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The SKI perspective
Background

The SKI regulation of mechanical components demands qualification tests of the NDT
systems to be used for inservice inspections. In accordance with the European qualification
methodology, such a qualification will be a sum of practical trials and technical justification.
Technical justifications must consist of well-documented evidence, which supports the
capability of the NDT system to be qualified. This type of evidence may be derived from
physical reasoning, field experiences, laboratory studies or mathematical-physical modelling.
Thus, mathematical-physical modelling can be an effective tool for NDT qualifications.

SKI goal

The overall goal of the SKI research within the area of mathematical-physical modelling is to
develop the reliable and valid modelling programs to be used for qualification purposes. The
objective of this particular project was the further development of a computer program
UTDefect to include a rectangular crack in anisotropic materials.

Results

The work on the further development of the computer program UTDefect has been
performed. The scattering by a rectangular crack in an anisotropic component has been
studied and the results are adapted to include transmitting and receiving ultrasonic probes.

Further research

Further research is required to develop UTDefect to include other material and defect
configurations. Also, the validation of the model additions will be performed.

Effect on SKI activity

The research has resulted in the development of the computer program UTDefect. The
program can be used for NDT qualification purposes.

Project information )
SKI project manager: Elena Osterberg
Project number: 97217
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Summary

Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry
when searching for defects, in particular cracks. To develop and qualify testing procedures
extensive experimental work on test blocks is usually required. This can take a lot of time and
therefore be quite costly. A good mathematical model of the testing situation is therefore of
great value as it can reduce the experimental work to a great extent. A good model can be
very useful for parametric studies and as a pedagogical tool. A further use of a model is as a
tool in the qualification of personnel.

In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much
more complicated as compared to isotropic materials. Therefore, modelling is even more
useful for anisotropic materials, and it in particular has a greater pedagogical value. The
present project has been concerned with a further development of the anisotropic capabilities
of the computer program UTDefect, which has so far only contained a strip-like crack as the
single defect type for anisotropic materials. To be more specific, the scattering by a
rectangular crack in an anisotropic component has been studied and the result is adapted to
include transmitting and receiving ultrasonic probes.

The component under study is assumed to be anisotropic with arbitrary anisotropy. On the
other hand, it is assumed to be homogeneous, and this in particular excludes most welds,
where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be
arbitrarily oriented and the same is true of the rectangular crack. The crack may also be
located near a backside of the component. To solve the scattering problem for the crack an
integral equation method is used. The probe model has been developed in an earlier project
and to compute the signal response in the receiving probe an electromechanical reciprocity
argument is employed. As a rectangle is a truly 3D scatterer the sizes of the matrices that
enter the formalism grow very quickly (as the fourth power) with frequency, and the largest
crack that can presently be accommodated is about six wavelengths long (but in a parallel
project UTDefect is converted to FORTRAN 90/95 and then no formal limitation will remain,
although computer memory and running time still put a limit, of course).

The output from UTDefect is in tabular form giving A-, B-, or C-scans. Some numerical
examples are given of both A- and C-scans to show the capabilities. The effects due to

anisotropy are in particular illuminated and are shown to be very pronounced in some cases.

This project has been supported by the Swedish Nuclear Power Inspectorate (SKI).



Sammanfattning

Oforstorande provning med ultraljud tilldmpas industriellt 1 kdrnkraftsindustrin vid s6kandet
efter defekter, speciellt sprickor. For att utveckla och verifiera testprocedurer behvs normalt
omfattande arbete med testblock. Detta kan ta mycket tid och ddrmed bli dyrbart. En god
matematisk model av testsituationen kan dérfor vara vardefull eftersom den kan reducera det
experimentella arbetet avsevért. En bra modell kan vara mycket anvédndbar vid
parameterstudier och som ett pedagogiskt hjdlpmedel. En ytterligare anvindning av en modell
ar vid kvalificerandet av personal.

I anisotropa material, t.ex. austenitiska svetsar, dr utbredningen av ultraljud mycket mer
komplicerad &n i isotropa material. Darfor &r modellering &nnu mer anvédndbart for anisotropa
material, och speciellt har den ett storre pedagogiskt varde. Foreliggande projekt har handlat
om att utvidga mojligheterna for anisotropa material for datorprogrammet UTDefect, vilket
hittills endast innehallit en remslik spricka som defekttyp for anisotropa material. En
utvidgning till en rektangulér spricka har nu gjorts och som tidigare inkluderar modellen
sdndande och mottagande ultraljudssokare.

Den studerade komponenten antas vara anisotrop och anisotropin kan vara av godtyckligt
slag. Daremot antas komponenten vara homogen och detta utesluter dirmed de flesta svetsar,
dar det séllan dr adekvat att anta homogenitet. Anisotropin kan vara godtyckligt orienterad
och detsamma géller den rektanguléra sprickan. Sprickan kan som en mojlighet ocksé ligga
ndra en bakyta hos komponenten. For att 16sa spridningsproblemet for sprickan anvénds en
integralekvationsmetod. En modell for en sdndande ultraljudssokare finns utvecklad sedan
tidigare och ett elektromekaniskt reciprocitetsargument anvénds som tidigare for att
bestimma signalsvaret i den mottagande sokaren. Eftersom en rektangel &r en 3D defekt
kommer matriserna som finns i formalismen att vixa mycket snabbt (som fjdrde potens) med
frekvensen och den storsta spricka som f.n. kan hanteras &r ungefér sex viglangder ldng (men
1 ett parallellt projekt konverteras UTDefect till FORTRAN 90/95 och sedan finns inga
formella begransningar i storlek, men datorminne och kortid sétter forstés fortfarande
begrinsningar).

Utdata fran UTDefect ar i tabellform som ger A-, B- och C-scan. Nigra exempel pad A- och C-
scan ges for att visa pa mojligheterna. Effekterna pa grund av anisotropi belyses sérskilt och

kan vara mycket stora i en del fall.

Detta projekt har bekostats av SKI.



1 Introduction

The computer program UTDefect and the mathematical model behind it have now been
developed for almost a decade. The program models the ultrasonic testing of isotropic, thick-
walled components with a single defect. Conventional contact and immersion probes can be
modelled. The calibration is performed by a side-drilled or flat-bottomed hole. The list of
possible defects is rather long and primarily includes some simply shaped cracks, but also a
few volumetric defects. Some of the cracks can have rough faces and one can be partly closed
due to a compressive stress. The defects can also be located close to a planar back wall of the
component and surface-breaking cracks can be modelled. The output from UTDefect is in the
form of conventional A-, B- and C-scans. The developments have been documented in a
number of reports, see Bostrom (1995, 1997, 2000) and Eriksson et al. (1997), as well as in a
number of scientific journal publications and doctoral theses.

During a couple of years UTDefect has been extended to include anisotropic components, see
Bostrom and Jansson (1997). This includes probe modelling, but so far a strip-like crack,
possibly close to a back wall, is the only possible defect. The purpose of the present report is
to describe the extension to a rectangular crack, possibly close to a backside. The
mathematical method in the form of a surface integral approach is not discussed in any detail.
The possibilities and limitations are stated and a number of numerical examples are given to
show the typical outputs that can be obtained. No validations against experiments or
comparisons with other mathematical models are reported, as no such data of relevance has
been available. The mathematical details of the method can be found in Bostrom et al. (2001a,
2001b).

Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry
when searching for defects, in particular cracks. To develop and qualify testing procedures
extensive experimental work on test blocks is usually required. This can take a lot of time and
therefore be quite costly. A good mathematical model of the testing situation is therefore of
great value as it can reduce the experimental work to a great extent. A good model can be
very useful for parametric studies and as a pedagogical tool. A further use of a model is as a
tool in the qualification of personnel.

To model anisotropic components is troublesome in several respects. The model must include
all the essential effects of a real component. This in particular includes the anisotropy, but
even if the anisotropy is homogeneous it is not a trivial matter to accurately determine all the
stiffness constants (five for a transversely isotropic medium, nine for an orthotropic medium).
In addition, in nuclear power plant components the anisotropy is often inhomogeneous and
this is problematic in two ways. Firstly, the inhomogeneity must be known accurately enough
and presently there seems to be no way to do this in a nondestructive way. So on old
components it may be a more or less impossible task to determine the inhomogeneous
structure, in a weld for instance. Secondly, even if the inhomogeneity is accurately known, it
is difficult to model this. Ray tracing is possible (using RAYTRAIM for example) and this
gives some insight into the ultrasonic propagation, but it is hard to assess how accurate this
method really is. Otherwise one must resort to purely numerical techniques like FEM or
EFIT, but these become very computer intensive in three dimensions. See Halkjaer (2000) and
Hannemann (2001) for examples of using EFIT in two dimensions for an inhomogeneous and
anisotropic weld model.



2 Theoretical consderations

The component that is being tested is assumed to be homogeneous throughout, i.e. there are
neither interfaces between different materials nor continuous variations of the material
parameters. A realistic model of a weld, for instance, is thus excluded. The material is, on the
other hand, allowed to be anisotropic. Presently, input parameters are only possible for
transversely isotropic (five stiffness constants) and orthotropic (nine stiffness constants)
materials, this probably covering all materials of practical interest in the nuclear power
industry. (However, it should be noted that all computations in UTDefect are performed with
the full stiffness matrix, so it is just to change the input to allow for any anisotropy.) No
material damping is included. For isotropic materials in UTDefect damping of the viscous
type can be used and this should also be easy to implement for anisotropic materials.

The scanning is assumed to take place on a flat side of the component in a rectangular mesh.
The distance between the defect and the scanning surface should be sufficiently large so that
all multiple scattering between them can be neglected. In practice this is not very restrictive;
it only excludes surface breaking and very near surface defects (within a wavelength or so).

It is possible to let the defect lie close to a flat side of the component other than the scanning
surface. This side called the backside in the following, can be arbitrarily angled relative the
scanning surface. It is assumed to be flat, but it is of course only important that it is flat on the
part that is close to the defect. Thinking in terms of rays, the back side needs only be flat on
the part where important rays between the defect and probe are reflected or where multiply
reflected rays from the defect hit the back side. As for the defect, all multiple scattering
between the backside and the scanning surface is neglected (but all multiple scattering
between the defect and the backside is included).

The probe modelling for anisotropic materials in UTDefect is very similar to the one for
isotropic materials. However, one complication is that the calibration, and thus also the
determination of the probe angle, takes place on an isotropic test block. Thus a more detailed
probe model is needed, in particular taking care of how the amplitude is changing when
moving the probe from one material to another. This is solved by using the probe model of
Niklasson (1997), where it is assumed that the piezoelectric crystal excites a plane wave of
certain amplitude in the wedge. This amplitude is then unchanged when the probe is moved
from a test block to a component irrespective of their materials. The angle of the probe is
specified by the angle on a certain test block with given wave speeds and the corresponding
angle in the wedge is then given by Snell's law. It should be noted that this gives the
"nominal" probe angle (which would result with an infinite wedge) and this may differ,
sometimes appreciably, from the "true" probe angle (as measured by the scattering by a side-
drilled hole). The wave type in the wedge is usually assumed to be longitudinal, but for a
shear wave of small angle or generally for a shear horizontal wave the wave in the wedge
must be of the specified type. For these wave types it may be questionable how well this
model works concerning the amplitude (and therefore concerning the calibration level),
because the model with a plane wave in the wedge may not be appropriate for such probes
(this may in particular apply for an EMAT).

With the plane wave in the wedge specified, the probe radiation into the component is
calculated in two steps. First the transmission of the plane wave into the component is
calculated as if the wedge were infinite. The resulting stresses at the interface between wedge



and component are then calculated, still assuming infinite plane waves. Secondly these
stresses are reduced to act at the component only on the area of the probe and the resulting
probe radiation into the component is calculated by Fourier transform techniques. It is noted
that the piston model is used here, i.e. the stresses at the interface between probe and
component are assumed to be constant over the whole area (except for a phase factor for
angled probes). A model where the stresses decrease towards the edges has also been tried but
the differences are very small. It also seems that the radiated ultrasound is rather unsensitive
to the exact shape and size of the probe. In UTDefect the shape must be rectangular or
elliptical.

Once the probe model has been developed for a transmitting probe, a very attractive way of
modelling a receiving probe is to use a reciprocity argument. This gives the electric signal
response in the receiving probe as a surface integral over a surface enclosing the defect
(usually the surface of the defect is actually chosen). In the case of a crack, the integrand in
the surface integral is the crack-opening-displacement due to the incident wave from the
transmitting probe multiplied by the traction on the crack that would result if the receiving
probe was acting as transmitter. In this way it is easy to see that the transmitter and receiver
enters the formalism in the same way. Another nice feature with this approach is that the
probes need only be modelled as transmitters. It should be noted that the reciprocity result is
only valid in the frequency domain, but this fits well with UTDefect that also works in the
frequency domain with a final transform to time if needed. The reciprocity argument is,
furthermore, only strictly valid in lossless media, but for small damping in the materials it
should still be valid with good accuracy.

The most demanding part of the modelling is of course the scattering by the defect. For all
cracks in UTDefect, both in isotropic and anisotropic media, this is formulated as a singular
integral equation for the crack opening displacement over the surface of the crack. The crack
opening displacement is then expanded in a suitable orthogonal set of functions having the
correct square-root behaviour along the crack edges. In most cases these functions are
Chebyshev functions. The integral equation is also projected onto the same functions and the
integral equation is thereby discretized. This procedure only works for cracks of very simple
shape, in particular for strip-like and rectangular cracks, and also for circular cracks in the
isotropic case. The advantage is that a very stable numerical scheme is obtained that can be
used in three dimensions at relatively high frequencies. In contrast, it still seems hard to apply
FEM or EFIT (that performs a 3D meshing) in 3D except in very small domains (measured in
number of wavelengths). The present singular integral equation method can be said to be a
variant of BEM (boundary element method), but regular BEM, which performs a mesh over
the defect surface, seems to be very hard to apply to cracks, at least at somewhat higher
frequencies.

The numerical implementation of the probe modelling and crack scattering is not
straightforward. In the anisotropic case there is first a need to solve the dispersion relation
with corresponding modes and phase and group velocities. The main difficulty is then to
compute some integrals that are difficult for several reasons: they are double integrals over
infinite domains with a weak decay at infinity, they contain singularities like poles and cuts,
and they sometimes contain quickly oscillating factors. These difficulties can be solved and
the resulting numerical scheme usually behaves in a very stable manner. The needed number
of integration points in the numerical quadratures can sometimes become very large and this
can of course lead to long execution times. For a rectangular crack some matrices needed in
the computations can become quite large, although this is very dependent on the frequency



and crack size (it is rather the dimensionless parameter frequency times crack size divided by
a wave speed that is the relevant measure). At present the largest rectangular crack that can be
used has a larger side that can be about five shear wavelengths. The computer memory
required is then about 50 Mbytes and the running times can be everything from minutes to
days.

3 Numerical examples

In this section some numerical examples are given to show a little what type of results that
can be obtained. There are then a lot of parameters to vary, so obviously some systematic
study is not possible and most of the parameters are fixed.
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Figure 1: The slowness curves for the Figure 2. The wave curves for the anisotropic
anisotropic austenitic steel. austenitic steel.

The material is chosen as austenitic steel, with material parameters that correspond to a
typical weld material. This material is transversely isotropic with stiffnesses C33=216.0,
C11:C22:262.7, C66:82.2, C44:C55:129.0, C13:C23:145.0 and C12:98.2, all measured in GPa,
given in the crystal system. As usual in a transversely isotropic material with symmetry axis
in the 3-direction C¢¢=(C1-Cy2)/2. The density is 8120 kg/m3 . The slowness surfaces of this
material are given in Fig. 1 and the corresponding wave surfaces in Fig. 2. Due to the isotropy
in the 12-plane, it is sufficient to show the surfaces in the 13-plane. In Fig. 1 three curves are
seen, the innermost is the slowness for the qP wave, the middle one is for the SH wave (in a
transversely isotropic material a pure SH wave exists) and the outermost nonconvex curve is
for the qSV wave. These nonconvexities lead to the wellknown cusps that are seen on the
corresponding curve in Fig. 2, where the outermost curve is for the qP wave. The slowness
and wave surfaces are very helpful when interpretation of numerical or experimental results
are performed. In particular the slowness surfaces show the relation between the phase and
group velocities, i.e. between the wave front and energy propagation, as the slowness is the
inverse of the phase velocity and the group velocity is normal to the slowness curve. The



wave surfaces in Fig. 2 give the group velocities, as a function of direction of propagation and
it is in particular noted that the cusps give rise to three qSV group velocities in some
directions. The wave surfaces can be viewed as the waves due to an impulsive point source.

As a comparison some C-scans will also be given for an isotropic material. This material is an
isotropic austenite with Lame” constants A=114.0 GPa and u=82.6 GPa and density 8420
kg/m”. Tt is noted that this austenite is reasonably close in material constants to the anisotropic
one, although the stiffness constants can differ up to 30%.

The testing situation is chosen in the following way. A single probe is scanning over the xy-
plane, where the quadratic crack with sides 5 mm is located at the depth 25 mm below the
origin. The crack may be tilted by the angle 8, where 8= 0° corresponds to a crack parallel
with the scanning surface. In a few cases a backside parallel with the scanning surface at the
distance 5 mm from the crack is present. The principal direction of the anisotropic material
may be tilted by the angle ¥, where y= 0° corresponds to a principal direction normal to the
scanning surface, i.e. so the isotropy plane of the material is parallel with the scanning
surface. The probe is quadratic with sides 10 mm and is of P or SV type with a specified angle
and is assumed to be glued (i.e. tangential stresses are also transmitted). The angle of the
probe is measured relative the normal of the scanning surface and is positive in the positive x
direction. The centre frequency of the probe is 1 MHz and when A-scans are computed the
bandwidth is 100%. When computing C-scans only a single frequency is used as this speeds
up the computations considerably (typically by a factor 100, as this is the number of
frequencies typically employed).
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Figure 5: C-scan for (° P probe with B=0°  Figure 6: C-scan for (° P probe with B = (0°
andy = 60°. and y= 90°.

Figures 3—6 show C-scans for an unangled P probe and an untilted crack, but with varying y=
0°, 30°, 60° and 90° in Figs.3—6, respectively. It is seen that the effects of tilting the anisotropy
are very strong. The maximum response varies between 54.8 dB in Fig. 3 to 68.9 dB in Fig. 5.
That the maximum in Figs. 4 and 5 is not straight above the crack at the origin is due to the
fact that the group velocity is no longer vertical when y= 30° or 60°. The location of the peaks
can in fact be predicted by looking at the group velocities as determined from Fig. 1. That the
signal response is weaker for y = 0° and 90° is due to the fact that the wave from the probe is
more spread out in angle for these cases, which can be seen from the smaller curvature in the
innermost curve in Fig. 1 for these cases.

As examples of A-scans Figs. 7 and 8 show time traces for the C-scan in Fig. 3 at the
positions x = 0 and 12 mm. The first strongest signal is of course the qP wave. Later waves
are much stronger at the origin in Fig. 7 and is due to the fact that the later waves are all more
or less qSV waves and these have a much more concentrated direction (this can be understood
from Fig. 1 where the curvature of the qSV surface is quite large in the vertical direction).
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Figure 7: A-scan for 0° P probe with B = 0°  Figure 8: A-scan for 0° P probe with 8 = (
and 'y = 0° at the position x= 0 mm. and y= 0° at the position x=12 mm.

Next, the probe is changed to a 45° P probe and A-scans are given in Figs. 9—12 for both the
isotropic and anisotropic austenite and both without and with a backside present. The crack is
now vertical B=90° but the anisotropy is untilted y= 0°. On the isotropic austenite this probe
sends out a P and an SV wave which correspond to maxima in the C-scan in Fig. 9 at x=-25
mm and x = —/3 mm, respectively. The other maxima at larger negative x-values are due to
side lobes. With the backside present in Fig. 10 the signal becomes 18 dB stronger and this is
of course due to the corner reflection between the crack and backside. On the anisotropic
austenite the 45° P probe sends out a qP wave with an angle 50° and a qSV wave with an
angle —23° and these correspond to maxima at x = —35 mm and x = 10 mm, respectively, in
Fig. 11. It is noted that the P waves do not change very much between the isotropic and
anisotropic cases whereas the changes for the SV waves are really profound. In Fig. 12 with
the backside present the response again gets much stronger due to the corner effect and new
maxima which are difficult to interpret appear.
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Figure 9: C-scan for 45° P probe on the Figure 10: C-scan for 45° P probe on the
isotropic austenite with = 90° and y= (°. isotropic austenite with = 90°, y=0° and a
backside.
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Figure 11: C-scan for 45° P probe on the Figure 12: C-scan for 45° P probe on the
anisotropic austenite with B = 90° and y= (°. anisotropic austenite with B = 90°, y=(0°
and a back wall.

Figure 13 shows an A-scan from Fig. 11 taken at the maximum at x = —34 mm. The first
strongest signal is of course the qP wave and it is seen that this is rather spread out, possibly
due to a surface wave propagating across the crack. The later parts of the signal are qSV
waves and these are much weaker and also more spread out in time.
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Figure 13: A-scan for 45° P probe on the
anisotropic austenite with B = 90° and y =
0° at the position x = —34 mm.

Figures 14—17 show results for a 60° SV probe on an isotropic and an anisotropic austenite
and without and with a backside. The crack is still vertical and the anisotropy is untilted.
Again the cases with a backside give a much stronger signal due to the corner effect. The
anisotropic austenite gives somewhat more complicated results and the response is more
spread out in the x direction.
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Figure 14: C-scan for 60° SV probe on the Figure 15: C-scan for 60° SV probe on the
isotropic austenite with B = 90° and vy = 0°.  isotropic austenite with B = 90°, y = 0° and

a backside.
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Figure 16: C-scan for 60° SV probe on the Figure 17: C-scan for 60° SV probe on the
anisotropic austenite with B = 90° and y= (°. anisotropic austenite with B = 90°, y= 0° and
a back wall.

4 Concluding remarks

This report has described work on a rectangular crack in an anisotropic component. Both the
crack and the anisotropy may be arbitrarily oriented. The presence of a backside may be taken
into account. One or two probes can be used, these are assumed to be of contact type but can
otherwise be quite arbitrary. The main limitations are that the anisotropy is assumed
homogeneous and that the highest frequencies that can be used are such that the crack is about
six wavelengths long. Some numerical results, mostly C-scans but also two A-scans, are given

13



to illuminate the type of output that may be obtained. There are many parameters to vary so it
is impossible to cover more than just a few variations in one or two parameters.

There is some follow-up work that would be worthwhile to do. One important thing is of
course the validation of the present developments. This can be done with experiments,
although there are a few difficulties with this. Firstly, it is not so easy to fabricate internal
cracks that are smooth and with negligible distance between the crack faces. Secondly, it is
not obvious what anisotropic material that should be used as it should be both homogeneous
and thick-walled. Another way to make at least a partial validation is through comparisons
with other mathematical models. As far as known there is a lack of other 3D models. EFIT
may be a possibility, although it seems mostly to be restricted to 2D situations. But also a
comparison with 2D could be worthwhile even though it would be hard do draw any definite
conclusions about the absolute levels.
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