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Background 

Many concepts for the geological storage of radioactive waste incorporate cement based 
materials, which act to provide a chemical barrier, impede groundwater flow or provide 
structural integrity of the underground structures. Thus, it is important to understand the 
long-term behaviour of these materials when modelling scenarios for the potential 
release and migration of radionuclides. In the presence of invasive groundwater, the 
chemical and physical properties of cement, such as its pH buffering capacity, resistance 
to flow, and its mechanical properties, are expected to evolve with time. 

Purpose

The purpose of this study is to address the uncertainty regarding the choice of model for 
the CSH (calcium-silicate-hydrate) gel dissolution. One small scale and one large scale 
model from work performed during 2005 is taken as base case and the cement model is 
replaced with two other cement models recently developed by other researchers. The 
results are compared to the last years modelling to give an estimate of the model 
uncertainties. 

Results 

Two alternative CSH solid solution aqueous solution (SSAS) models are compared with 
the one that was used in the earlier work, with an emphasis on a direct comparison of 
the model predictions.

The results suggest that the three models are generally in agreement regarding the 
degradation of CSH gel and the overall cement and therefore that the modelling results 
of the previous report would be largely unaffected if an alternative cement model were 
used. One of the alternate CSH SSAS models considered is notably different from the 
others in its underlying assumptions (Sugiyama and Fujita). It assumes different end-
member solids, which may make it applicable to the modelling of low pH cements, 
which are being considered in the context of HLW repositories in order to avoid some 
of the possible deleterious interactions between high pH cement waters and other EBS 
materials. 

Continued activity in the research area 

Further studies are needed to evaluate which model(s) are applicable to use for 
modelling the degradation of low pH cements. 



Effect on SKI supervisory and regulatory task  

An understanding of the behaviour and influence of cement in repositories is necessary 
for upcoming SKI reviews of SKB reporting for repositories for low- and intermediate 
level waste (SFR) and spent nuclear fuel. This study will a constitute a basis for further 
dialogue with SKB on the use of cement in repositories and on the required knowledge 
base for new materials. 

Project information 

Responsible at SKI has been Christina Lilja 

SKI reference: SKI 2006/366 
Project number: 200609032 

Earlier reports in this project: Benbow, S., Watson, C., and Savage, D., Investigating 
conceptual models for physical property couplings in solid solution models of cement, 
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Summary 

Many concepts for the geological storage of radioactive waste incorporate cement based 

materials, which act to provide a chemical barrier, impede groundwater flow or provide 

structural integrity of the underground structures.  Thus, it is important to understand 

the long-term behaviour of these materials when modelling scenarios for the potential 

release and migration of radionuclides.  In the presence of invasive groundwater, the 

chemical and physical properties of cement, such as its pH buffering capacity, resistance 

to flow, and its mechanical properties, are expected to evolve with time. 

Modelling the degradation of cement is complicated by the fact that the long term pH 

buffer is controlled by the incongruent dissolution behaviour of calcium-silicate-hydrate 

(C-S-H) gel.  It has been previously shown (SKI Report 2005:64) that it is possible to 

simulate the long term evolution of both the physical and chemical properties of cement 

based materials in an invasive groundwater using a fully coupled geochemical transport 

model.  The description of the incongruent dissolution of C-S-H gel was based on a 

binary solid solution aqueous solution (SSAS) between end-member components 

portlandite (Ca(OH)2) and a C-S-H gel composition expressed by its component oxides 

(CaH2SiO4).  The models considered a range of uncertainties including different 

groundwater compositions, parameterised couplings between the evolution of porosity 

with permeability and diffusivity and alternative secondary mineral assemblages.  The 

results of the modelling suggested that alternative evolutions were possible under these 

different conditions. 

The focus of this report is to address the uncertainty regarding the choice of model for 

the C-S-H gel dissolution.  We compare two alternative C-S-H SSAS models with the 

one that was used in the previous report, with an emphasis on a direct comparison of the 

model predictions.  Thus we have chosen one simple simulated experimental model 

based on those in the previous report, but with some of the process coupling removed so 

that the differences between the C-S-H models can be more directly compared. 

The results suggest that the three models are generally in agreement regarding the 

degradation of C-S-H gel and the overall cement and therefore that the modelling results 

of the previous report would be largely unaffected if an alternative cement model were 

used.  One of the alternate C-S-H SSAS models considered is notably different from the 
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others in its underlying assumptions (Sugiyama and Fujita).  It assumes different end-

member solids, which may make it applicable to the modelling of low pH cements, 

which are being considered in the context of HLW repositories in order to avoid some 

of the possible deleterious interactions between high pH cement waters and other EBS 

materials. 
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1. Introduction 

Many concepts for the geological storage of radioactive waste incorporate cement based 

materials, which act to provide a chemical barrier,  impede groundwater flow or provide 

structural integrity of the underground structures.  Thus, it is important to understand 

the long-term behaviour of these materials when modelling scenarios for the potential 

release and migration of radionuclides.  In the presence of invasive groundwater, the 

chemical and physical properties of cement, such as its pH buffering capacity, resistance 

to flow, and its mechanical properties, are expected to evolve with time. 

Modelling the degradation of cement is complicated by the fact that the long term pH 

buffer is controlled by the incongruent dissolution behaviour of calcium-silicate-hydrate 

(C-S-H) gel.  It has been previously shown (Benbow et al., 2005)) that it is possible to 

simulate the long term evolution of both the physical and chemical properties of cement 

based materials in an invasive groundwater using a fully coupled geochemical transport 

model.  The description of the incongruent dissolution of C-S-H gel was based on a 

binary solid solution aqueous solution (SSAS) between end-member components 

portlandite (Ca(OH)2) and a C-S-H gel composition expressed by its component oxides 

(CaH2SiO4).  The models considered a range of uncertainties including different 

groundwater compositions, parameterised couplings between the evolution of porosity 

with permeability and diffusivity and alternative secondary mineral assemblages.  The 

results of the modelling suggested that alternative evolutions were possible under these 

different conditions. 

The focus of this report is to address the uncertainty regarding the choice of model for 

the C-S-H gel dissolution.  We compare two alternative C-S-H SSAS models with the 

one that was used in the previous report, with an emphasis on a direct comparison of the 

model predictions.  Thus we have chosen one simple simulated experimental model 

based on those in the previous report, but with some of the process coupling removed so 

that the differences between the C-S-H models can be more directly compared. 

The report is structured as follows.  In section 2 we describe the thermodynamic theory 

that forms the basis for the three cement models.  We show that the three models have a 

common background and describe the way in which each model differs from the others.  

In section 3 we give details of the numerical model that is used in the comparison and in 
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section 4 we give the results.  The key results and conclusions are summarised in 

Section 5. 
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2. Thermodynamics background 

2.1. General thermodynamics 

Thermodynamics is the study of energy and its transformations, which, from a 

geochemical viewpoint, can be applied to the equilibrium states of minerals.  Generally, 

we are interested in whether a particular mineral is either dissolving or precipitating, 

which for a mineral reaction may be simply defined as 

mineral.dissolvedmineralsolid ⇔ (2.1)

Using the mineral calcite (CaCO3) as an example, the dissolution reaction can be written 

CaCO3( s) = Ca(aq)
2+ + CO3(aq)

2− .

Whether the mineral should be in the solid state or dissolved state can be determined by 

considering the change in Gibbs free energy of the reaction, Δ rG .  For any given 

reaction, there are three conditions of interest (i) when Δ rG  < 0 the dissolution reaction 

will be spontaneous, (ii) when Δ rG  = 0 the reaction is in equilibrium and at a Gibbs 

free energy minimum and (iii) Δ rG  > 0 the precipitation reaction will be spontaneous.  

While it is difficult to measure absolute values of Δ rG , it is standard practise to 

calculate the Gibbs free energy of formation for a substance in standard state, 0GfΔ ,

from the difference between the Gibbs free energy of the substance and the Gibbs free 

energy of its constituents.  The standard state refers to a pure mineral at some 

temperature and pressure of interest, typically 25 °C and 1.01325 bar.  Again, using 

calcite as an example, Δ f GCaCO3( s )

0 can be calculated from 

.5.1 00000

)(2)(3)(3 gss OCCaCaCOCaCOf GGGGG −−−=Δ

Values of 0GfΔ  are tabulated in thermodynamic databases for most common minerals, 

solids, liquids, gases, and solutes.  

Minerals dissolve and precipitate to minimise the magnitude of the Gibbs free energy of 

the system and bring it to equilibrium.  Thus, if we write the reaction as 
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= ,0ii Sα (2.2)

where iα  is the stoichiometry of species iS  in the reaction (note that there is no 

distinction between the species iS  being a mineral, solid, liquid, gas or solute), then the 

minimal Gibbs free energy of the reaction in the standard state is written as 

.00 Δ=Δ
iSfir GG α (2.3)

The values 0

iSf GΔ  are the differences between the Gibbs free energy of formation of the 

substances iS  in standard state and the sum of the Gibbs energies of formation of its 

constituent parts in standard state.  Again, considering calcite as an example, ΔrGCaCO3( s )

0

can be calculated according to 

.0000
2
3

2
)(3)(3

−+ Δ−Δ−Δ=Δ
COfCafCaCOfCaCOr GGGG

ss

Since values of 0
iSf GΔ  are tabulated in thermodynamic databases for most common  

minerals, solids, liquids, gases, and solute species, ΔrG
0 can be determined for most 

reactions of interest. 

The activity of a substance, ia  is defined in terms of the difference between the Gibbs 

free energy of the substance and the Gibbs free energy of the substance in standard 

state, 

.ln0
iii aRTGG =− (2.4)

This equation is often seen in the form iii aRT ln0 =− μμ , where iμ  is the chemical 

potential of species i .  The chemical potential is essentially the Gibbs energy per mol, 

so working with iμ  can avoid problems relating to the fact that iG  varies with the 

concentration of species i  if species i  is a solute. 

If we assume that the constituent parts of the reaction are indivisible (so that 

iif GG =Δ ), then 
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(2.5)

Writing Q  to be the ion activity product ( ∏=
i

i
iaQ α ), and defining the value of Q  at 

equilibrium (when 0=Δ Gr ) to be eqK , we have 

eqr KRTG ln0 =Δ− , (2.6)

where Keq  is defined as the equilibrium constant of the reaction.  The values of Keq  (or 

equivalently 0GrΔ ) are tabulated in thermodynamic databases for most reactions of 

interest. 

Therefore 

,ln
eq

r K

Q
RTG =Δ (2.7)

and at equilibrium the activity of the aqueous species in solution, defined by the ion 

activity product Q , should equal the activity of the aqueous species in solution defined 

by the equilibrium solubility product, Keq , i.e. at equilibrium we have eqKQ = .

Again using calcite as the example, at equilibrium 

( )
( ) 1

2
3

2

2
3

2

==
⋅

⋅

−+

−+

eq
mequilibriuCOCa

waterCOCa

K

Q

aa

aa

Because Q  may vary by orders of magnitude, it is more convenient to take the log of 

the ratio 
eqK

Q
, which is termed the saturation index, SI ,
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.log
K

Q
SI = (2.8)

SI  is a form of a free energy of which there are three conditions of interest, which can 

be related to the direction of the reaction.  When (i) SI < 0 the solution is said to be 

undersaturated and the mineral of interest will dissolve (ii) when SI = 0 the solution is 

said to be in equilibrium with the mineral of interest and (iii) when SI > 0 the solution is 

said to be oversaturated and the mineral of interest will precipitate. 

2.2. Thermodynamics of solid solutions 

Notice that in the previous analysis there was no distinction between the case when the 

species iS  was a solid, liquid, gas or solute.  In the case of a single pure mineral, the 

activity is usually taken to be 1, so that Q  is purely a function of the activity of the 

solute species (for a suitable choice of porewater basis species). 

Now, if we consider a solid solution mineral composed of two or more end-members, 

denoted jS , then the chemical potential of each end-member can be written as 

,ln0
jjj aRT+= μμ (2.9)

where ja  is the activity of end-member j .  The activity of the end-member in a solid 

solution is given by 

,jjj Xa γ= (2.10)

where jX  is the mol fraction of end-member j  in the solid solution and jγ  is the solid 

phase activity coefficient. 

For the solid solution reaction, we can then write in terms of Gibbs free energies 

( ),00
jfjf

j
jrr GGXGG Δ−Δ=Δ−Δ (2.11)

and (2.4) implies that 
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.ln0
j

j
jrr aRTXGG =Δ−Δ (2.12)

Now, since 0GrΔ  can be expressed as ( )− ∏
j

X
j

jKRT 0ln , using (2.10) we have that 

.lnlnln 0
j

j
jj

j
j

j
jjr XRTXXRTKXRTG γ++−=Δ (2.13)

We now restrict attention to the case when there are two end-members; a binary solid 

solution.  In both the Börjesson et al. (1997) and Walker (2003) models (sections 2.3 

and 2.4), the two end-members are taken to be portlandite (Ca(OH)2) and a C-S-H gel 

(CaH2SiO4).  CaH2SiO4 is an empirical formula representing the simplest stoichiometry 

of a C-S-H gel expressed by its component oxides.  In the Sugiyama and Fujita (2005) 

model (section 2.6) the end-members are taken to be Ca(OH)2 and SiO2(s).

Both Börjesson et al. (1997) and Walker (2003) base their approach to modelling solid 

solutions by providing a method of determining the solid phase activity coefficients in 

this equation, however the approach taken in determining the coefficients is different.  

Sugiyama and Fujita (2005) base their approach on the “conditional equilibrium 

constant”, but it can be related back to determining the solid phase activity coefficients. 

The final term in (2.13) is referred to as the excess Gibbs free energy of mixing, 

.lnexcess j
j

jr XRTG γ=Δ (2.14)

If each end-member were treated as an ideal mineral, then its activity coefficient would 

be 1 and the final term would disappear.  Hence the previous equation can be expressed 

as

.excessidealideal-non GGG rrr Δ+Δ=Δ (2.15)

Several empirical expressions exist to model the excess energy of the solid solution as a 

function of the solid solution composition.  Most of these are of Margules type, which 

express the excess energy as a power series of mol fractions (e.g. Glynn, 1991).  One 
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such fitting function is the polynomial suggested by Guggenheim (1937, 1952), referred 

to as the Guggenheim mixing model, 

( )
=

−=Δ
n

k

k
kr XXAXXG

0
2121excess . (2.16)

Here, the kA  are coefficients that are independent of the solid solution composition but 

can depend on temperature and pressure. 

Both the Börjesson et al. and Walker models use the Guggenheim mixing model as the 

basis for the determination of the solid phase activity coefficients of each end-member.  

What distinguishes each model is the way in which the Guggenheim mixing model is 

parameterised.  This is described in the following two sections. 

2.3. The model of Börjesson et al. (1997) 

In Börjesson et al. (1997), the two end-members are taken to be portlandite (Ca(OH)2)

and a C-S-H gel (CaH2SiO4) with end-member reactions 

( )
O.2HSiOCa2HSiOCaH

O,2HCa2HOHCa

22(aq)
2

4(s)2

2
2

2(s)

++=+

+=+
++

++

The Guggenheim polynomial (2.16) is truncated after two terms to obtain the sub-

regular Guggenheim expression 

( )[ ].211021excess XXAAXXGr −+=Δ (2.17)

Next, the following expression (due to Prausnitz, 1969) is used to express the solid 

phase activity coefficient of an end-member as a function of excessG ,

( ).ln excessGn
n

RT rT
j

j Δ
∂
∂=γ (2.18)
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Here jn  is the number of moles of end-member j , and Tn  is the total number of moles 

of the solid solution.  This expression is then evaluated for the first end-member (taken 

to be Ca(OH)2),

( )[ ],3... 2110
2
2

21

21
10

21

21

1

XXAAX
nn

nn
AA

nn

nn

n
−+==

+
−

+
+∂

∂
(2.19)

to obtain 

( )[ ]2110
2
21 3ln XXAAXRT −+=γ . (2.20)

The saturation index of the end-members is defined as 

,log
0
j

j
j K

Q
SI = (2.21)

and so 

.10
0

jSI

j

j
jjj K

Q
aX ===γ (2.22)

Börjesson et al. (1997) use data from the literature (Kalousek, 1952) to evaluate 

2Ca(OH)SI at various Ca/Si ratios of the solid phase(s).  This is then used to fit 0A  and 1A

to complete the formula for 1γ , the activity coefficient of Ca(OH)2 .  The fitted values of 

0A  and 1A  were found to be 

-1
0 molkJ26.3=A  and -1

1 molkJ44.13=A .

The same 0A  and 1A  values are then used to define 2γ , the activity coefficient of 

CaH2SiO4, using  

( )[ ],3...ln 2110
2

12 XXAAXRT −+==γ (2.23)
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The Ca(OH)2 data is therefore essentially used to fit both end-members, although this is 

not unreasonable given the much more soluble Ca(OH)2 end-member has such a strong 

influence on the solubility of the system. 

This allows Börjesson et al. to calculate solid phase activity coefficients for each end-

member as a function of the mol fractions of the end-members in the solid solution.  

Then it is possible to calculate jj KQ /  to determine the direction of each end-member 

reaction individually. 

As presented above, the model over-predicts the activity of Ca(OH)2 for calcium-rich  

C-S-H gels.  Following Glasser et al. (1987), Börjesson et al. postulate the existence of 

a miscibility gap for Ca(OH)2 mole fractions greater than 0.3 (corresponding to a Ca/Si 

ratio 1.43), when the C-S-H gel may in fact exist as two solid solutions with one being 

close to pure Ca(OH)2.  Since the Ca(OH)2 end-member then co-exists almost as a pure 

mineral, the activity of Ca(OH)2 is capped at unity for Ca/Si ratios greater than 1.43.  

This is shown in Figure 2.1. 
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Figure 2.1 Börjesson’s model for Portlandite activity 
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Notes on the Börjesson et al. (1997) model 

Since the composition of the C-S-H gel end-member CaH2SiO4 has Ca/Si = 1, the 

model is only relevant to C-S-H gel in cement systems with Ca/Si  1.  This makes the 

model less applicable to low pH cement systems. 

2.4. The model of Walker (2003) 

Walker (2003) similarly takes the two end-members in the solid solution to be 

portlandite (Ca(OH)2) and a C-S-H gel (CaH2SiO4), but derives values for the 

Guggenheim parameters 0A  and 1A  (section 2.3) using miscibility gap data.  The 

miscibility gap is defined as a compositional range where two phases coexist, typically 

expressed as mole fraction of the more soluble end-member.  In this case, these are (i) a 

C-S-H gel – Ca(OH)2 solid solution phase and (ii) the more soluble end-member 

Ca(OH)2.  The miscibility gap will be denoted either [ ]UL XX 11 ,  or [ ]UL XX 22 ,  (where 

ii XX 21 1−= ), where the first interval denotes the range of mol fractions of Ca(OH)2 for 

which the minerals are miscible and the second interval denotes the corresponding range 

of CaH2SiO4.

The Guggenheim parameters can be related to the miscibility gap intervals, in terms of 

mole fraction of Ca(OH)2,  using expressions (2.20) and (2.23) for the activity 

coefficient of each end-member.   It is useful to rearrange these equations as 

( )[ ]210
2
21 43ln XAAXRT −+=γ ,

( )[ ]34ln 110
2

12 −+= XAAXRT γ .
(2.24)

Writing L1γ , U1γ , L2γ  and U2γ  for the activity coefficients of each end-member 

evaluated at the upper and lower bounds of the miscibility gap, and using similar 

subscripts for the mole fractions of the end-members evaluated at the same points, it 

follows that 
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( ) ( ) ( )( )3
2

3
2

2
2

2
21

2
2

2
20

1

1 43ln LULULU
L

U XXXXAXXART −−−+−=
γ
γ

. (2.25)

Hence

( ) ( ) ( )( )−−−+−== 3
2

3
2

2
2

2
2

12
2

2
2

0

1

1

1

1

1

1

1

1 43exp LULULU
L

U

L

U

L

U

L

U XXXX
RT

A
XX

RT

A

X

X

a

a

X

X

γ
γ

.

Here Ua1  and La1  are the activities of the first end-member (taken to be Ca(OH)2)

evaluated at the upper and lower bounds of the miscibility gap.  However, outside the 

miscibility gap, these activities are 1, hence 

( ) ( ) ( )( )−−−+−= 3
2

3
2

2
2

2
2

12
2

2
2

0

1

1 43exp LULULU
U

L XXXX
RT

A
XX

RT

A

X

X
. (2.26)

For the other end-member, CaH2SiO4 , a similar relationship holds, 

( ) ( ) ( )( )−−−−−= 3
1

3
1

2
1

2
1

12
1

2
1

0

2

2 43exp LULULU
U

L XXXX
RT

A
XX

RT

A

X

X
. (2.27)

Entering the miscibility gap bounds in the above two equations and solving for the 

values of 0A  and 1A  then allows the Guggenheim mixing model to be parameterised 

using only the miscibility gap data.  However, although the lower miscibility gap 

compositional boundary was found experimentally by the occurrence of Ca(OH)2 as a 

distinct phase (and therefore within the miscibility gap),  the upper limit was determined 

by the best fit of the model prediction to the experimental solubility data of Walker 

(2003);  making the model semi-empirical. 

Thus the key difference between the cement model of Börjesson et al. (1997) and that of 

Walker (2003) is in the derivation of the Guggenheim parameters.  As was the case for 

the Börjesson et al. model, for Ca/Si ratios inside the miscibility gap the Guggenheim 

polynomial is capped at the value at the lower bound of the miscibility gap.  In Walker’s 

experiments, the miscibility gap was found to be bounded by Ca(OH)2 mole fractions of 

0.39 (real) and 0.93 (fitted), which corresponds to Ca/Si ratios of 1.64 and 1.43 (as used 

by Börjesson et al., section 2.3).  The fitted 0A  and 1A  values were found to be 



15

-1
0 molkJ51.4=A  and -1

1 molkJ56.2=A .

Notice that in the above approach to relating the miscibility gap bounds to the 

Guggenheim parameters (which is a recognised approach in the literature, see for 

example Kersten, 1996) the value of the activity of Ca(OH)2 at the miscibility gap 

boundaries is not set equal to one.  The mathematical constraints in the derivation 

simply imply that the activity at each end of the miscibility gap should be the same.  

Despite this fact, the derived Ca(OH)2 activities in the mode are actually very close to 

one as can be seen in Figure 2.2 in section 2.7. 

Notes on the Walker (2003) model 

Similar to the model of Börjesson et al. (section 2.3), both end-members contain 

calcium, and so the minimum Ca/Si ratio that the model can be applied to is 1. 

2.5. Summary of Börjesson et al. and Walker’s 

thermodynamic data 

The parameters in the Guggenheim thermodynamic mixing model and log K (specific) 

values for each end-member are given in Table 2.1 for the end-member reactions 

( )
O.2HSiOCa2HSiOCaH

O,2HCa2HOHCa

22(aq)
2

4(s)2

2
2

2(s)

++=+

+=+
++

++

Table 2.1 Thermodynamic data for the Börjesson et al. and Walker models 

A0 (kJ/mol) A1 (kJ/mol) ( )
0

OHCa 2
Klog 0

SiOCaH 42
Klog

Börjesson et al. 3.26 13.44 22.7 15.89 

Walker 4.51 2.56 22.85 15 
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2.6. The model of Sugiyama and Fujita (2005) 

Sugiyama and Fujita (2005) take the two end-members in the solid solution to be 

Ca(OH)2 and SiO2(s).  They truncate the Guggenheim polynomial after three terms and 

express GrΔ  as 

,lnln 21 KRTKRTGr −−=Δ (2.28)

in order to write 

( ) ( )[ ].
lnlnlnln

2
2122110

21

0
21

XXAXXAA
RT

XX

XXKXKK j
j

j
j

jj

−+−+
−

+

−=+

(2.29)

Sugiyama and Fujita then equate the terms to write 

( ) ( )[ ].
lnlnln

2
2122110

21

0

XXAXXAA
RT

XX

XXKXK

jjj

jjjjj

−+−+
−

+

−=
, (2.30)

i.e. the excess energy is split into contributions from each end-member, with the 

contribution from each end-member having the same form as the entire excess energy, 

so that kkk AAA 21 += .  It is in this step that Sugiyama parts company with the solid 

solution theory in both Börjesson et al. and Walker’s approaches, since Sugiyama and 

Fujita are effectively expressing the excess Gibbs energy with a modified Guggenheim 

polynomial that has the form of the sum of two cubic polynomials (multiplied by 

21 XX ): 

( )( )
=

−+=Δ
2

0
212121excess .

k

k
kkr XXAAXXG (2.31)

Hence the Sugiyama and Fujita model uses six degrees of freedom in their data fit as 

opposed to two in both the Börjesson et al and Walker models.   

Finally, Sugiyama and Fujita use the “conditional constant approach”  
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,0
jjjj KXK γ= (2.32)

(i.e. the model allows the equilibrium constants to vary rather than calculating activity 

coefficients) to derive 

( ) ( )
( ) ( )[ ].

ln1ln1ln

2
2122110

21

0

XXAXXAA
RT

XX

XXKX

jjj

jjjjj

−+−+
−

+

+−−=γ
(2.33)

Sugiyama and Fujita then use available solubility data for C-S-H to calculate saturation 

indices of each end-member at various Ca/Si ratios.  They were able to achieve a fit of 

the three term Guggenheim model to the data to provide a model of jγ  for each end-

member.  To calculate the fit, Sugiyama and Fujita split the available solubility data into 

two sets corresponding to data for Ca/Si < 0.833 and Ca/Si >0.833 (0.833 is the Ca/Si 

ratio of tobermorite; a believed natural analogue of C-S-H gel as found in cement, e.g. 

Taylor 1997).  They then perform a least-squares fit of both sets of data to obtain 

activity coefficient curves in each Ca/Si region.  Furthermore, they argue that for Ca/Si 

ratios below 0.461 it is appropriate to assume that 12 =SiOλ  since the solid composition 

at such low Ca/Si ratios is close to amorphous silica.  Similarly for Ca/Si ratios above 

1.755, they argue that pure Ca(OH)2 separates from the solid solution and coexists with 

C-S-H gel, hence above this limit it is appropriate to treat each end-member separately 

as an ideal solid. 

This approach allows Sugiyama and Fujita to calculate piecewise curves of jK  for each 

end-member as a function of the mol fractions of the end-members, with reactions as 

follows: 

( )
.SiOSiO

O,2HCa2HOHCa

2(aq)2(s)

2
2

2(s)

=

+=+ ++
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The conditional equilibrium constant curves have the following form: 
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1

+
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SC
z

and 710.2log 0 −=SK  is the equilibrium constant for amorphous silica (at 25°C). 

Notes on the Sugiyama and Fujita (2005) model 

Since Sugiyama’s model considers Ca(OH)2 and SiO2 as end-members in the solid 

solution reaction, a wide range of Ca/Si ratios can be modelled.  In particular the model 

could possibly be applied to simulating low pH cements, which typically have a lower 

Ca/Si ratio in the C-S-H gel. 
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2.7. Comparing Ca(OH)2 activity predicted by the 

solid solution models 

The Ca(OH)2 activities that are predicted by each of the solid solution models are shown 

in Figure 2.2 for a range of Ca/Si ratios.  Also marked are the interval boundaries at 

Ca/Si=0.833 (tobermorite) and Ca/Si=1.755 (Ca(OH)2 co-existence) in the Sugiyama 

and Fujita model.  Notice that the models of Börjesson et al. and Walker can only be 

applied to cases where Ca/Si>1 whereas that of Sugiyama and Fujita can be applied to 

the full range Ca/Si>0 due to the different choice of end-members in the model. 

Also shown in the figure are some of the data sets that were used to perform the fitting 

exercises for the models.  The Kalousek (1952) data was the primary data source used 

for fitting Börjesson et al.’s model.  The Greenberg and Chang (1965) dataset is one of 

the four datasets (which included Kalousek’s) that was used to fit the Sugiyama and 

Fujita model.  It should be noted that the Greeberg and Chang data generally gives the 

lowest activities at Ca/Si>1 of the datasets that were used, hence the poor fit for 

Ca/Si>1, but is the only dataset that contained measurements for Ca/Si<0.5. 
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Figure 2.2 Ca(OH)2 activity predicted by each of the solid solution models together 

with some of the data used for fitting.  Note that Sugiyama’s model is applicable to a 

wider range of Ca/Si ratios due to the choice of portlandite and SiO2 end-members. 
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3. Numerical simulations 

We model the system shown in Figure 3.1 (which is based on models considered in 

Benbow et al., 2005).  The system comprises of a concrete region sandwiched between 

two backfill regions.  The concrete region is composed of cement and a quartz 

aggregate with a total porosity of 0.125, and is described in more detail in Section 3.1.  

The backfill regions are assumed to be composed of crushed quartz particles and have a 

total porosity of 0.3.  Each region in the model is discretised using a number of non-

uniformly spaced compartments to more finely capture the behaviour of the model at 

the interfaces between the regions.  At the inlet end of the model, a natural groundwater 

enters the system.  Details of the groundwater are given in Section 3.4. 

Transport of aqueous species in the model arises as a result of diffusion and advection.  

The earlier modelling study (Benbow et al., 2005) considered a variety of possible 

couplings between the effective diffusivity of the cement and its state of degradation.  

However in this study, to keep the comparison of the various cement models simple we 

will take a fixed effective diffusivity of 6×10-10 m2/s in the backfill and 1×10-11 m2/s in 

the concrete. 

Figure 3.1 Schematic of the modelled system 

A head gradient is imposed across the system, which gives rise to a flow in the direction 

indicated in Figure 3.1.  The porewater velocity is governed by the head gradient, the 

hydraulic conductivity and the porosity of the various regions in the model.  Head 

differences are chosen to give rise to models with Darcy velocities of 1, 1×10-2 and 

1×10-4 m/y. 

In the earlier modelling study (Benbow et al., 2005), the groundwater velocity was fully 

coupled to the evolving porosity that resulted from the dissolution and precipitation of 

Flow direction 

Backfill 
θ0=0.3

Concrete 
θ0=0.125

Backfill 
θ0=0.3

Natural 
groundwater 
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minerals in the system and the permeability of the various regions was coupled to the 

degree of degradation via the Kozeny-Carmen relationship (see for example, de 

Marsily, 1986).  In the simulations presented here, the flow velocity is held constant by 

setting the molar volume of all minerals to zero in the evolution equations.  This results 

in a fixed porosity for all time.  Whilst this is physically less realistic, it allows results 

from the various models to be compared simply without having to account for changes 

in porosity (in particular we do not need to worry about pore clogging events) and flow 

velocity.  For example, this simplification makes it possible to compare cement 

degradation as a function of the volume of water flushed through the various models. 

3.1. Concrete composition 

The models of Börjesson et al. (1997) and Walker (2003) can both use the same cement 

composition since they use the same end-members in the description of the C-S-H solid 

solution model.  The cement composition is based upon that in Börjesson et al. (1997).  

Katoite (Ca3Al2H12O12) and AFm (Ca4Al2SO10) have been chosen to be representative 

of the choice of C3AH6 and C4AS H12 by Börjesson et al. (where, in the cement 

chemistry nomenclature of Börjesson et al., C=CaO, A=Al2O3, H=H2O and S = SO3).

The cement is used to make concrete with porosity 0.125 (this porosity being 

representative of the scale from 0.1 to 0.15 quoted in Karlsson et al., 1999).  For 

modelling purposes, pure quartz particles with a 4 mm diameter and density of 2.65×106

g/m3 are used to represent the aggregate components of the concrete.  The ratio of 

cement to quartz by weight is 1:4.4.  At this ratio, one m3 of concrete contains 

approximately 316 kg of Ca(OH)2 and C-S-H, which is in agreement with the rough 

estimate of 350 kg of cement per m3 of concrete quoted in (Karlsson et al., 1999), of 

which approximately 321 kg is composed of Ca(OH)2 and C-S-H.  The resulting initial 

composition of the intact concrete regions is shown in Table 3.1.  For the purposes of 

the initial volume calculation, the molar volume of CaH2SiO4 was taken to be the sum 

of the Ca(OH)2  and quartz molar volumes. 

The cement composition used in the Sugiyama and Fujita (2005) model is different due 

to the different choice of end-members.  The amounts of Ca(OH)2 and SiO2(s) have 
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been chosen to give the same Ca/Si ratio and volume as the cement used in the 

Börjesson et al. and Walker models, and all other cement amounts are kept the same.  

For the calculation, the SiO2(s) end-member was assumed to have the same molar 

volume as the quartz aggregate. 

The backfill regions of the model were taken to be composed entirely of quartz with 

30% porosity, as shown in Table 3.3 

Table 3.1 Initial cement composition used in Börjesson et al. (1997) and  

Walker (2003) models 

Mineral Initial Concentration 
(mol/m3) 

Molar Volume 
(cc/mol) 

Volume Fraction 
(%) 

Quartz 30 853.0 22.688 70.0  

Ca(OH)2 2 137.0 33.056 7.0  

C-S-H 1 175.0 55.744 6.6  

Katoite 4.2 149.520 0.06  

AFm 137.0 177.000 2.4  

Brucite 289.0 24.630 0.7  

Porosity 12.5% 12.5  

Table 3.2 Initial cement composition used in Sugiyama and Fujita (2005) model 

Mineral Initial Concentration 
(mol/m3) 

Molar Volume 
(cc/mol) 

Volume Fraction 
(%) 

Quartz 30 853.0  22.688  70.0  

Ca(OH)2 3 312.0  33.056  10.9  

SiO2(s) 1 175.0  22.688  2.7  

Katoite 4.2  149.520  0.06  

AFm 137.0  177.000  2.4  

Brucite 289.0  24.630  0.7  

     

Porosity 12.5%    12.5  
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Table 3.3 Backfill composition used in all models 

Mineral Initial Concentration 
(mol/m3) 

Molar Volume 
(cc/mol) 

Volume Fraction 
(%) 

Quartz 30 853.0 22.688 70.0  

Porosity 30.0% 30.0  

3.2. Secondary minerals 

The solid products that are considered in the models are subdivided into those that form 

in the backfill regions of the system and those that can form anywhere (i.e. in the 

concrete region and the backfill region).  This division precludes, for example, 

precipitation of the calcium silicate end-member outside the concrete region , since the 

gel is perceived as a wholly synthetic phase produced only by the hydration of cement 

clinker.  Other secondary phases are mostly calcic phases which could form due to the 

interaction of groundwater with concrete, e.g. calcite, ettringite.  The stable silica 

polymorph at low temperature is assumed to be chalcedony.   

Secondary minerals were allowed to form anywhere in the system (i.e in both the 

backfill and concrete regions) and thermodynamic data for these are shown in Table 3.4. 

Table 3.4: Thermodynamic data for secondary minerals. 

Mineral Equation Log K at 
25°C

Calcite CaCO3 + H+ = Ca2+  + HCO3- 1.8487 

Gibbsite Al(OH)3 + 3 H+ = Al3+ + 3 H2O 7.7560 

Ettringite Ca6Al2(SO4)3(OH)12:26H2O + 12 H+  = 2 Al3+  +    
3 SO42- + 6 Ca2+ + 38 H2O

62.5362 

Chalcedony SiO2(s) = SiO2(aq) -3.7281 

Tobermorite is taken to be representative of all possible secondary C-S-H phases in the 

system.  Thermodynamic data for tobermorite is presented in Table 3.5. 
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Table 3.5: Thermodynamic data for tobermorite. 

Mineral Equation Log K at 
25°C

Tobermorite-
14A

Ca5Si6H21O27.5 + 10 H+ = 5 Ca2+ + 6 SiO2(aq) + 

15.5 H2O
63.8445 

We disallow precipitation of secondary C-S-H phases in the concrete regions to be 

consistent with the solid solution models, which are all two end-member models and do 

not consider additional C-S-H phases.  Hence, the secondary C-S-H phase will only be 

permitted to form in the backfill regions.   

Over long time periods and higher temperatures (50-100 °C), C-S-H gel might be 

expected to convert to tobermorite and/or jennite.  C-S-H gel could thus be envisaged to 

both dissolve and recrystallise simultaneously.  This recrystallisation of C-S-H into a 

thermodynamically more stable phase could slow down C-S-H gel dissolution and 

overall degradation of the cement component of the concrete.  Crystallisation of C-S-H 

gel would however, lead to lower ambient pH values in coexisting groundwater 

(Atkinson et al., 1995).  This recrystallisation process was studied by Atkinson et al. for 

an 80°C repository system, but quantitative data regarding the kinetics of this process is 

unavailable.  At lower temperatures, the conversion of C-S-H gel to a more crystalline 

form will probably be a very slow process and has thus been excluded from model 

calculations presented here. 

3.3. Rates of reaction 

The C-S-H gel and portlandite phases were modelled as a SSAS described in sections 

2.3, 2.4, and 2.6.  Each of these models allows an in-situ activity to be calculated for 

each of the Ca(OH)2 and C-S-H end-members for the current cement composition.  

Using this activity and the porewater composition, the saturation of each end-member 

can be calculated.  Then we can use a Transition State Theory rate equation (e.g. 

Helgeson et al., 1984) of the form, 
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to model the rate of dissolution of each end-member.  Here iC  (mol m-3) is the 

concentration of end-member i  per total volume, ik (mol m-2 y-1) is the rate of the 

reaction per surface area of end-member and iA  (m2 m-3) is the surface area of the end-

member per unit volume.  ii KQ /  represents the saturation state of the end-member.  

We model the solid solution as being essentially instantaneous by choosing ik  to be 

large compared to the other reaction rates and timescales in the system. 

Kinetic models for quartz and calcite are taken from Knauss and Wolery (1988) and 

Busenberg and Plummer, (1986) respectively.  All other minerals in the system are 

modelled using a fast kinetic rate to approximate instantaneous dissolution and 

precipitation.  The reaction rates can all be characterised as 

[ ] −+ 1
K

Q
a= k A 

dt

dC n

H
.

Here, C  is the concentration of the mineral (mol m-3), k is the rate of the reaction per 

reactive surface area (mol m-2 y-1), A is the available reactive surface area (m2 m-3), +H
a

is the activity of the H+ ion in solution and KQ /  represents the degree of saturation of 

the mineral in the fluid phase and n is a nonlinear coefficient that is used to obtain a 

better fit to experimental data for a range of pH values. 

The available surface area, A , is calculated from the mineral concentration in the 

compartment, C (mol m-3), using 

CMSA WSA= ,

where SAS  is the specific surface area of the mineral (m2 g-1) and WM is the molecular 

weight (g mol-1).  This model of available surface area does not take into account any 

armouring effects when one precipitated mineral covers the surface of another, but is 

largely irrelevant for fast rates that are approximating an instantaneous precipitation and 

dissolution assumption (which also ignores armouring effects).   
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Table 3.6 lists the physical properties of all of the minerals in the simulations.  In the 

calculations in (Benbow et al., 2005), molar volumes were used to calculate porosity 

changes which are continuously coupled to the evolving flow field calculation.  

However in these calculations the molar volumes have been assumed to be zero to 

effectively decouple the flow field and make inter-model comparison more 

straightforward between the solid solution models.  Molar weight and surface area 

values are used to derive reactive surface areas from the mineral concentrations in the 

compartments when calculating kinetic rates of reaction.  Surface area data was not 

available for all minerals, but this is not especially important when fast reaction rates 

are being used that approximate instantaneous equilibration. 

Table 3.6: Mineral physical properties1.

Mineral Molar Volume 
(cc/mol) 

Molar weight 
(g/mol) 

Surface area 
(m2/g) 

Portlandite 33.056 74.0927 0.02 

C-S-H 55.7442 134.1769 0.02 

SiO2(s) 22.688 60.0843 0.02 

Quartz 22.688 60.0843 5.66×10-4

Katoite 149.520 378.2852 0.02 

AFm 177.000 634.5462 0.02 

Brucite 24.630 58.3197 0.02 

Calcite 36.934 100.0872 0.0210 

Gibbsite 31.956 78.0036 0.02 

Ettringite 715.000 1 255.1072 0.02 

Chalcedony 22.688 60.0843 0.02 

Tobermorite-14A 286.810 830.0532 2.27 

1 Quartz surface area assumes a 4 mm particle with density 2.65×106 g/m3, as in Benbow et al. (2004); 
calcite surface area from Savage et al. (2002); surface area value of 2.27 m2/g for tobermorite chosen to 
be the same as in Benbow et al. (2004); all other values chosen to be 0.02.  Surface areas are to some 
extent unnecessary for minerals modelled using very fast kinetic assumptions provided that vastly 
different surface area values are not assumed. 
2 Taken to be sum of molar volumes of portlandite and quartz 
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The values of the parameters in the model for the quartz and calcite reactions are given 

in Table 3.7.  The fast kinetic rates to approximate the instantaneous equilibrium 

assumption for all of the other non-cement minerals each use 0=n .

Table 3.7: Reaction rate parameters for quartz and calcite. 

k (mol m-2 y-1) n Reference 

Quartz 1.58×10-9 -0.5 Knauss and Wolery, 1988. 

Calcite 1.99×102 0 Busenberg and Plummer, 1986 

The rate of consumption of Ca2+ and OH- from the fluid phase through precipitation of 

secondary C-S-H (tobermorite) is dependent upon the assumed rate of reaction of quartz 

and its associated reactive surface area.  Here, the experimentally-measured data of 

Knauss and Wolery (1988) have been used, together with an assumption of sand grain 

sized quartz particles for surface area calculations.  Clearly, any variation of quartz 

dissolution rate and associated reactive surface area will affect the consumption of Ca2+

and OH- from the fluid phase accordingly. 

3.4. Fluids

The pore space in the concrete regions is initially occupied with pore water that is 

equilibrated with respect to the cement.  The pore space in the backfill regions is 

initially filled with the natural host rock pore water that is intruding into the system 

through the in-flowing boundary.  A representative natural host rock water from 

Karlsson et al. (1999) has been considered: “Finnsjön non-saline”, a high carbonate 

non-saline water.  The composition of each of the porewaters is shown in Table 3.8.  A 

calcium-dominated cement water has been chosen as the initial fluid in the concrete 

regions to prevent any initial dissolution of the Ca(OH)2 and C-S-H phases.   A precise 

formulation of the cement water is not especially important since it will be quickly 

washed out of the system or equilibrated with the cement. 

Preliminary modelling showed that the “Finnsjön non-saline” water is saturated with 

respect to calcite, which leads to calcite clogging the incoming water boundaries in the 
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model (when porosity was allowed to evolve).  Thus the compositions were adjusted to 

be in equilibrium with calcite. 

The aqueous speciation reactions that are included in the models are shown in Table 3.9. 

Table 3.8: Groundwater compositions used in the modelling. 

Groundwater 
components 

Finnsjön non-saline 
(mol/l) 

Cement water 
(mol/l) 

Al3 - 9.07×10-5

C 4.56×10-3 7.10×10-4

Ca 3.54×10-3 2.17×10-3

Cl 1.57×10-2 1.46×10-3

K 5.12×10-5 6.15×10-1

Mg 6.99×10-4 1.05×10-8

Na 1.20×10-2 3.55×10-1

Si 1.99×10-4 4.71×10-4

S 5.10×10-4 8.48×10-3

pH 7.9 12.5 

Table 3.9: Aqueous speciation reactions included in the models. 

Reaction Log K 

OHHOH 2=+ +− 13.9951 

O4HAl4HAl(OH) 2
3

4 +=+ ++= 22.1400 

−+− =+ 3
2
3 HCOHCO 10.3288 

OHCaHCaOH 2
2 +=+ +++ 12.8500 

OHMgHMgOH 2
2 +=+ +++ 11.6820 

( ) OHSiOHHSiO 2aq23 +=+ +− 9.9525 

( ) O2HSiO2HSiOH 2aq2
2
42 +=+ +− 22.9600 

3 Values for Al concentrations in the natural rock were not given in Karlsson et al. (1999).  Equilibrium 
with Gibbsite was assumed. 
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4. Results

Results of the various models for fixed Darcy velocities of 1, 1×10-2 and 1×10-4 m/y are 

shown in Figure 4.1-Figure 4.4. 

Figure 4.1 shows the fraction of the cement that is remaining with time in each of the 

flow scenarios for each cement model. Figure 4.2 shows the fraction remaining plotted 

against the number of initial cement volumes of water that have flowed through the 

system.  The most striking observation on the results is that there is good agreement 

between the various models for each scenario.  Generally the Börjesson et al. (1997) 

model predicts the shortest time for total dissolution of cement and Sugiyama (2005) 

predicts the longest, with the Walker (2003) model lying in between.  The differences in 

the times for total dissolution are very small though, especially for the fast flow rate 

scenario.  In the slower flow scenarios there is slightly more spread in the results.  The 

cement in the fast flow scenario dissolves approximately 100 times faster than in the 

medium flow scenario, indicating a direct connection between the volume of water 

flushed and the amount of degradation.  Against the time axis, the slow flow scenario 

results are not so different from the medium flow scenario, implying that diffusion is an 

increasingly important transport process in the slower flow scenarios.  This is 

highlighted in the plot against water volumes flushed, where the slow flow scenario 

curves are distinct from the other scenarios.  Also shown on Figure 4.2 is an additional 

scenario where the medium flow rate is taken and diffusion is set to zero.  The evolution 

in this scenario is close to that of the fast flow rate when plotted against water volumes 

flushed, which implies that diffusion plays a small role in the fast flow scenario but is 

not insignificant in the medium flow scenario. 

The Ca/Si ratio is plotted as a function of water volumes flushed in Figure 4.3.  In each 

scenario the different cement models predict similar Ca/Si while the Ca/Si ratio is 

greater than 1.  In the Börjesson et al. and Walker models the Ca/Si ratio approaches 1 

as the Ca(OH)2 end-member is completely removed from the cement.  After this time, 

Ca/Si is fixed at 1 in these models due to the other end-member (CaH2SiO4) having a 

unit Ca/Si ratio.  In the Sugiyama model, the Ca/Si ratio continues to reduce beyond 

Ca/Si=1 due to the different choice of end-members, but agrees well with the other 

models up to this point.  It is noted that there is an excellent agreement in the predicted 
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Ca/Si between the Walker and Sugiyama and Fujita models while the Ca/Si ratio is 

greater than 1. 

The predicted pH at the outflowing end of the system is plotted for each cement model 

for the fast scenario in Figure 4.4.  Again there is good agreement between the models. 



33

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100 1000 10000

Time (y)

C
em

en
t 

F
ra

ct
io

n
 R

em
ai

n
in

g
 (

b
y 

vo
lu

m
e)

Sugiyama (fast)
Borjesson (fast)
Walker (fast)
Sugiyama (medium)
Borjesson (medium)
Walker (medium)
Sugiyama (slow)
Borjesson (slow)
Walker (slow)

Figure 4.1 Cement fraction remaining in each model as a function of time, with various 

imposed flow rates (porosity is fixed) 

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.01 0.1 1 10 100 1000

No. Cement Volumes Flushed

C
em

en
t 

F
ra

ct
io

n
 R

em
ai

n
in

g
 (

b
y 

vo
lu

m
e)

Sugiyama (fast)

Borjesson (fast)

Walker (fast)

Sugiyama (medium)

Borjesson (medium)

Walker (medium)

Sugiyama (slow)

Borjesson (slow)

Walker (slow)

Sugiyama - medium, D~0

Borjesson - medium, D~0

Walker - medium, D~0

Figure 4.2 Cement fraction remaining in each model as a function of (initial) cement 

volumes flushed, with various imposed flow rates. 
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with various imposed flow rates.  
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Figure 4.4 pH at outflowing end of each model as a function of (initial) cement volumes 

flushed in fast flow scenario. 
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5. Conclusions 

The results of the modelling exercise suggest that the three models are generally in 

agreement regarding the behaviour of the cement and therefore that the modelling 

results of Benbow et al. (2005) would be largely unaffected if an alternative cement 

model were used.  The Börjesson et al. (1997) model (used in Benbow et al., 2005) 

predicts the fastest cement dissolution and so could be said to be conservative, although 

the differences in predicted times between the models are small. 

The Sugiyama and Fujita (2005) model is considerably different from the others in its 

underlying assumptions.  It assumes a different set of cement end-member solids and a 

different form for the Guggenheim polynomial.  The different choice of end-members 

may make the model applicable to the modelling of low pH cements, which are 

beginning to be considered in the context of radioactive waste repositories in order to 

avoid some of the possible deleterious interactions between cement waters and other 

EBS materials. 
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