BREDA/BRUTE

UMINO

- TREPAN MATERIAL SAMPLING OF MATERIAL FROM THE RPV WALL OF BARSEBÄCK 2 Monika Adsten, Energiforsk Magnus Boåsen, KTH Royal Institute of Technology

Motives

Ensuring safe operation and the durability of the reactor pressure vessel is one of the most important tasks to enable Long Term Operation

- Status of the RPV and possible degradation mechanisms
- Full surveillance program covering expected time of operation
- Availability of the right competence
- Up-to-date with latest research
- Scientifically based information to owners, authorities and the public

Scope

- Determine the material/structure-parameters and chemical composition in welds in reactor pressure vessel and reactor pressure vessel head
- Compare analyses and tests of the harvested material to the surveillance material from Barsebäck 2
 - What is the impact of the surveillance sample size?
 - What about the weld material properties compared to vessel material?
 - What about other differences between RPV and surveillance samples, for example heat treatment?
 - How does that compare to results from other BWR plant surveillance programs?
 - Can Uddcomb RPV:s from BWR:s and PWR:s be included in the same prediction curve?
- Can miniature size samples be used to extend surveillance program?

CUT-OUT B2

The unit was operated for 28 years at T=270°C

0,02

0

0,04

W28

5

OVERVIEW OF WORK SPACE

REACTOR PRESSURE VESSEL

REACTOR PRESSURE VESSEL HEAD

Weld

IMPACT TESTING OF RPVH-WELD METAL

Slides from Pentti Arffmann at VTT

Test material from the RPV head

- Non-irradiated → simple to handle
- Possibility to ensure test method for the more valuable irradiated specimens
- Weld is slanted in the trepan → amount is even more limited
 - Specimens were taken from two trepans

Charpy V impact testing

- Charpy V specimen
 10x10x55 mm
- Manufactured using Electric Discharge Machining

Impact energies form a clear transition curve

Baseline tests from Studsvik

Reported by Studsvik in 1990

Chemical composition slightly different from measurement in BRUTE

ELEM ENT	С	Si	Mn	Ρ	S	Cr	Мо	Ni	Cu	Со
BASE LINE	0.084	0.22	1.53	0.011	0.004	0.13	0.45	1.47	0.064	0.008
B2 W28	0.057	0.15	1.43	0.008	0.007	0.03	0.41	1.47	0.06	0.02

Comparison to baseline results

No shift in the transition temperature compared to baseline tests!

- $\Delta T 41J = -2^{\circ}C$, while $\sigma = \pm 5^{\circ}C$
- No thermal embrittlement
- Possible decrease in upper shelf
 energy
- Good agreement with check-in data

Conclusions of initial testing

- New facilities at VTT are up and running
- No shift in the transition temperature
 - $\Delta T 41J = -2^{\circ}C$, while $\sigma = \pm 5^{\circ}C$
 - >> No thermal embrittlement
- Upper shelf impact energy has decreased by 27J (approx. 15%)
 - Chemical composition different in baseline material
 - Especially C from baseline to BRUTE: 0.084% > 0.057%
 - Partially due to scatter?

Acknowledgements

