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SSM perspective 

Background 
In a previous study (SSM research report 2015:38) fatigue experiments 
were performed on welded austenitic stainless steel piping components. 
The fatigue experiments offer an opportunity to examine the obtained 
fatigue cracks with an optical microscope.

Objective
The present study performs a fractographical examination of the 
obtained fatigue cracks with the aim of determine where fatigue cracks 
initiate and how the fatigue cracks propagate in the welded austenitic 
stainless steel pipes.

Results
The study has increased the understanding of fatigue critical points 
in welds, as well as it has increased knowledge on where fatigue cracks 
initiated and how propagation occur in the welded austenitic stainless 
steel pipes. The main results from the study are:

• Fatigue cracks were initiated from both the inside and outside of the 
weld joint.

• Fatigue initiation from the outside of the weld joint (weld toe) 
occurred predominantly at low cycle fatigue.

• Fatigue initiation from the inside of the weld joint (weld root) 
occurred predominantly at high cycle fatigue.

• High cycle fatigue life was not affected by the presence or the quality 
of the weld cap since the fatigue cracks started from the weld root. 
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Summary  
Fatigue experiments have previously been performed on a realistic welded 
austenitic stainless steel piping components in a study aiming at investigating the 
margins of the ASME design fatigue curve for austenitic stainless steel. The test 
specimens had therefore been subjected to constant and variable amplitude loads at 
both low and high cycle fatigue. The results were reported in Evaluation of fatigue 
in austenitic stainless steel pipe components – SSM 2015:38. In the present study 
the previous investigation was complemented with a fractographical examination 
of the obtained fatigue cracks for each of the 28 thin-walled welded piping 
components using an optical microscope. 

The study improved understanding of fatigue critical points in welds, as well as it 
increased knowledge on where fatigue cracks initiated and how propagation 
occurred in welded austenitic stainless steel pipes. The regions more likely to suffer 
from fatigue initiation in the considered piping component were identified as being 
the weld toes on both the inside and outside of the weld joint. Two distinct fatigue 
failure mechanisms with separate initiation sites and distinct fatigue crack shapes 
were identified: fatigue initiation from the outside of the weld joint occurred 
predominantly at low cycle fatigue, whereas fatigue initiation from the weld root 
was the dominant fatigue failure mechanism at high cycle fatigue. 

The examination also contributed to improved understanding of the link between 
weld quality and fatigue resistance. The weld joint was fatigue tested in as-welded 
condition. Weld cap removal is expected to be beneficial to increase low cycle 
fatigue life. The presence of a weld face toe did indeed localize fatigue initiation 
from the outside. The presence or quality of the weld cap did however not affect 
high cycle fatigue life, where fatigue cracks started from the weld root. In this case, 
it is the weld root quality that affected the fatigue life. The significance for both 
initiation and propagation of fatigue cracks of weld residual stresses introduced by 
a welding operation was highlighted. The observations are highly relevant for the 
selection of effective weld joint quality improvements aiming at increasing fatigue 
resistance of the welded piping component. 
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Sammanfattning 
Utmattningsprov har utförts på svetsade austenitiska rostfria rör för att 
undersöka marginalerna i ASME:s design utmattningskurva för austenitiskt 
rostfritt stål. Provstavarna utsattes för cyklisk belastning med konstant och 
variabel amplitud, både vid låg- och högcykelutmattning. Resultaten 
redovisades i Evaluation of fatigue in austenitic stainless steel pipe 
components - SSM 2015: 38. I den aktuella studien kompletteras den förra 
undersökningen med en fraktografisk analys av utmattningssprickorna som 
uppstod under provningen av de 28 tunnväggiga svetsade rören. 

Studien ökade förståelse för kritiska punkter för utmattning i svetsar och 
bidrog till ökad kunskap om var utmattningssprickor initieras och hur de 
växer i svetsat austenitiskt rostfritt stål. Både in- och utsidan av svetsen 
visade sig vara områden för initiering av utmattningsskador. Två olika 
initieringsställen och distinkta sprickformer identifierades: sprickinitiering 
från utsidan av svetsen inträffade främst vid lågcykelutmattning, medan 
sprickinitiering från svetsroten var den dominerande skademekanismen vid 
högcykelutmattning. 

Studien har också bidragit till ökad förståelse av sambandet mellan 
svetskvalitet och utmattningshållfasthet. Svetsen utmattningsprovades utan 
slipning. Borttagning av svetsrågen förväntas vara fördelaktigt för att öka 
livslängden vid lågcykelutmattning. Förekomsten av en svetstå bidrar 
nämligen till att lokalisera utmattningsinitiering från utsidan. Förekomsten 
eller kvaliteten på svetsrågen påverkade dock inte livslängden vid 
högcykelutmattning, där utmattningssprickorna initierade från svetsroten. I 
detta fall är det svetsrotens kvalitet som påverkar utmattningslivslängden. 
Betydelsen av svetsegenspänningar, som uppstår vid en svetsoperation, för 
både initiering och propagering av utmattningssprickor diskuterades. 
Iakttagelserna i den aktuella studien är av stor betydelse för valet av 
kvalitetsförbättringar i syfte att öka utmattningshållfasthet av svetsade rör. 
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1 Nomenclature 
 

l Crack length, circumferential dimension of fatigue crack 

N Total number of cycles, experimental fatigue life 

r, φ, z  Cylindrical coordinate system introduced in Figure 2 

Ri Internal radius of specimen 

t Wall thickness of specimen 

β Exponent in Basquin equation 

ε Strain 

εa Strain amplitude 

∎in Value on the inside of the specimen 

∎init Value corresponding to initiation 

∎max Maximum value 

∎out Value on the outside of the specimen 
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Table 2 Selected fatigue results from the performed fatigue tests in [2]. 

Pipe 
ID 

Load 
type 

Severity(*) N  max εa  ||εa||β  

[cycles] [%] [%] 

1 VAP  Medium 575000 0.171 0.073 

2 VAP  Low 2500000 0.126 0.054 

3 VAP  High 217000 0.203 0.087 

4 VAP  Peak 139000 0.288 0.114 

5 VAP  Low 2520000 0.124 0.052 

6 VAP  Medium 253000 0.173 0.071 

7 VAP  High 269000 0.207 0.086 

8 VAG  Medium 941000 0.136 0.061 

9 VAG  Medium 1063624 0.140 0.065 

10 VAG  High 126350 0.185 0.083 

11 VAG  Low 3921275 0.101 0.048 

(†)13 VAG  Low 5133411 0.103 0.046 

14 VAG High 247441 0.180 0.074 

15 CA  2.2  740735 0.085 0.085 

(†)16 CA  1.7 5269515 0.065 0.065 

18 CA  1.95 1027847 0.074 0.074 

19 CA  2.6 291260 0.099 0.099 

20 VA2  - 1131716 0.069 0.061 

21 VA2 - 4880396 0.069 0.061 

(†)22 VA2 - 5024628 0.068 0.061 

23 VA2 - 913856 0.069 0.061 

24 VA2 - 321904 0.069 0.061 

25 CA  2.8 105769 0.109 0.109 

26 CA  2.8 144230 0.115 0.115 

27 CA  1.8 1367448 0.073 0.073 

28 CA  1.7 512749 0.065 0.065 

(†)29 CA  1.7 5000000 0.068 0.068 

(†)30 CA  1.7 5000000 0.067 0.067 

(*) The severity for the CA experiments corresponds to the prescribed displacement amplitude. 
(†) Run-out experiment, where the number of cycles exceeded the run-out limit of 5 million cycles. The fatigue tests 
were stopped prior to leakage. 
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3 Fractographic Study 
It is of importance to reveal fatigue fracture surfaces without damaging them 
during the separation process, therefore the test specimens were pulled apart 
statically using a servo-hydraulic testing machine, which prevented contact 
between opposing fracture surfaces. The test specimens then experienced ductile 
fracture and large local deformations. These newly created ductile fracture surfaces 
are however inclined and can therefore clearly be distinguished from the planar 
fatigue crack surfaces.  

The fracture surfaces were then cut away from the remaining piping component 
and subjected to visual fractographic examination using an optical microscope. The 
selected investigation method had a minimum detectable flaw size of about 0.1 
mm. The fatigue initiation position of the fatigue crack causing leakage was 
estimated, as well as the fatigue crack lengths on the inside and outside of the 
specimens. Only angular measurements were performed as these were unaffected 
by local deformations of the piping component introduced during the separation 
process. A cylindrical coordinate system (r, φ, z) was introduced with reference 
point the center of the pipe’s cross-section and φ = 0 indicating the circumferential 
position of the strain gage, see Figure 2. The strain gage was situated in the 
bending plane of the specimen on the side closest to the servo-hydraulic testing 
machine. The z-axis coincides with the axis of the specimen. 

 

 
Figure 2 Polar coordinate system introduced in the cross-section of the test specimen. 
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Table 3 Fractographic results for the performed fatigue tests. 

Pipe 
ID 

Load 
type Severity 

Fatigue initiation Fatigue Propagation 

Radial 
position 

φinit Axial 
position (¶)  

lin  lout 

[°] [mm] [mm] 

(§)1 VAP  Medium outside 34 weld toe 133 147 

2 VAP  Low inside 0 weld toe 8 2 

3 VAP  High outside 161 weld toe 2 17 

4 VAP  Peak outside 30 weld toe 7 11 

5 VAP  Low inside 17 HAZ 21 7 

6 VAP  Medium outside 17 weld toe 5 25 

7 VAP  High outside 8 weld toe 3 13 

8 VAG  Medium inside -15 weld face 8 3 

(§)9 VAG  Medium outside 0 weld toe 75 82 

10 VAG  High outside 12 weld toe 6 26 

11 VAG  Low inside 26 weld face 10 11 

13 VAG  Low - - - - - 

14 VAG High outside -21 weld toe 6 15 

15 CA  2.2  inside 172 weld toe 17 6 

16 CA  1.7 - - - - - 

18 CA  1.95 inside -148 weld toe 8 4 

19 CA  2.6 outside 6 weld toe 4 21 

20 VA2  - inside 8 weld toe 14 10 

(‡)21 VA2 - inside -31 weld face 8 4 

22 VA2 - - - - - - 

(‡)23 VA2 - inside 8 weld face 8 4 

24 VA2 - inside 171 weld toe 13 4 

25 CA  2.8 outside 8 weld toe 8 15 

(§)26 CA  2.8 outside 0 weld toe 45 58 

27 CA  1.8 outside -149 weld toe 2 9 

28 CA  1.7 inside 9 HAZ 12 6 

29 CA  1.7 - - - - - 

30 CA  1.7 - - - - - 

(‡) The identifying markings of these two specimens were unfortunately lost after removing the fracture surfaces 
from the test specimens. They were then re-allocated a new pipe ID, hence a mix-up cannot be ruled out. 
(§) These three specimens were subjected to continued fatigue crack growth after leakage was detected, resulting 
in large fatigue cracks covering the cross-section of the specimens.  
(¶) Weld toe designates here both weld cap toe and weld root toe; Weld face designates here both weld cap face 
and weld root face. 
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(a) Radial position of fatigue initiation and 
run-outs.  

(b) Axial position of fatigue initiation. 

 
(c) Fatigue initiation position for different load types superimposed to specimen cross-section. 

Figure 4 Position of damage initiation for the different test specimens that failed due to fatigue. 

 

From the 23 test specimens that failed due to fatigue about one half initiated from 
the inside, whereas the other half presented initiation from the outside, see Figure 4 
(a). It occurred also that a specimen presented multiple initiation sites with multiple 
propagating fatigue cracks. Despite the presence of numerous cracks, only one 
single dominant crack was responsible for causing leakage by penetrating the entire 
wall thickness of the piping component. 

The circumferential position of fatigue initiation φinit was estimated for the fatigue 
crack that caused leakage, see Table 3. The fatigue initiation positions for the failed 
specimens are illustrated graphically in Figure 4 (c). It can be observed that the 
initiation tended to occur in the vicinity of the bending plane, where the strain 
amplitudes reached maximal values. A dissymmetry can though be noted, as the 
majority of the fatigue initiations occurred near φ = 0, and only few fatigue cracks 
started near φ = ±180°. This observation is most likely related to a relative 
difference in load amplitude of about 8% between these positions for the 
considered piping component and experimental set-up. Indeed at φ = 0 the 
membrane load introduced by the applied force on the fixtures is in phase with the 
bending load, resulting in an increased load amplitude, whereas at φ = ±180° this 
particular membrane load and the bending load have opposite phase resulting in a 
lower load amplitude.  

  

Inside Outside Run-out

1
2
3
4
5
6
7
8
9

10
11
12 VAP

VAG
CA
VA2

Weld toe Weld face HAZ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 VAP

VAG
CA
VA2

VAP - inside
VAG - inside
CA - inside
VA2 - inside
VAP - outside
VAG - outside
CA - outside

φ  



SSM 2016:28
 

The fatigue
start/stop 
circumferen
stress state
increased r
explain loc

Finally the 
of fatigue 
potentially 

 at a 
outsi

 at a w
(on o

 in th

These desig
(b). The l
regarding f
indeed initi
started from
Cracks star
root toe or
cracks also

 

(a) Specime

(b) Specime

Figure 5 Illust
on the inside 

 

e initiation p
position, se
ntial fatigue 

e at the weld
residual stre
calization of 

axial positio
cracks in th
occur at thre

weld toe, inc
ide), 

weld face, in
outside), 

he heat affect

gnations are 
latter clearly
fatigue initiat
iated at a we
m the weld 
rting from th
r the weld ro
o initiated fro

en 14.  

en 8. 

tration of (a) we
and outside of t

osition occas
ee for inst
initiation po

d start/stop p
esses at the 
fatigue initia

on of the esti
he considere
ee different d

cluding both

ncluding the 

ted zone (HA

illustrated in
y illustrating
tion. All the 
eld cap toe, s
cap face or 

he inside of t
oot face. The
om the HAZ 

eld cap toe crac
the weld joint. 

start/stop p

 13 

sionally also
tance speci
osition was 

position. Fini
start/stop po

ation. 

imated initia
ed welded p
distinct posit

h weld root t

weld root fa

AZ). 

n Figure 6 an
g the weld 
fatigue crack
see illustrate
HAZ on the
the welded p
e latter is ill
on the inside

ck initiation and 

position sta

o observed to
imen 14 in
affected by t
ite element s
osition of th

ation sites wa
piping comp
tions: 

toe (on insid

ace (on inside

nd used in bo
toe as the 

ks that starte
ed in Figure 
e outside of 
pipe initiated
lustrated in F
e of the speci

(b) weld root fa

art/stop position 

o coincide wi
n Figure 5
the detrimen
simulations h
he weld [4], 

as determine
onent was o

e) and weld 

e) and the we

oth Table 3 a
more critic

ed from the o
5 (a). No fat

f the piping 
d generally f
Figure 5 (b).
imen. 

ace crack initiati

ith the weld 
5 (a). The 
ntal residual 
have shown 
 which can 

ed. Initiation 
observed to 

cap toe (on 

eld cap face 

and Figure 4 
cal position 
outside were 
tigue cracks 
component. 

from a weld 
. Still some 

ion, with views 



SSM 2016:28
 

 14 

 
Figure 6 Weld nomenclature used in current study.  

 

(a) Maximal nominal strain amplitude vs total number of cycles. 

(b) Beta-norm vs total number of cycles.  

Figure 7 Radial fatigue initiation position in relation to load and number of cycles for the failed tests. 

 

Figure 7 represents a nominal measure of the load amplitude as function of the total 
number of cycles the specimen was subjected to prior to leakage detection. Figure 
7 (a) shows the maximal nominal strain amplitude and the beta-norm defined in [2] 
is represented in Figure 7 (b). The strain measures in Figure 7 (a) and (b) are both 
based on the recorded nominal strain for each piping component using a strain gage 
situated in the bending plane, see Figure 2. These strains do obviously differ from 
the local strains the material near the welding joint experienced due to the presence 
of the weld material and stress concentrations at the junctions of the joint. Figure 4 
(a) did not directly reveal a clear relation between radial fatigue initiation position 
and load type, however Figure 7 points at the radial fatigue initiation position being 
related to the severity of the load type. It can namely be observed that initiation 
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4.2.2 Fatigue Crack Interaction 
Multiple initiation and consecutive propagation of multiple fatigue cracks has been 
observed in the investigated specimens. It was observed that fatigue cracks that 
started at nearby positions could either merge or inhibit each other’s growth. The 
former case occurred when the initiation sites were situated at similar axial 
positions, hence the planar fatigue cracks propagated in almost the same plane. 
This facilitated merging of the fatigue cracks and resulting in a larger penetrating 
crack. The latter case was observed when fatigue cracks initiated at close by 
circumferential position but at different axial positions. As a result the fatigue 
cracks grew on different planes and did not merge. Indeed, ligaments with ductile 
fracture, created when the specimens were pulled apart, separated the different 
fatigue cracks. The growth of adjacent fatigue cracks limited the circumferential 
growth of the penetrating crack. 
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5 Discussion 
The studied test specimens are thin-walled welded piping components. The small 
wall thickness of the specimens gave a relative difference in nominal axial strain 
amplitude of about 11% between the inside and the outside. The weld joint toes, 
present both on the inside and outside represent strain concentrations, which may 
however be quite different depending on the quality of the performed weld. 
Depending on the magnitude of these strain concentrations, either the inside or 
outside of the specimens may therefore experience the larger strain amplitude, 
which may consequently induce initiation of a fatigue crack. Fatigue cracks starting 
from the inside of the specimen are thus not to be excluded for thin-walled welded 
piping components, which was illustrated by the fractographic observations in the 
current study. Increased wall thickness will contribute to increasing the nominal 
axial strain amplitude difference between the inside and outside. As a result for 
thick-walled welded piping components, fatigue initiation from the outside can be 
expected to occur predominantly. 

It was previously in [2] assumed that all the fatigue cracks had initiated from the 
outside, where the maximum nominal strain was maximal, and hence avoiding 
environmental effects as water contact only occurred in the final stage of the 
damage process, when the pipe wall was penetrated. With the current study, this 
assumption was found valid only for the test specimens that had been subjected to 
less than 3×105 total number of cycles, i.e. a LCF load. Meanwhile, it was observed 
that for HCF loads, the fatigue cracks generally started from the inside, thus with 
(pressurized) water contact during the entire damage process. The presence of 
water in the crack may have influenced the damage process somewhat, given for 
instance the different observed coloring of the fracture surfaces, but the potential 
environmental effects on the fatigue life test results can still be assumed negligible. 
Indeed, several necessary conditions for environmental fatigue were not fulfilled 
[5]. In particular the fatigue tests were performed at room temperature, which is far 
below the threshold temperature introduced in [5], below which environmental 
effects are considered to be insignificant. 

Although both radial initiation positions, i.e. inside and outside, may practically 
experience comparable strain amplitudes for the considered test specimens, the 
residual stresses at these locations will differ. Residual stresses are introduced by 
the welding process and for thin-walled pipes a circumferential butt weld induces 
an approximately linear axial residual stress through the thickness of the weld joint. 
Near the capping the residual stresses are expected to be compressive, whereas 
tensile residual stresses are introduced at the weld root [6, 7]. The latter case is 
clearly more detrimental to fatigue initiation and propagation, as the mean stress 
near the weld root will be larger than the one at the weld cap. Increased tensile 
residual stresses are introduced at the weld start/stop position [4], which will also 
alter the mean stress. As a result the mean stress is expected to differ considerably 
between the inside and outside of the test specimen, which will consequently 
contribute to localize fatigue initiation and affect the fatigue crack growth rates at 
the respective positions. Once a fatigue crack has been initiated on the inside of the 
specimen the internal pressure will further increase the mean load by means of a 
constant crack face pressure. 

As illustrated in Figure 7 (a), different fatigue damage processes were identified to 
act at LCF and HCF. Caution is therefore recommended when extrapolating results 
for instance obtained for LCF to the HCF domain or vice versa. Similarly the effect 
of solutions to improve fatigue life of the piping component will differ 
considerably depending on the prevailing damage process. Removal of the weld 
cap by grinding or any other finishing operation is often proposed to be beneficial 
to the fatigue resistance of a piping component. This is indeed the case as long as 
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fatigue initiation from the outside is the prevailing mechanism. However, at HCF it 
is expected to have no effect and may even be detrimental to the fatigue strength of 
the studied piping component. Weld cap removal removes the weld cap toes which 
represented geometric strain concentrations on the outside of the joint. It is thus in 
this way clearly detrimental to fatigue crack initiation from the outside, but does 
not affect the weld toes at the root. The cap removal induces also a redistribution of 
the weld residual stresses, which may lead to increased tensile mean stress at the 
root, contributing this way to possible root fatigue initiation. The extent of the 
success of an external treatment of the weld joint will thus be limited by the fatigue 
life related to fatigue cracks starting from the inside. 

6  Conclusions 
A fractographic examination using microscope was performed for each of the 28 
considered thin-walled welded piping components that had been subjected to 
different fatigue load types, both constant and variable amplitude. The obtained 
findings and results of the performed study are as follows: 

 The weld toes near the bending plane on both the inside and outside of the 
weld joint were the most critical regions for fatigue initiation. 

 Increased weld residual stresses at the weld start/stop position can contribute 
to initiation and growth of a fatigue crack. 

 The radial fatigue initiation position, i.e. on the inside or outside of the 
piping component, was not directly related to the load type, but to its 
severity.  

 The maximum strain amplitude was found more suitable to explain fatigue 
initiation features, such as multiple initiation sites. 

 Initiation of multiple, adjacent fatigue cracks, was observed for specimens 
subjected to large strain amplitudes (high or peak loads).  

 Wall penetration tended to be caused by a single dominant fatigue crack, 
with or without merging with quasi-coplanar adjacent cracks.  

 Two distinct fatigue failure mechanisms with separate initiation sites were 
identified for the considered thin-walled welded piping component.  

 Fatigue initiation from the outside of the weld joint occurred predominantly 
at LCF, giving fairly flattened semi-elliptical fatigue crack shapes. 

 Fatigue initiation from the inside of the weld joint or weld root was the 
dominant fatigue failure mechanism at HCF, inducing often close to semi-
circular fatigue crack shapes. 

 The weld cap removal is expected to improve fatigue life for LCF 
applications, but not for HCF applications with weld root initiation.  

 The effectiveness of outer surface finishing operations of the weld joint to 
increase fatigue resistance, will for LCF applications eventually be limited 
by fatigue initiation from the weld root. For HCF applications weld cap 
removal may even affect fatigue resistance negatively due to residual stress 
redistribution. 

 Even with water contact during major parts of the damage process, 
environmental effects on the recorded experimental fatigue life are still 
assumed to be insignificant given the considered test conditions. 
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7 Recommendations 
The performed investigation can be continued or complemented with one or more 
of the following actions: 

 The combination of small wall thickness and the presence of a weld joint in 
as-welded condition, allowed competition between fatigue initiation from the 
inside and outside. The distinct observation of different initiation sites for 
LCF and HCF could not be explained. The transition between the fatigue 
failure mechanisms is presumed specific to the investigated piping 
component, and may be related to non-linear material behavior and/or the 
residual stress field. Fatigue tests of welded piping components with 
different wall thickness may quantify the expected shift of the transition 
between the identified fatigue mechanisms. Such an experimental study will 
contribute to finding an explanation and allow generalization of the current 
observations to other welded piping components. 

 The current investigation considered a welding joint in as-welded condition. 
Fatigue experiments on welded piping components with removed weld cap 
may contribute to quantify the effect of an outer surface finishing operation 
on the fatigue resistance of a piping component.  

 Fatigue experiments on welded piping components with weld start/stop 
positions at different circumferential positions allow to determine the extent 
of the expected detrimental effect on fatigue life of the weld residual stress at 
the weld start/stop position. 
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