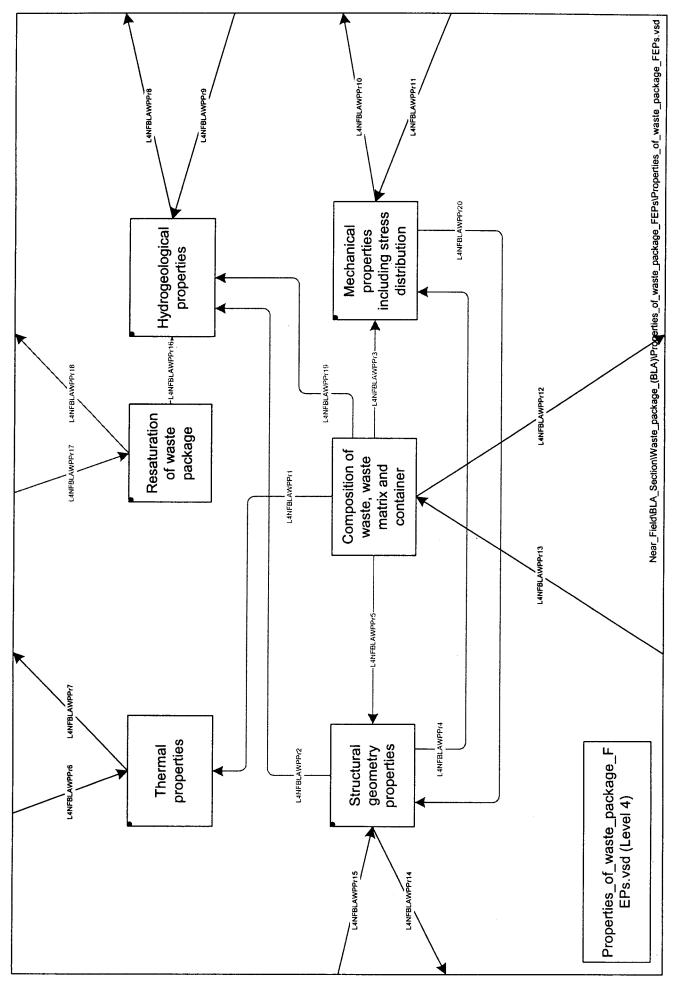


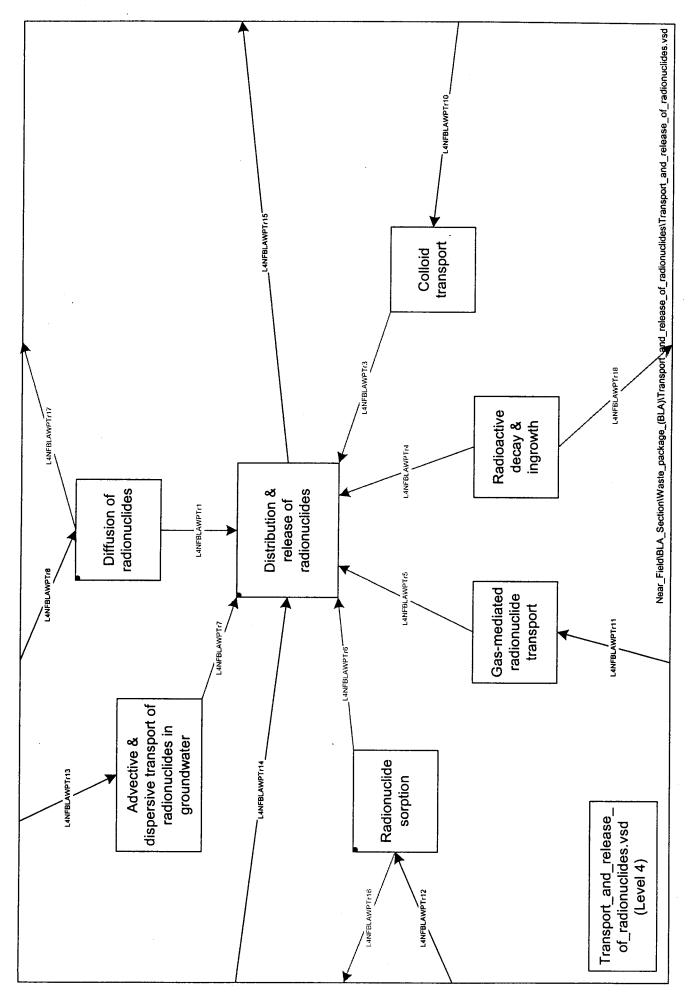


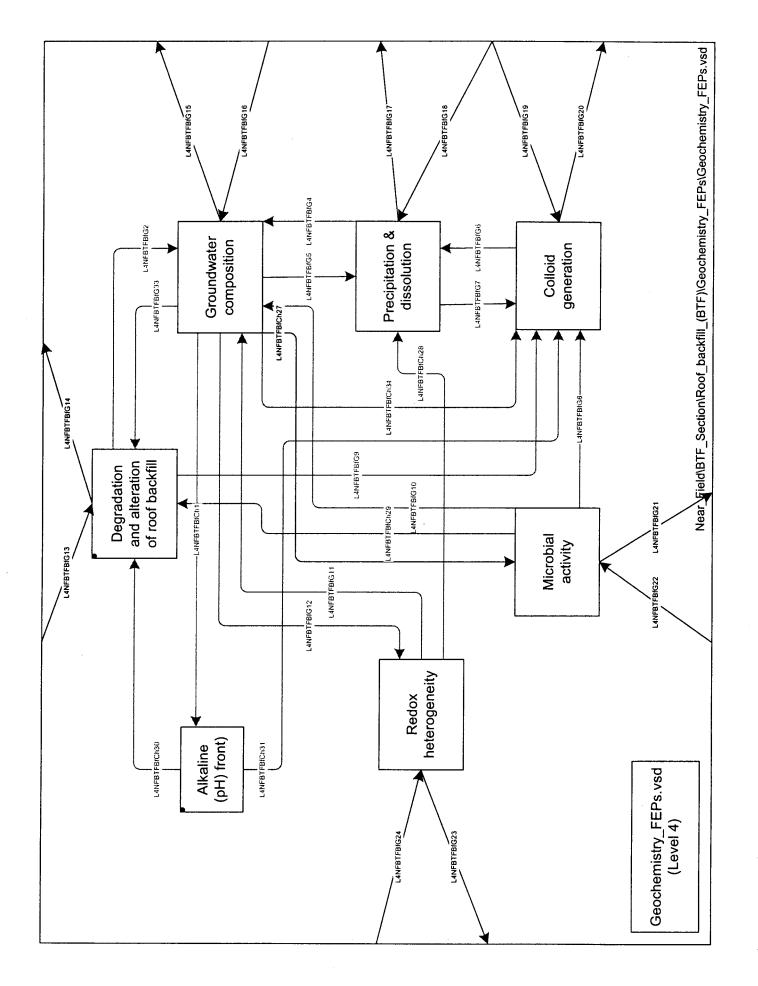

Annexe III-57



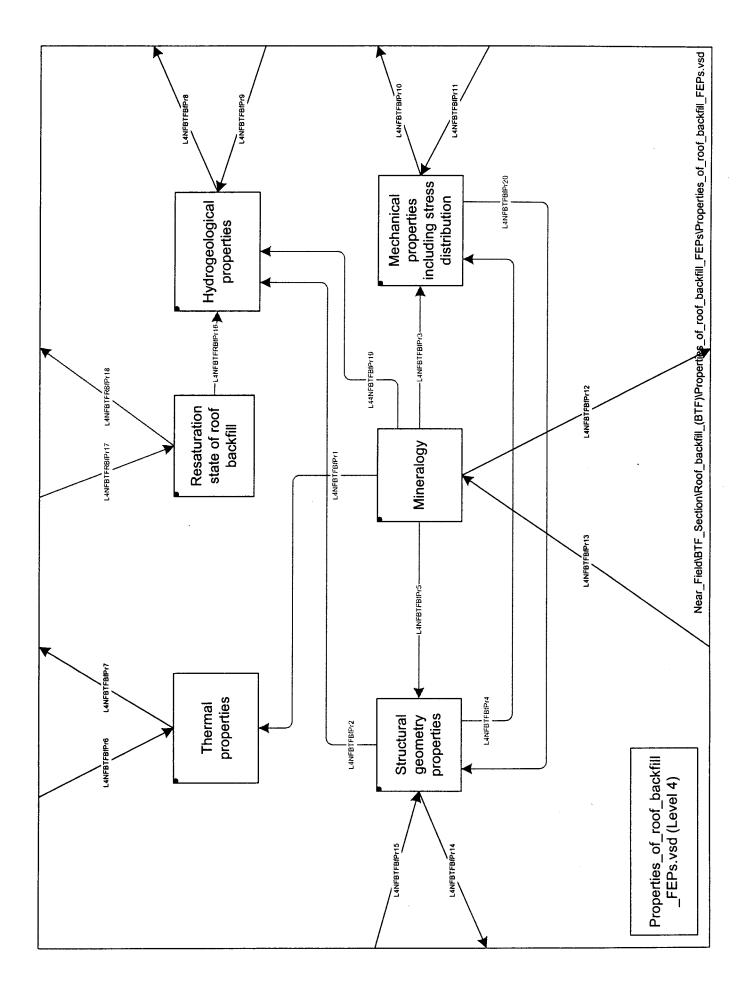


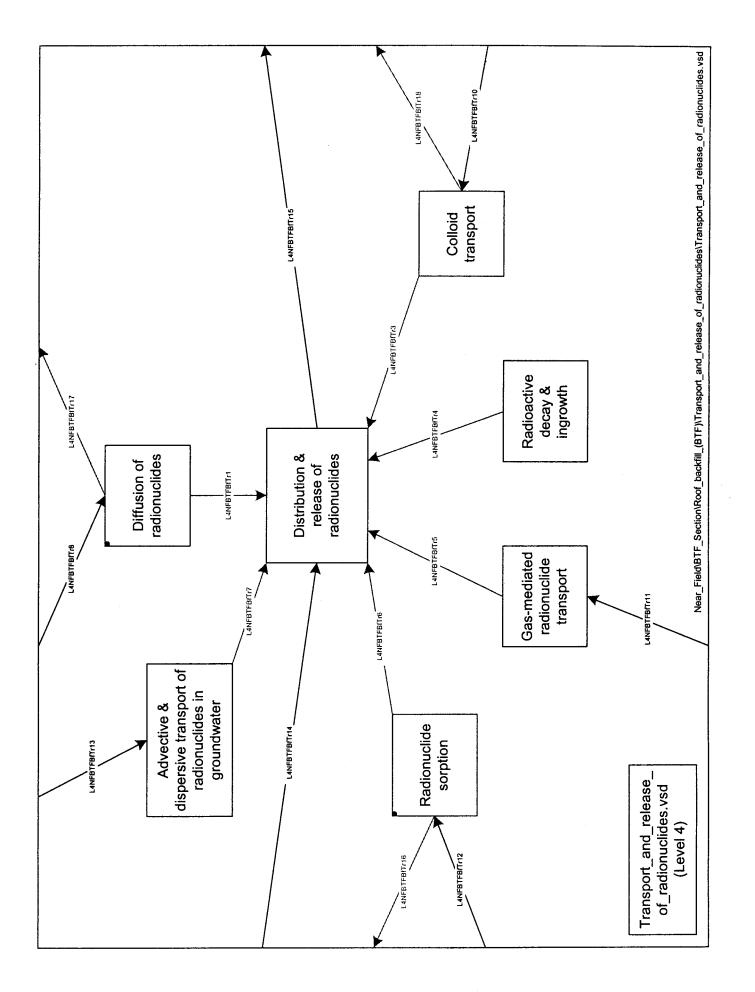



 $1 = 1 \quad \text{and} \quad 1 = 0$

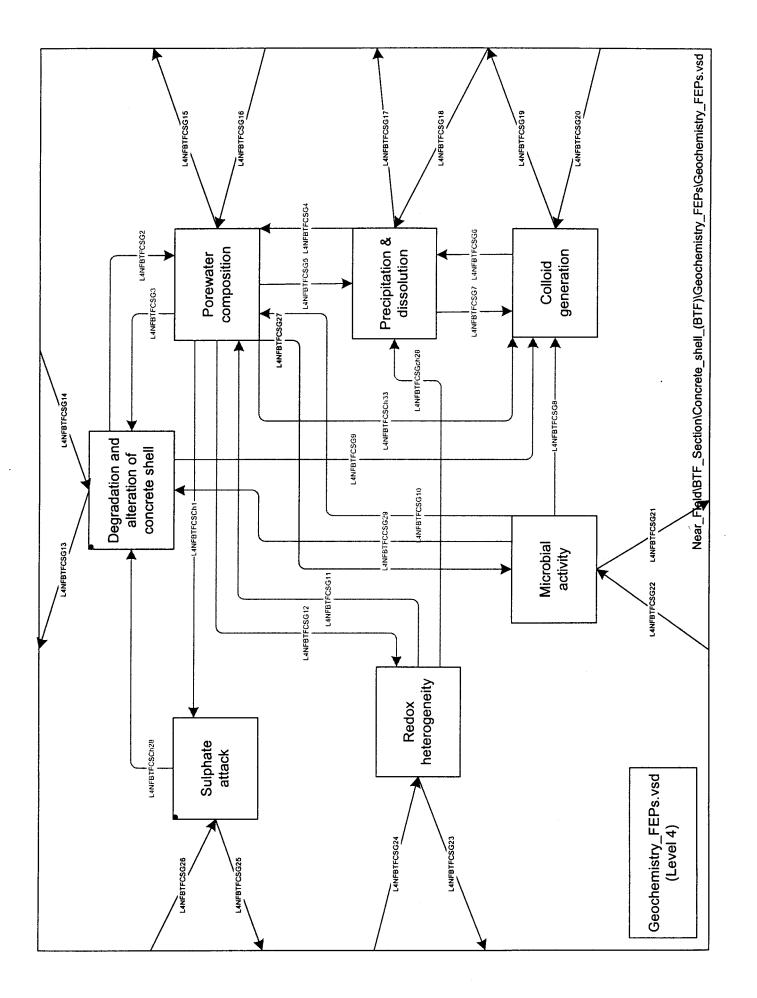

Annexe III-64

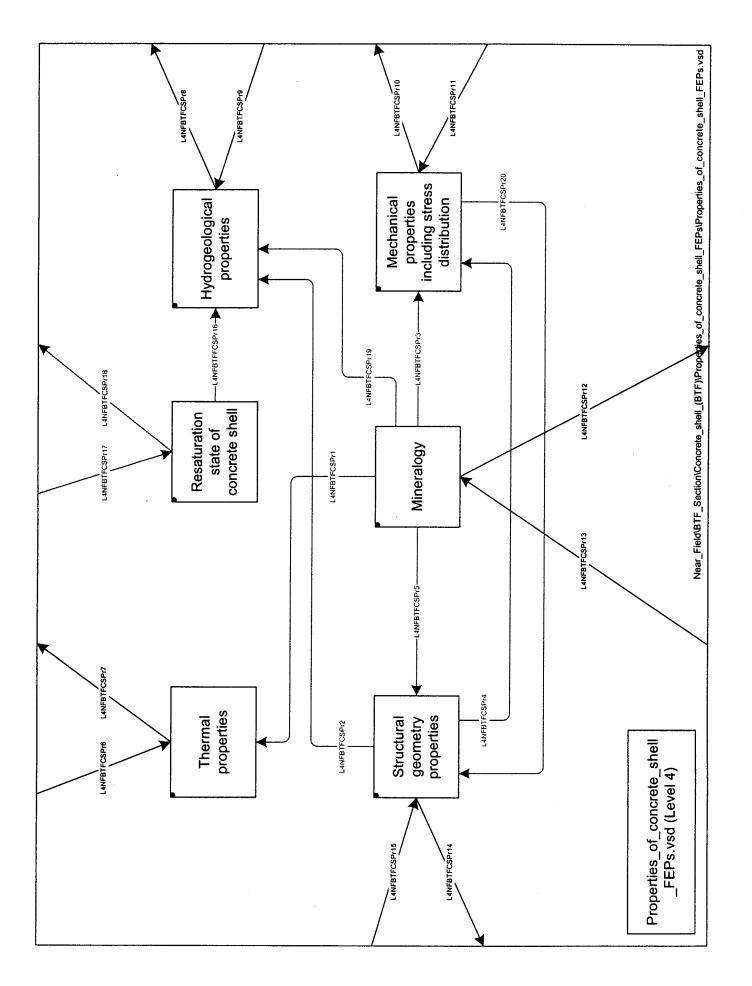
Annexe III-65


Annexe III-66



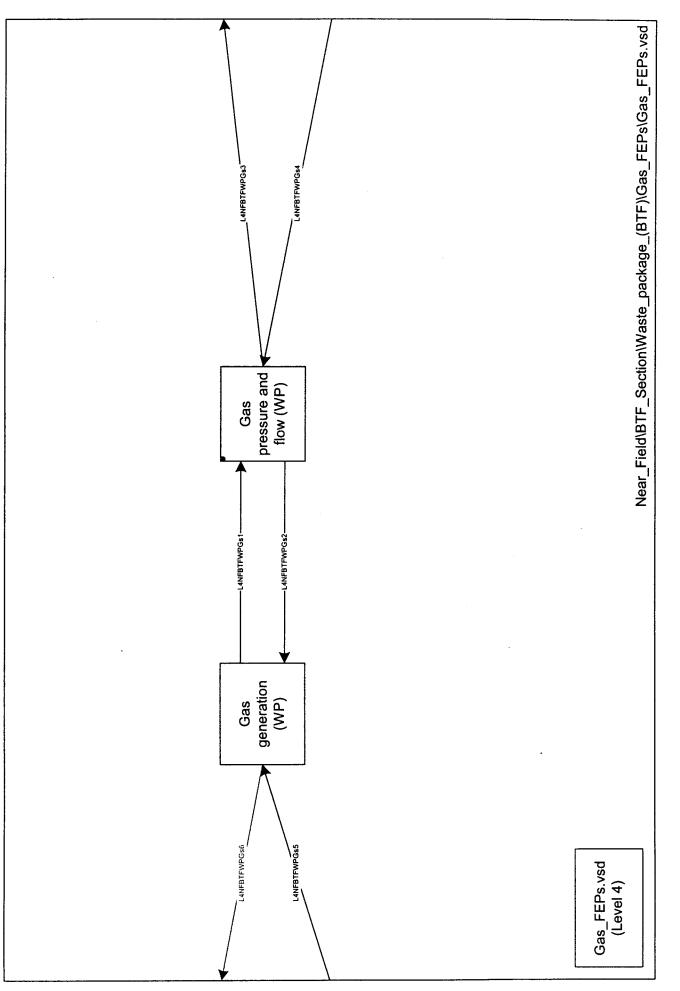
Annexe III-67

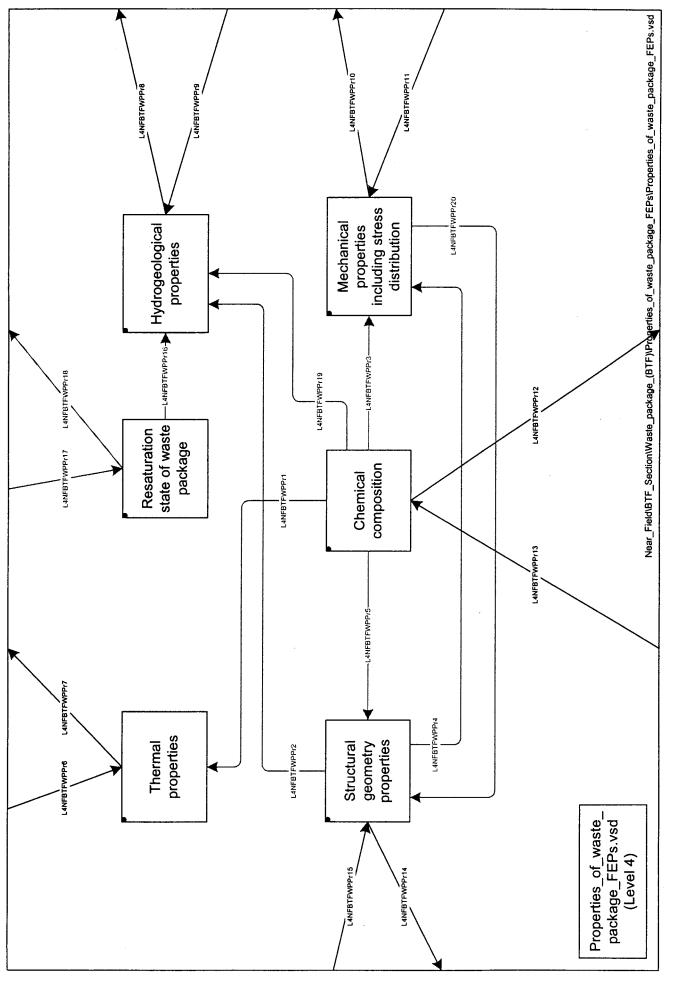

i . 1

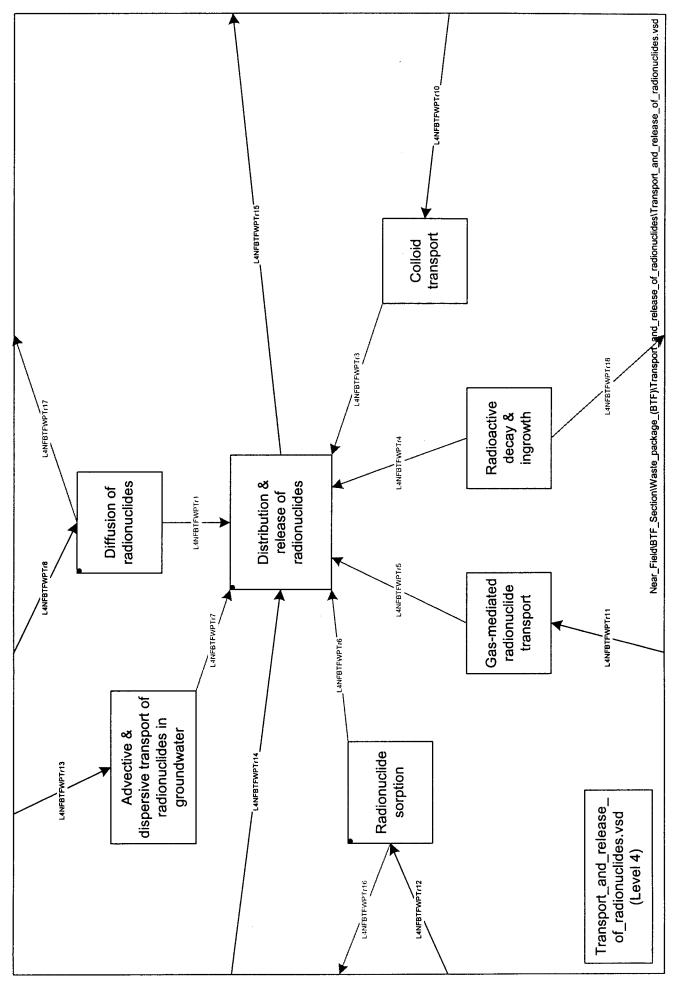

•.1

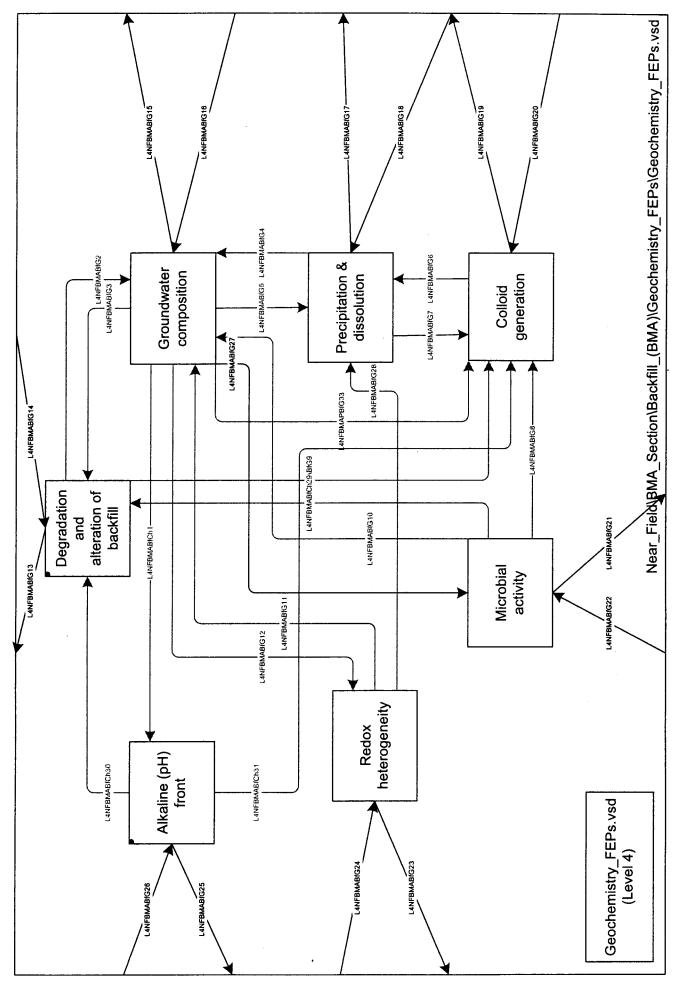


Annexe III-69

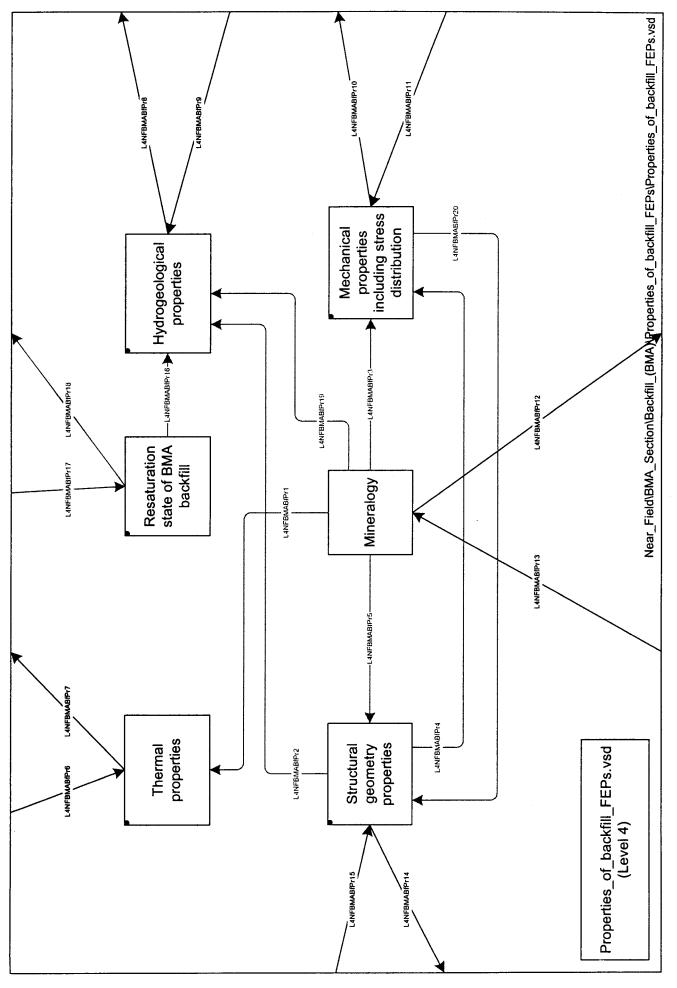


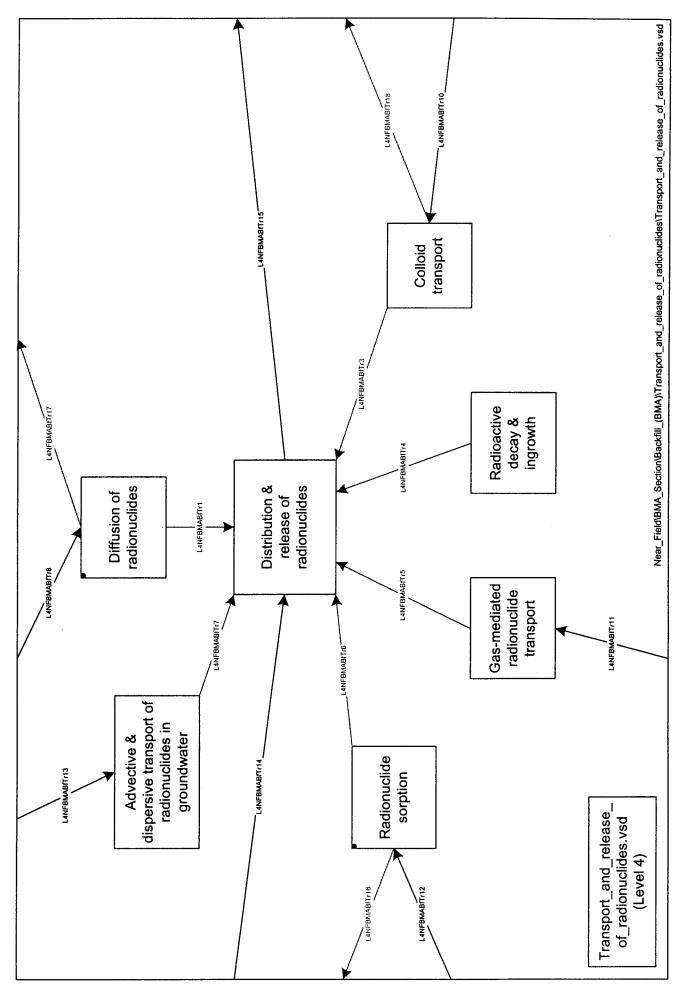

Annexe III-71

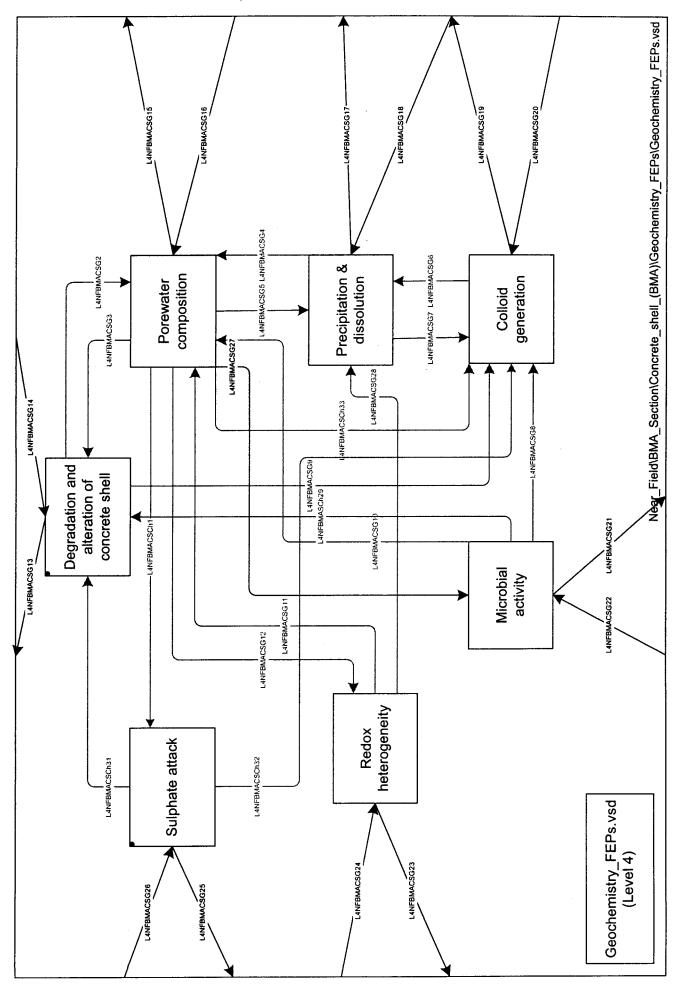


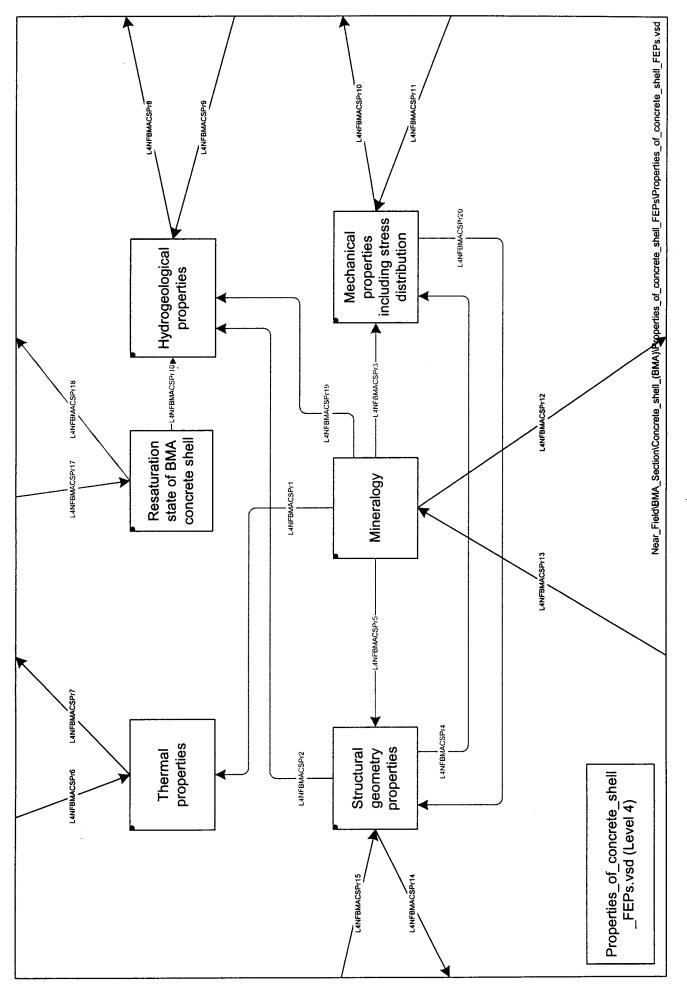


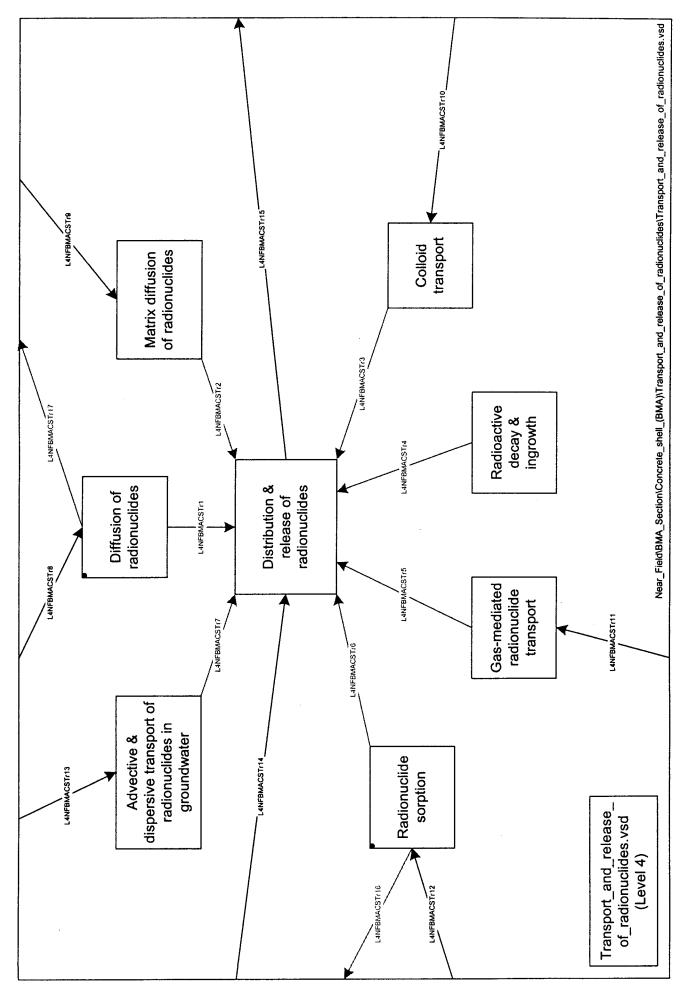
Annexe III-74

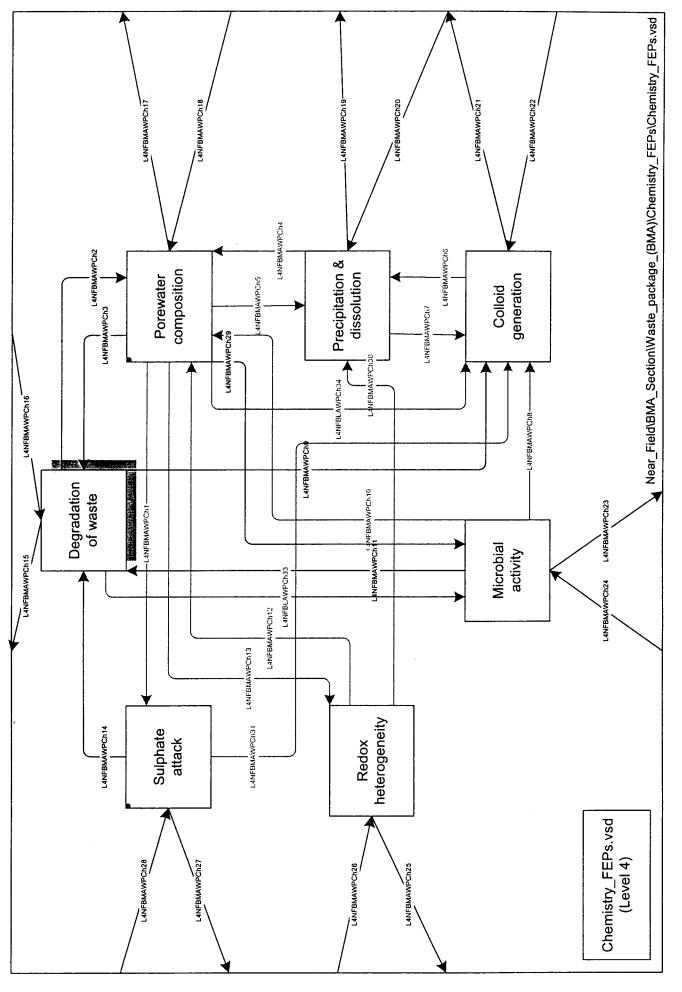



Annexe III-76

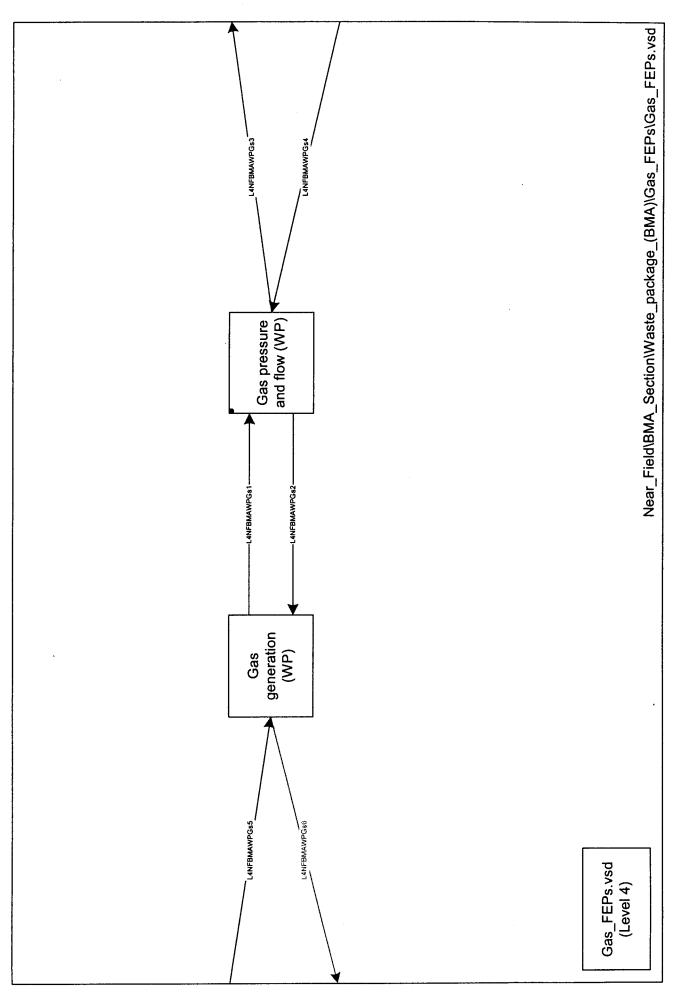

Annexe III-77


Annexe III-78

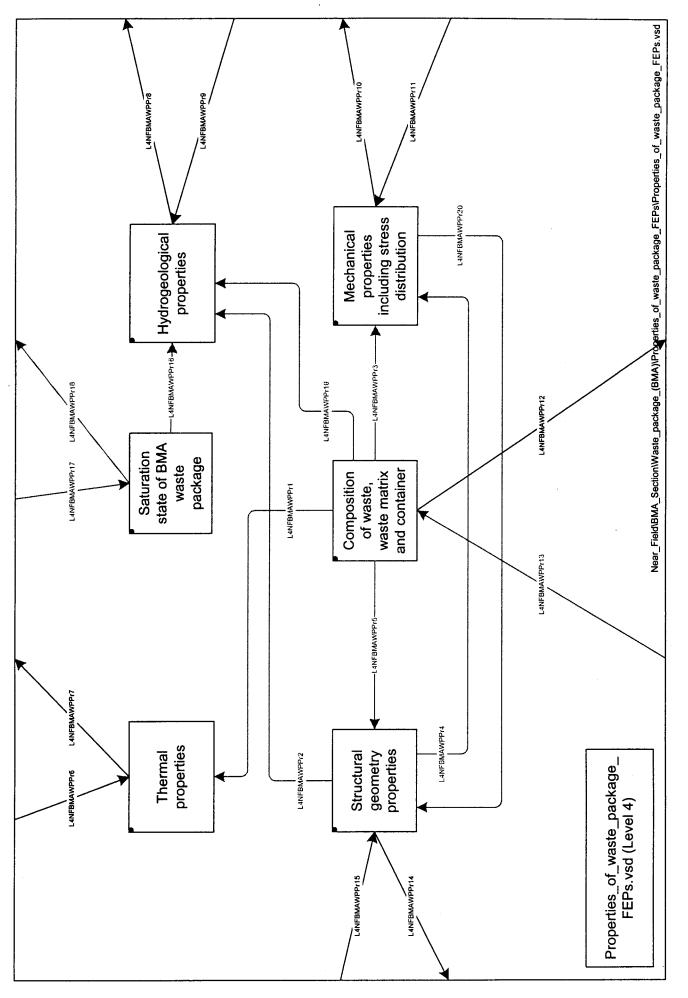

Annexe III-79


Annexe III-80

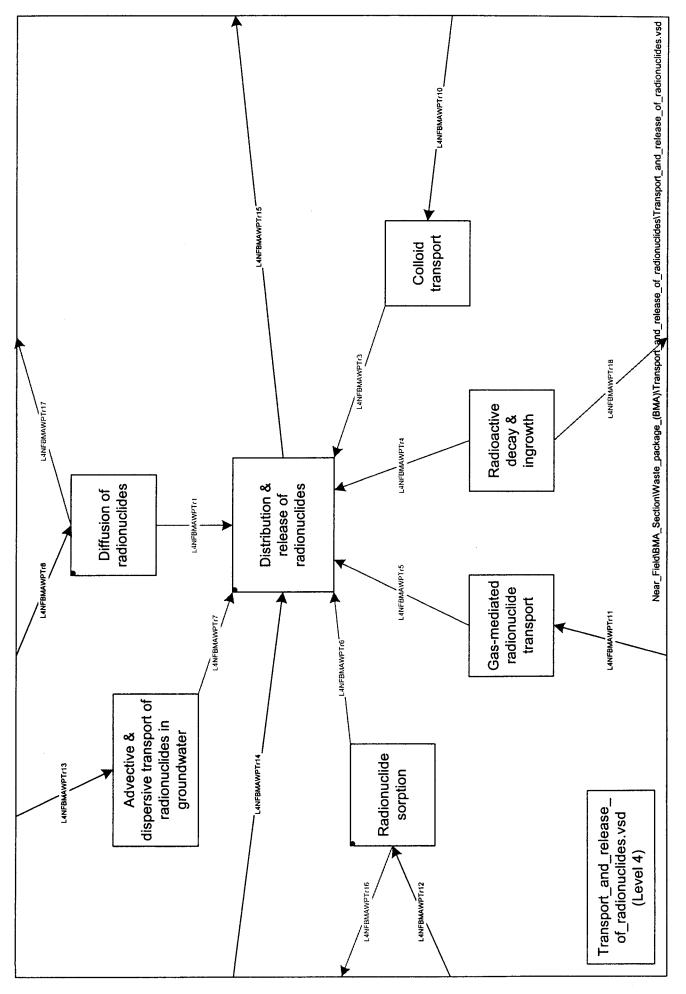
Annexe III-81

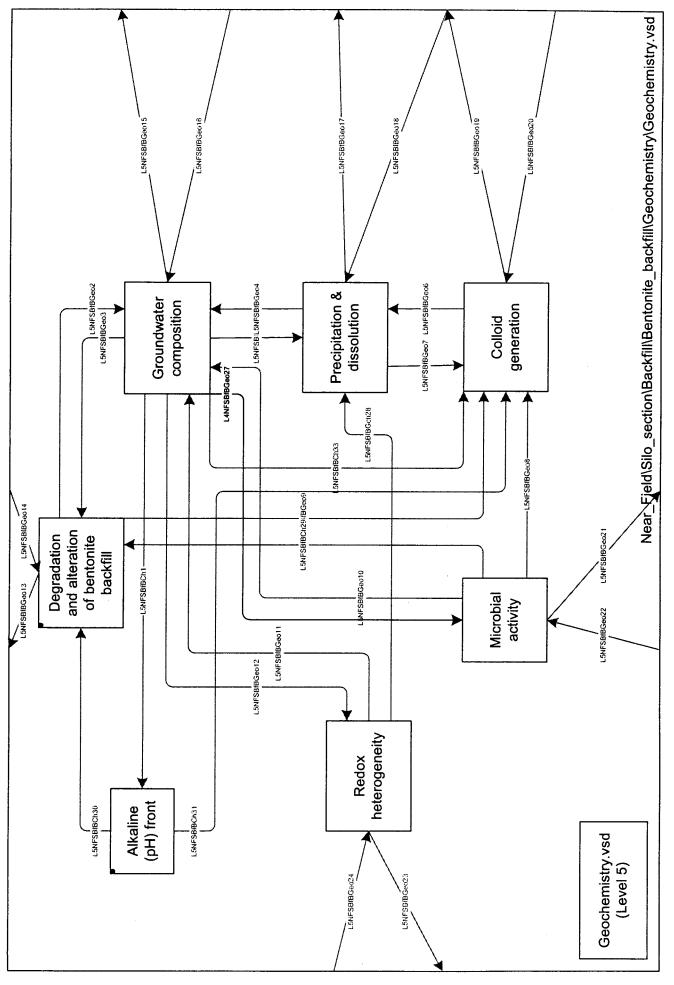


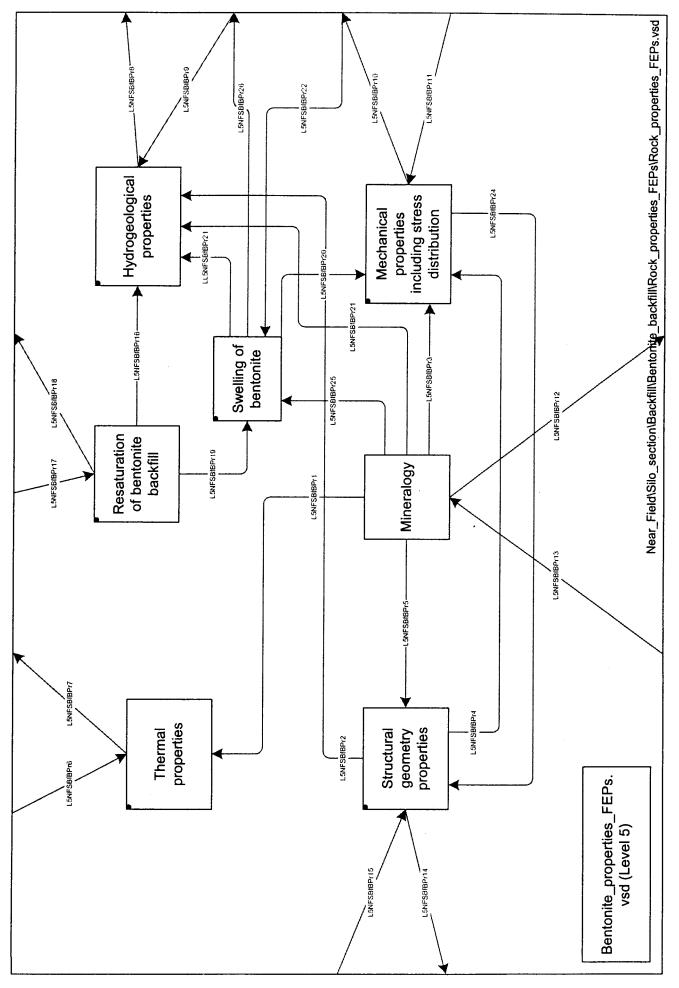
Annexe III-82

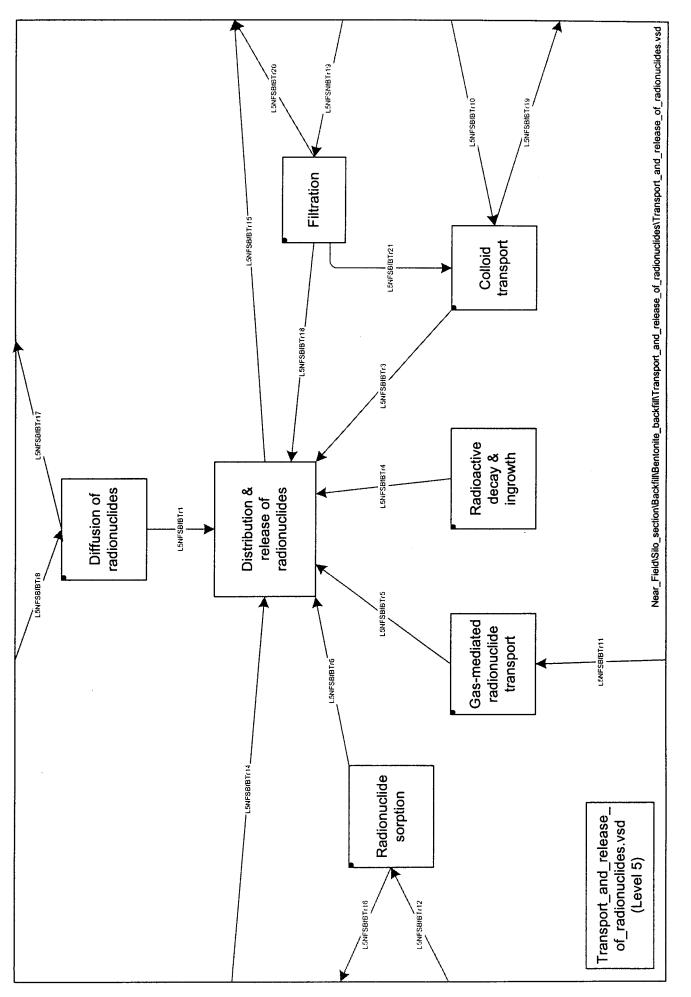


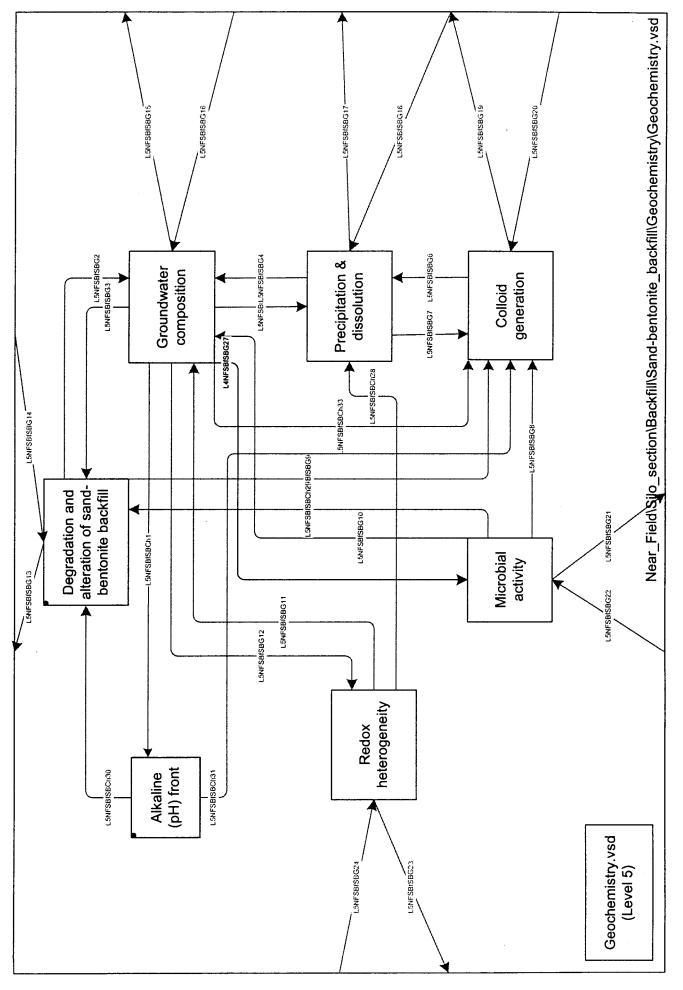
L. Ber

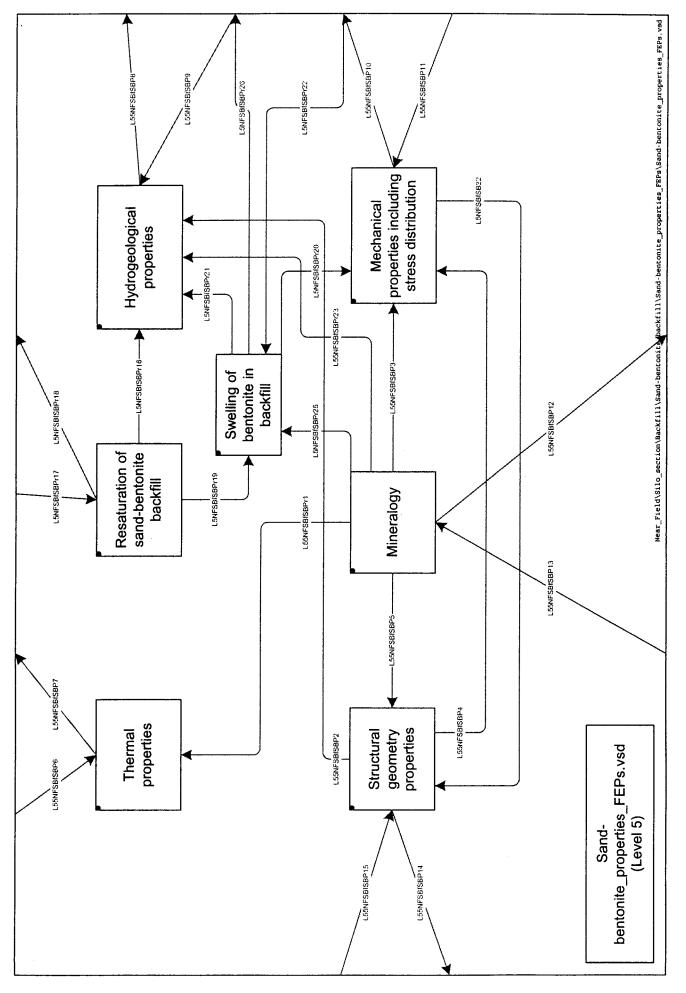

i i

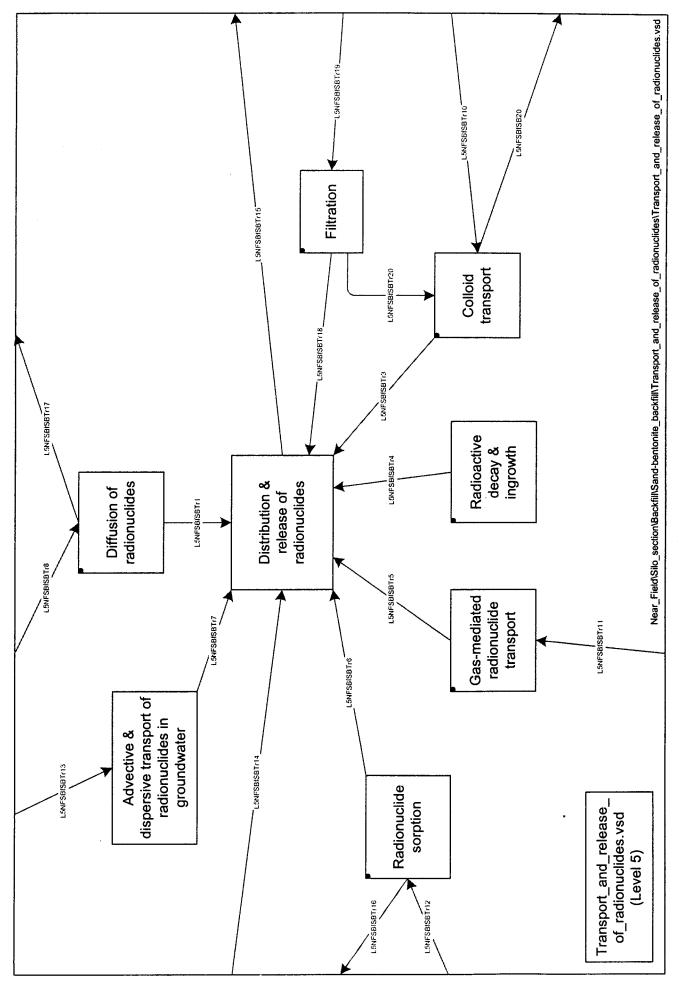

Annexe III-84

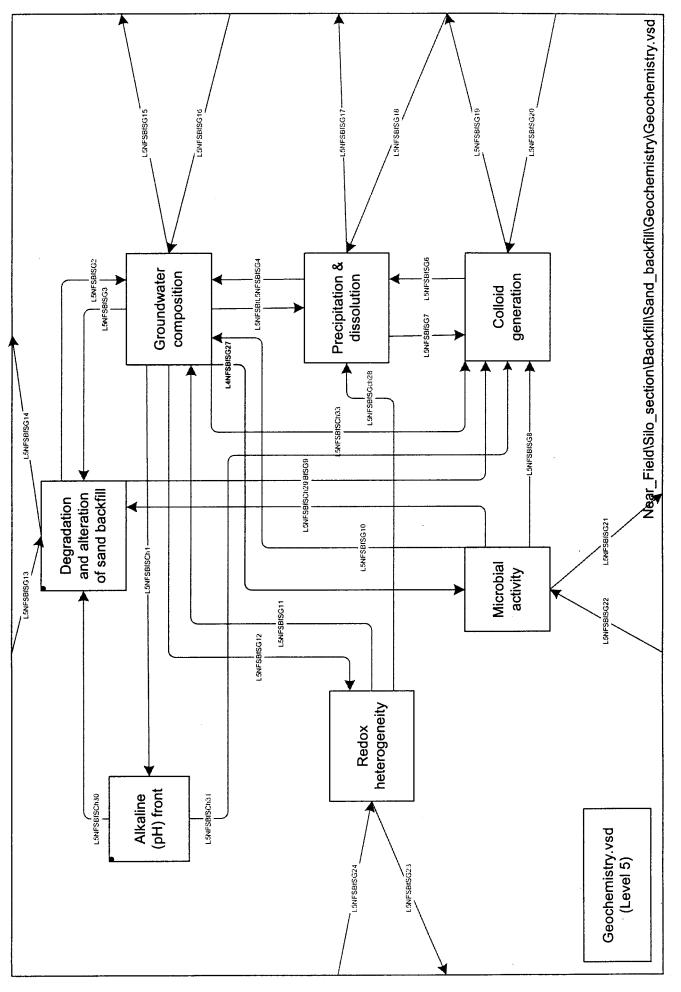

Annexe III-85

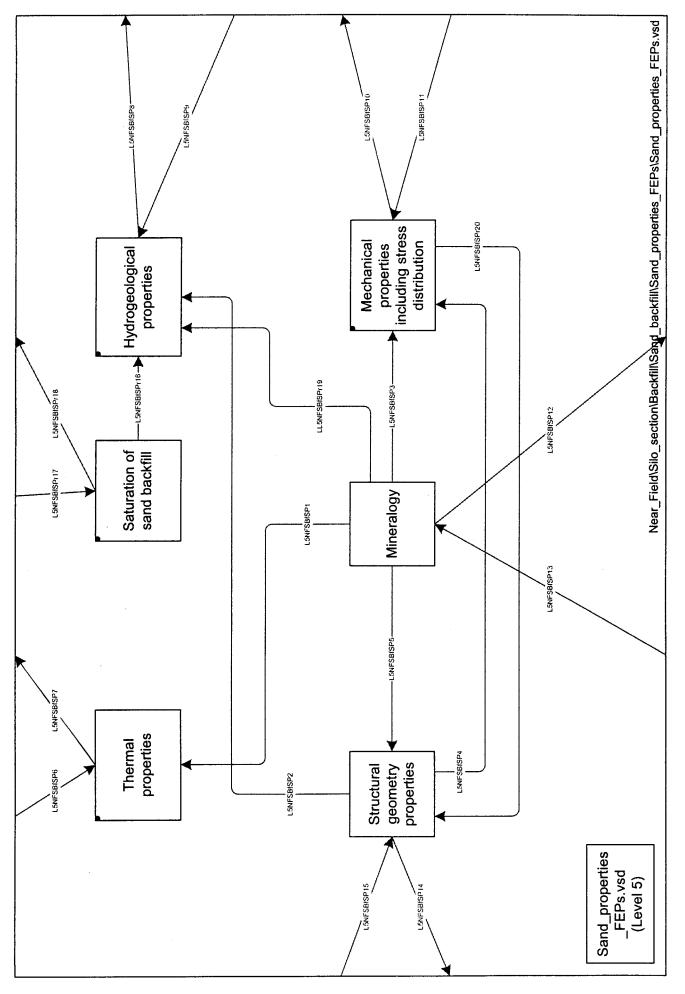

Annexe III-86

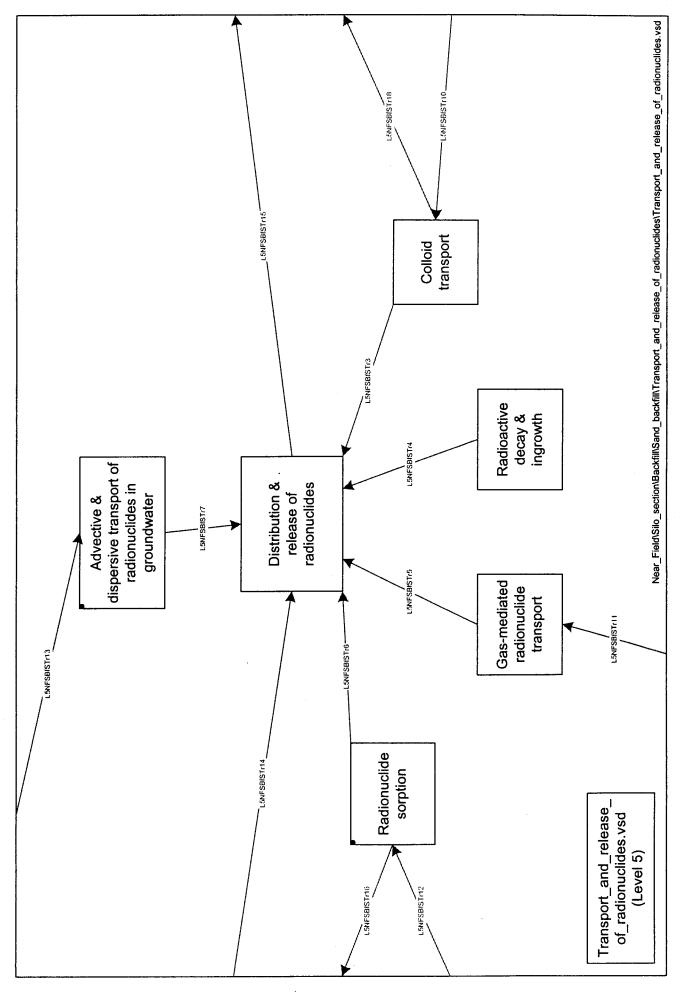

Annexe III-87

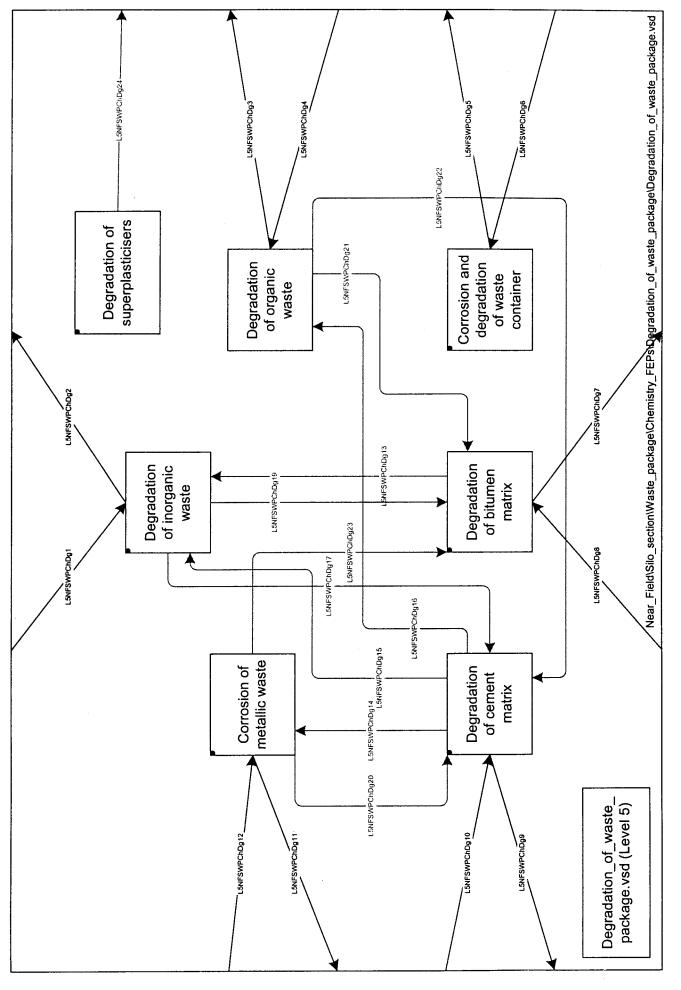

Annexe III-88



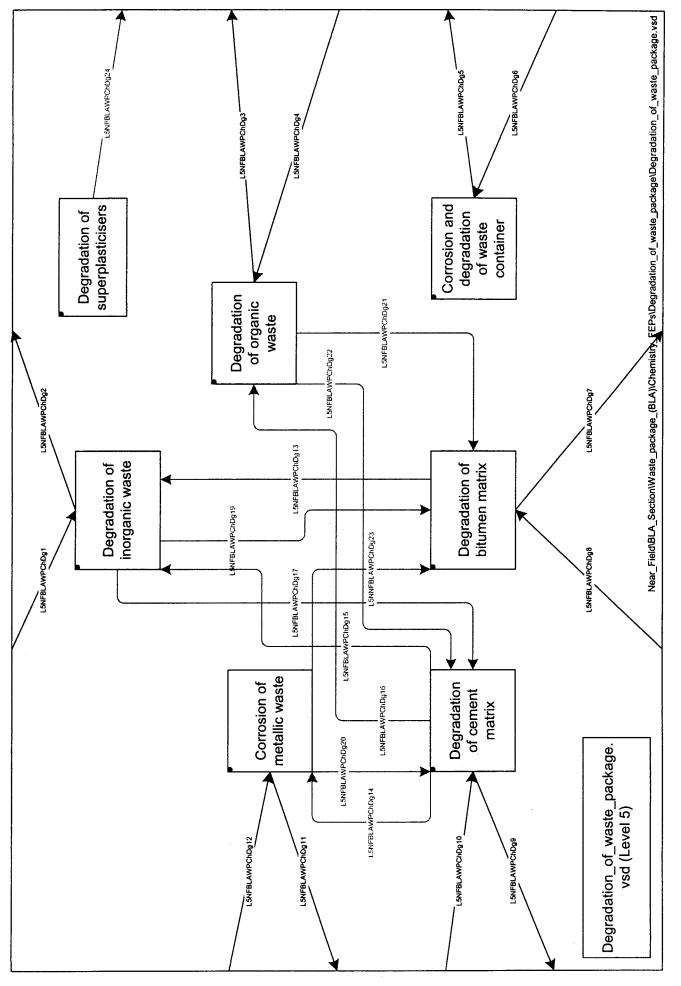

Annexe III-90


Annexe III-91

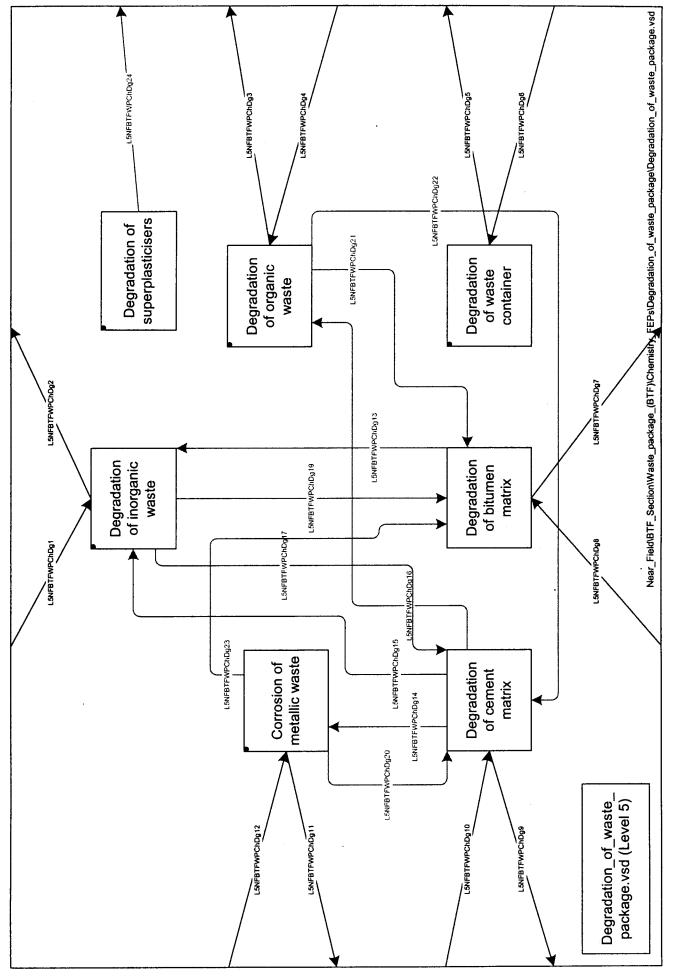

Annexe III-92


Annexe III-93

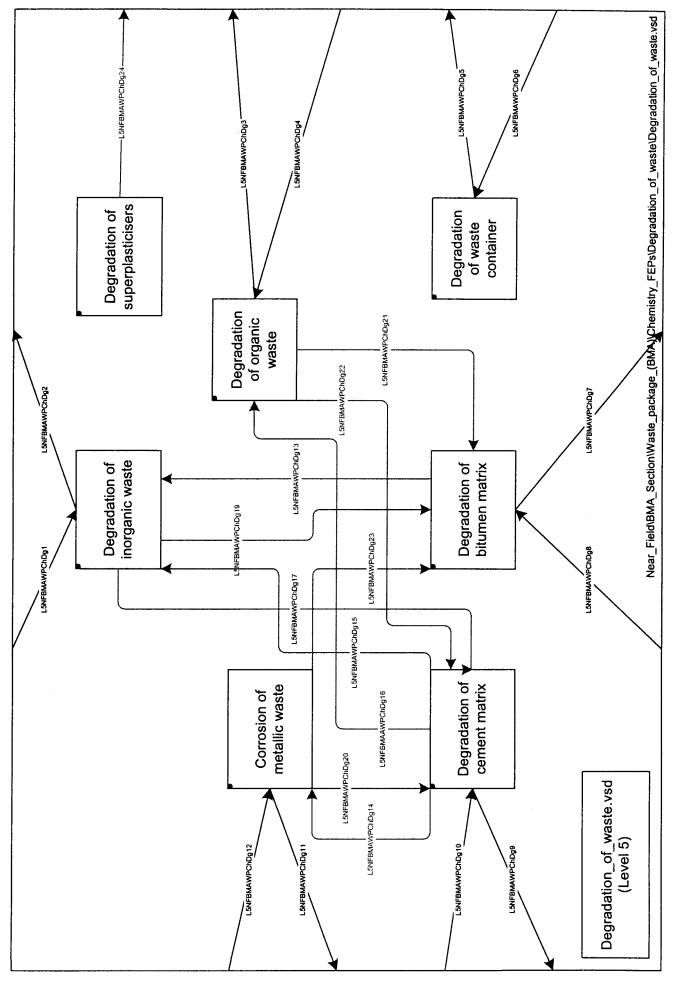
Annexe III-94



Annexe III-95



a


1 4

Annexe III-97

Annexe III-98

Annexe III-99