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Background 
In a previous study (SSM research report 2015:38) fatigue experiments 
were performed on welded austenitic stainless steel piping components. 
The fatigue experiments offer an opportunity to evaluate fatigue flaw 
tolerance assessments used in industry, which are based on the fracture 
mechanical approach implemented in ProSACC.

Objective
The present study aims to validate the used fatigue flaw tolerance 
approaches by comparing experimental results obtained for the total 
fatigue life of the considered piping component and the computed 
fatigue life estimate. Safe and reliable long term operation (LTO) of the 
plant has to be demonstrated when NPPs approach the end of their 
design service life time, and this process includes amongst others the 
evaluation of fatigue resistance of components.

Results
The study indicates that an ASME inspired flaw tolerance approach causes 
extensive conservatism, implying that the propagation fatigue life at most 
represents 10% of the total fatigue life. A best-estimate flaw tolerance 
approach on the other hand presents a significant reduction of conserva-
tism, which indicates that fatigue initiation represents a negligible con-
tribution to the total fatigue life. The estimated 90% prediction limits of 
the best-estimate approach show good agreement with the experimental 
results. Overall conservatism of the fatigue flaw tolerance approach is 
preserved by assuming a relatively large initial flaw size and neglecting 
effects from inelastic material behaviour, sequence effects for variable 
amplitude loads and crack closure effects. 

The results support the use of flaw tolerance approaches for demonstrating 
reliability of a component.
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Summary  
Fatigue experiments have previously been performed on welded austenitic stainless 
steel piping components subjected to both constant and variable amplitude loads. 
The results are reported in Evaluation of fatigue in austenitic stainless steel pipe 
components – SSM 2015:38 and offer the opportunity to evaluate fatigue flaw 
tolerance assessments used in industry and based on a fracture mechanical 
approach implemented in ProSACC (version 2.1, rev 2). The current investigation 
aims at validation of the used flaw tolerance approaches by comparing 
experimental results obtained for the total fatigue life of the considered piping 
component and the computed fatigue life estimates. More specifically, the 
conservatism of the approach is evaluated and a sensitivity analysis is performed to 
determine to which extent the uncertainty of selected input parameters contributes 
to the variation in estimated fatigue life. 

The study indicates that a standard flaw tolerance approach inspired on ASME 
yields extensive conservatism, implying that the propagation fatigue life at most 
represents 10% of the total fatigue life, whereas a best-estimate flaw tolerance 
approach presents a significant reduction of conservatism, which indicates that 
fatigue initiation represents a negligible contribution to the total fatigue life for the 
performed fatigue experiments. The estimated 90% prediction limits of the best-
estimate approach show good agreement with the experimental results.  

The different assessments contain some potential sources for non-conservatism, 
such as uncertainties or approximations of the actual local stress field near the weld 
joint or even application of LEFM to potentially short cracks. Overall conservatism 
of the fatigue flaw tolerance approach is however preserved by postulating 
relatively large initial flaws and conservative assumptions regarding the fatigue 
growth law and determination of the fatigue crack driving force, which ensures 
increased fatigue crack growth rates. The sensitivity analysis highlights that the 
variation in the estimated fatigue life is best reduced by limiting or controlling the 
variation of the load, which may be accomplished by means of accurate load 
measurement or monitoring programs. To a lesser extent the variation in the fatigue 
growth law parameters also contributes to the variation in the estimated fatigue life. 

The results support the use of flaw tolerance approaches for demonstrating 
reliability of a component using fracture mechanics methods, although the selection 
of input data was observed to significantly affect the overall degree of conservatism 
for the obtained fatigue life estimate. The performed work has contributed to 
verification of flaw tolerance approaches used in industry, which will facilitate the 
choice of optimal and safe control intervals for components subjected to fatigue 
loads. 
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Sammanfattning 
Utmattningsprov har utförts på svetsade austenitiska rostfria rör som utsattes 
för både konstant och variabel amplitud belastning. Resultaten redovisades i 
Evaluation of fatigue in austenitic stainless steel pipe components - SSM 
2015: 38 och möjliggör en utvärdering av de brottmekaniska analyser som 
används inom industrin och som grundar sig på en brottmekanisk metodik 
implementerad i ProSACC (version 2.1, rev 2). Den aktuella studien syftar 
till att validera analyserna genom jämförelse av beräknade livslängder med 
experimentella för de betraktade rören. Metodens konservatism utvärderas 
och bidraget av osäkerheten i utvalda inparametrar till den totala variationen 
i beräknade livslängd bestäms med hjälp av en känslighetsanalys. 

Studien visar att brottmekanisk analys enligt ASME medför omfattande 
konservatism. En analys i stället baserat på en best-estimate visar en 
betydande minskning av konservatismen och indikerar att 
utmattningsinitieringen utgör ett försumbart bidrag till den totala 
utmattningslivslängden för de utförda experimenten. Det uppskattade 90% 
prediktionsintervallet för best-estimate analysen visar god 
överensstämmelse med de experimentella resultaten. 

De genomförda analyserna enligt ASME uppvisar övergripande 
konservatism, trots osäkerheter kring det lokala spänningsfältet vid 
svetsfogen eller tillämpning av LEFM till potentiellt korta sprickor. 
Konservatism säkerställts genom att postulera relativt stora initiala defekter 
och konservativa antaganden för tillväxtlagen och skademekanismens 
drivkraft. Känslighetsanalysen belyser att variationen i beräknad livslängd 
minskas mest genom att kontrollera lastens variation, vilket kan 
åstadkommas med hjälp av noggrann lastmätning eller 
övervakningsprogram. I mindre utsträckning bidrar också variationen i 
tillväxtlagens parametrar till variationen i beräknad livslängd. 

Resultaten stöder användning av brottmekanik för att visa tillförlitlighet hos 
en komponent, även om valet av indata påverkar nivån på konservatism i de 
uppskattade utmattningslivslängder. Studien har bidragit till verifiering av 
de skadetålighetsanalyser som används inom industrin och därmed 
underlättar valet av optimala och säkra kontrollintervall för komponenter 
som utsätts för utmattningslaster. 
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1 Conclusive Summary 
The current study presents a numerical investigation of fatigue flaw tolerance 
approaches based on fracture mechanical analyses, which are used to estimate 
fatigue life and determine service or inspection intervals for components. The 
investigation compared estimates of fatigue life for a welded austenitic stainless 
steel piping component computed using ProSACC (version 2.1 rev 2) with 
available experimental results. The numerical analyses considered fatigue flaw 
tolerance assessments of both internal and external fatigue cracks with a standard 
conservative approach inspired on ASME and a best-estimate approach. A 
parametric analysis using Variation Mode and Effect Analysis (VMEA) was also 
performed based on the best-estimate approach. The current study resulted in the 
following main findings: 

 The conservative ASME inspired fatigue flaw tolerance approach yields 
extensive conservatism. 

 The best-estimate flaw tolerance approach presents significantly reduced 
conservatism. 

 The results of the best-estimate flaw tolerance approach imply a negligible 
contribution of fatigue initiation to the total fatigue life. 

 The studied approaches contained potential sources of non-conservatism 
related to the assumed load description and applicability of LEFM. 

 Overall conservatism of the fatigue flaw tolerance approach is preserved by 
means of conservative flaw geometry, material, load and fatigue growth 
assumptions. 

 Variation of selected input data covering initial flaw geometry, growth law 
and load description induced relatively large variability of the estimated 
fatigue life. 

 The VMEA indicated that the extent of the variability in the estimated 
fatigue life is primarily due to the variation or uncertainty in load. 

 Load measurement or monitoring programs allowing for accurate load 
description enable to significantly reduce the variability in the estimated 
fatigue life. 

 The estimated 90% predictions limits for the best-estimate flaw tolerance 
approach contained the experimental results. 

The results support the use of flaw tolerance approaches for demonstrating 
reliability of a component using fracture mechanics methods, although the choice 
of input data is shown to strongly affect the overall degree of conservatism for the 
obtained fatigue life estimate. The performed work has contributed to verification 
of flaw tolerance approaches used in industry, which will facilitate the choice of 
optimal and safe control intervals for components subjected to fatigue loads. 

  



SSM 2016:27
 

 5 

2 Nomenclature 
 

a Crack depth 

A Cross-sectional area 

c Sensitivity coefficient 

C Fatigue growth law factor (Paris law) 

C0 Modified fatigue growth law factor to avoid accounting for crack closure effects 

dg Average grain size diameter 

E Young’s modulus 

f Transfer function used in sensitivity analysis 

F Normalized through-thickness evolvement of stress concentration factor 

H Geometry function in stress intensity factor formulation 

� Integral included in expression of η 

i,j Dummy indices 

I Area moment of inertia of the cross-section 

K Stress intensity factor 

Kt Stress concentration factor  

l Crack length 

L Moment arm 

m Fatigue growth law exponent (Paris law) 

n Total number of (strain) cycles in a load sequence  

N Fatigue life, Total number of cycles (simulated or experimental) 

Nexp Total number of cycles (from fatigue experiments) 

Ni Total number of cycles consumed by fatigue crack initiation 

Np Total number of cycles consumed by fatigue crack propagation 

r Radial coordinate of cross-sectional polar coordinate system 

rpc Cyclic plastic zone radius 

R Load ratio 

RC Ratio of fatigue growth law factors C 

�� Ratio of integrals � 

Ri Inner radius of piping component 

Rη Ratio of Basquin equation factors η 

Rσ Stress ratio 

s Standard deviation 

t Wall thickness of piping component 

u Local radial coordinate with origin at fatigue crack initiation position  

w Coefficient of variation 

x Variable in sensitivity analysis 

α Exponent in Basquin equation for experimental or total fatigue life 

β Exponent in Basquin equation for experimental or total fatigue life 

γ Ratio of bending and membrane stress 

Δ∎ Range or difference 

ε Strain 

η Factor in Basquin equation for fatigue life consumed by propagation 

κ Factor in Basquin equation for experimental or total fatigue life 

λ Ratio estimated propagation fatigue life and total experimental fatigue life 

μ Mean value 

ν Poisson’s ratio 

σ Pseudo-stress 

σyc Cyclic yield strength 
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τ Contribution to standard deviation of logarithmic fatigue life 

φ Angular coordinate of cross-sectional polar coordinate system 

χ Ratio m-norm and β-norm 

∎a Amplitude 

∎init Quantity related to fatigue crack initiation (position) 

∎max, max∎  Maximum value 

∎min Minimum value 

∎nom Nominal value 

∎th Threshold value 

∎� Quantity related to logarithmic variable 

∎0 Quantity related to φ = 0 

∎φ Quantity including a φ-dependence or evaluated at φ. 

‖∎‖�  m-norm 
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Table 1 Selected fatigue results for the performed fatigue tests. 

Pipe 
ID 

Load 
type 

Severity(*) Nexp  max εa,nom  Radial 
initiation 
position 

φinit 
[cycles] [%] [°] 

1 VAP  Medium 575000 0.171 outside 34 

2 VAP  Low 2500000 0.126 inside 0 

3 VAP  High 217000 0.203 outside 161 

4 VAP  Peak 139000 0.288 outside 30 

5 VAP  Low 2520000 0.124 inside 17 

6 VAP  Medium 253000 0.173 outside 17 

7 VAP  High 269000 0.207 outside 8 

8 VAG  Medium 941000 0.136 inside -15 

9 VAG  Medium 1063624 0.140 outside 0 

10 VAG  High 126350 0.185 outside 12 

11 VAG  Low 3921275 0.101 inside 26 

(†)13 VAG  Low 5133411 0.103 - - 

14 VAG High 247441 0.180 outside -21 

15 CA  2.2  740735 0.085 inside 172 

(†)16 CA  1.7 5269515 0.065 - - 

18 CA  1.95 1027847 0.074 inside -148 

19 CA  2.6 291260 0.099 outside 6 

20 VA2  - 1131716 0.069 inside 8 

21 VA2 - 4880396 0.069 inside -31 

(†)22 VA2 - 5024628 0.068 - - 

23 VA2 - 913856 0.069 inside 8 

24 VA2 - 321904 0.069 inside 171 

25 CA  2.8 105769 0.109 outside 8 

26 CA  2.8 144230 0.115 outside 0 

27 CA  1.8 1367448 0.073 outside -149 

28 CA  1.7 512749 0.065 inside 9 

(†)29 CA  1.7 5000000 0.068 - - 

(†)30 CA  1.7 5000000 0.067 - - 

(*) The severity for the CA experiments corresponds to the prescribed displacement amplitude. 
(†) Run-out experiment, where the number of cycles exceeded the run-out limit of 5 million cycles. The fatigue tests 
were stopped prior to leakage and no fatigue initiation position was identified or detected. 

 

Selected fatigue results for the 28 considered specimens are summarized in  
Table 1, where the total number of applied load cycles (Nexp) and the maximum 
nominal strain amplitude in the applied load sequence (max εa,nom) are reported 
from [5]. The radial (inside/outside) and circumferential position (φinit) of fatigue 
initiation are taken from [6]. The circumferential position corresponds to the 
angular coordinate of a cross-sectional centered cylindrical coordinate system. The 
position of the strain gage situated in the bending plane of the specimen 
corresponds to a circumferential angle equal to zero. Additional information about 
the test specimens, experimental set-up, testing procedure, load description and/or 
obtained results is presented in [5, 7, 6]. 
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During fatigue testing nominal strains were recorded, which for the fatigue flaw 
tolerance approaches were transformed in a nominal linear elastic pseudo-stress by 
means of E. The transformation from nominal to local stress or strain is performed 
assuming a constant concentration factor Kt = 1.4 [5] and a through-thickness 
evolvement defined by means of a function F, illustrated in Figure 2. The 
normalized through-thickness evolvement of the stress concentration factor at a 
weld toe was computed using a finite element (FE) simulation similar to the one 
used for the estimation of Kt in [5]: the FE analysis assumed a weld geometry given 
by a cap height of 0.5 mm and weld toe radius of 1 mm. The mesh size was 
approximately 0.1 mm and the simulation was performed using ANSYS 14.5 [11]. 
Kt and F are assumed identical for cracks starting from inside and outside. The 
shape of F in Figure 2, indicates that the stress concentration mainly acts down to a 
depth of approximately 10% of the wall thickness, whereas a stress field close to 
the nominal stress field is expected to act over the remaining, major part of the wall 
thickness. 

The predominant load is related to the alternating bending moment prevailing 
between the fixtures. The experimental set-up induces also a minor alternating 
membrane stress, which was found affecting localization of fatigue crack initiation, 
see [6]. The ratio of bending and membrane stress is given by the dimensionless 
factor γ = A L (Ri + t) / I, where A and I represent respectively the cross-sectional 
area and the area moment of inertia of the cross-section for the studied piping 
component. For the considered pipe geometry and experimental set-up, γ = 24.2, 
which highlights the predominance of the bending stress. The local pseudo-stress 
amplitude is a function of the polar coordinates, and is assumed to be given by the 
following expression: 

����� �� � ���� � 1������ � 1���� 1
1 � �� � � 1

1 � 1 ��
� �
�� � �� �������

�  (4) 

where the first bracket accounts for the transfer from nominal to local stress. The 
second bracket considers the linear r dependency of the nominal pseudo-stress. 
Considering the negligible contribution of the membrane stress, the φ dependency 
was approximated by factorization to be included in the expression a nominal strain 
amplitude defined in terms of φ and the nominal strain amplitude at the strain gage 
������� , i.e. at φ = 0 (and r = Ri + t):  

 ������� � |����|�������  (5) 

For a crack initiated at φ = φinit , the local through-thickness pseudo-stress 
amplitude distribution is then given by ����� ������. The developed load model is 
intended for use with small angular coordinates, i.e with φinit relatively close to 0, 
which was shown to be the most probable position for crack initiation [6]. At the 
secondary most probable initiation position, i.e. in the vicinity of φinit = 180°, the 
model somewhat over-estimates the local stress amplitude, as it assumes membrane 
stress to act in phase with bending stress. At these locations, this minor over-
estimation does however ensure conservatism of the performed flaw tolerance 
assessments. The through-thickness distribution of the normalized stress amplitude 
is illustrated in Figure 3 (a). 

The constant internal pressure induces a local mean stress distribution near the 
weld, which gives the pseudo-stress ratio distribution illustrated in Figure 3 (b) for 
�������  = 0.1%. Considering lower nominal strain amplitudes yields an increase in 
pseudo-stress ratio, which does however remain negative for the performed 
experiments. The mean load distribution is independent of the circumferential 
position, but differs between considered radial crack initiation positions. For cracks 
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that started from inside the internal pressure gives an additional contribution as a 
constant crack face pressure. The mean load is expected to be affected by the 
through-thickness weld residual stress distribution, which was however not 
included in the current investigation. Similarly as in [3], the weld residual stress is 
thus assumed to be zero. 

(a) 

(b) 

Figure 3 Through-thickness evolvement of (a) normalized pseudo-stress amplitude and (b) pseudo-
stress ratio for a nominal strain amplitude at the initiation position of 0.1%. 
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5.1.2 Equivalent strain amplitude measure 
The load model in Equation (4) requires a scalar nominal strain amplitude, which is 
directly available for CA tests, but not for VA tests. For fatigue tests using VA 
loads, an equivalent strain amplitude measure needs therefore to be defined. For the 
current fracture mechanical approach an equivalent strain amplitude measure based 
on the fatigue growth law exponent m is selected. The equivalent measure for a 
load sequence consisting of n strain cycles with amplitude εa,i , is then expressed in 
terms of the m-norm of the strain amplitudes. 

 
‖��‖� � �1�������

�

�
�
���

 (6) 

This equivalent strain amplitude measure differs in general from the β-norm strain 
defined in [5], as m ≠ β = 4.6. For a given type of load spectrum the ratio of the m-
norm and β-norm, denoted χ, will however be constant. In absence of a threshold 
value, the magnitude of the considered load spectrum will not affect this ratio. The 
ratios for the considered load types are given in Table 4.  

 
Table 4 Ratio of m-norm and β-norm strains from [5] for different load types. 

Load type VAP VAG CA VA2 

χ 0.842 0.881 1.000 0.974 

 

Table 5 presents different nominal strain measures for the performed fatigue tests. 
The m-norm strain at φ = 0 is denoted �������� �� and is computed using the 
relevant χ in Table 4 and the β-norm strain available in [5]. The m-norm strain at 
the initiation position tabulated in Table 1, is denoted ������������ �� and is determined 
using Equation (5). This equivalent strain measure is by definition smaller the m-
norm strain at φ = 0, but no large differences are observed, as the absolute value of 
the cosine of φinit is relatively close to unity. For run-out experiments, a 
circumferential initiation position is not available. It was then assumed to be given 
by the most probable location for fatigue crack initiation, i.e. φinit = 0 [6].  
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Table 5 Different nominal strain measures for the performed fatigue tests. 

Pipe 
ID 

Load 
type 

Severity(*) max εa,nom    

[%] [%] [%] 

1 VAP  Medium 0.171 0.061 0.051 

2 VAP  Low 0.126 0.045 0.045 

3 VAP  High 0.203 0.073 0.069 

4 VAP  Peak 0.288 0.096 0.083 

5 VAP  Low 0.124 0.044 0.042 

6 VAP  Medium 0.173 0.060 0.057 

7 VAP  High 0.207 0.072 0.072 

8 VAG  Medium 0.136 0.054 0.052 

9 VAG  Medium 0.140 0.057 0.057 

10 VAG  High 0.185 0.073 0.071 

11 VAG  Low 0.101 0.042 0.038 

(†)13 VAG  Low 0.103 0.041 0.041 

14 VAG High 0.180 0.065 0.061 

15 CA  2.2  0.085 0.085 0.084 

(†)16 CA  1.7 0.065 0.065 0.065 

18 CA  1.95 0.074 0.074 0.063 

19 CA  2.6 0.099 0.099 0.098 

20 VA2  - 0.069 0.059 0.059 

21 VA2 - 0.069 0.059 0.051 

(†)22 VA2 - 0.068 0.059 0.059 

23 VA2 - 0.069 0.059 0.059 

24 VA2 - 0.069 0.059 0.059 

25 CA  2.8 0.109 0.109 0.108 

26 CA  2.8 0.115 0.115 0.115 

27 CA  1.8 0.073 0.073 0.062 

28 CA  1.7 0.065 0.065 0.064 

(†)29 CA  1.7 0.068 0.068 0.068 

(†)30 CA  1.7 0.067 0.067 0.067 

(*) The severity for the CA experiments corresponds to the prescribed displacement amplitude. 
(†) Run-out experiment, where the number of cycles exceeded the run-out limit of 5 million cycles: φinit = 0 is 
assumed. 
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5.1.3 Propagation fatigue life 
The number of cycles to failure consumed by fatigue crack propagation is obtained 
by integration of Equation (1), where the stress intensity factor range can be 
expressed in terms of the strain amplitude and a geometry function H characteristic 
for a given crack geometry: 

 �� � ��	� (7) 

In the current investigation two semi-elliptical crack configurations (internal and 
external) are considered, which will consequently have different geometry 
functions H. Furthermore will these functions depend on the flaw size, i.e. a and l. 
Integration of Equation (1), considering Equation (7), yields 

 � � ����	��	���� � 	�	����	 (8) 

which is a Basquin type equation with factor η and an exponent giving by the 
fatigue crack growth law (Paris law) exponent m. The factor η is given by ���, 
where �is an integral with the initial and final crack depth as integration limits and 
H-m as integrand. The expression of N in Equation (8) can be generalized to be 
applicable to VA load by summation of the different strain amplitude 
contributions: 

 � � ����	��	�‖��‖���� � 	�	�‖��‖����	 (9) 

The expression includes the m-norm of the strain amplitude defined in Equation 
(6). The m-norm strain can thus be interpreted as the equivalent CA strain 
amplitude yielding identical fatigue life (number of cycles of propagation) as the 
original VA load sequence, for a given final crack size. The derivation assumes 
sequence or history effects to be negligible. Such effects are indeed not accounted 
for due to the assumption of ΔKth = 0. 

The stress intensity factor formulations implemented in ProSACC are based on 
tabulated solutions, see [8], which present a range of applicability a/t ≤ 0.8. Hence, 
ProSACC will only allow computation of the number of cycles corresponding to 
propagation from the initial crack depth up till a = 0.8 t. It will be assumed that 
Na=0.8t is a conservative estimate of the number of cycles to leakage starting from a 
postulated initial flaw size. Continued propagation of the fatigue crack up to wall 
penetration, i.e. a = t, and leakage, is namely expected to occur with significantly 
increased fatigue crack growth rates. Additionally is linear elastic fracture 
mechanics (LEFM) expected to be no longer applicable during the final stages of 
fatigue crack growth up to wall penetration.  

For given fatigue growth law parameters and final crack depth, Equation (9) 
indicates that � � ��‖��‖��� is constant. This observation avoids performing 
ProSACC simulations for each specimen separately, as only one simulation 
suffices to determine the factor η. The number of cycles to failure, N, for each 
specimen is then estimated by means of Equation (9) with ‖��‖� � 	������������ ��, 
tabulated in Table 5. 
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5.1.4 Crack closure effects 
In the current study, conservatism of the considered flaw tolerance approaches is 
ensured by not considering crack closure effects on fatigue life, as crack closure 
tends to reduce the crack growth driving force.  

For the standard flaw tolerance approach, the fatigue growth law implementation in 
ProSACC is based on the formulation in ASME XI [4], where the total extent of 
the stress intensity factor range is used, even for R ≤ 0: 

 �� � ���� � ���� �	����	�� � ��	 (10) 

Consequently, crack closure effects are not considered in the definition of ΔK. 

The best-estimate analysis is performed using the ‘fatigue growth law defined by 
coefficients’ implemented in ProSACC. This implementation uses however an 
effective stress intensity factor range to account for crack closure effects, which for 
R ≤ 0 is given by 

 �� � ���� (11) 

In order to deal with crack closure effects in a similar way as the standard approach 
and avoid reduced fatigue crack growth rates, the fatigue growth law factor was 
modified considering Equation (1) and comparing Equations (10) and (11): 

 �� � �	�� � ��� � �	� � 	����	����	 (12) 

The modified fatigue growth law factor will be used as input in ProSACC and is 
assumed common for both investigated crack geometries. The multiplicative factor 
6 is derived by approximating the load ratio R with the overall mean value of the 
pseudo-stress ratio in Figure 3 (b), considering both crack geometries, which 
resulted in approximately -0.72. This approximation was enabled as Rσ in  
Figure 3 (b) is relatively constant through the thickness. 

The considered flaw tolerance approaches initially consider crack closure effects 
differently, which is remediated by modifying the input for the best-estimate 
approach, i.e. using C0 from Equation (12) instead of C in Table 3. 
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5.2.3 Sensitivity analysis applied to propagation fatigue life 
The standard fatigue flaw tolerance approach using recommendations from ASME 
is expected to yield a conservative estimate of the propagation fatigue life. 
However no information is available about the variation of the result due to 
uncertainty in the input parameters. The sensitivity analysis based on a best-
estimate analysis, aims at studying the variation in estimated fatigue life and 
investigating which properties of the fracture mechanical assessment have a 
dominant effect on the estimated fatigue life variation. This parametric procedure is 
known as Variation Mode and Effect Analysis (VMEA) [13]. 

The procedure is based on a linearization of a transfer function. To reduce effects 
of non-linearities, the sensitivity analysis considers the logarithmic fatigue life. For 
the current investigation four assumed independent logarithmic stochastic 
variables, �� ��, are considered:  

 ��� � �����‖��‖��� �� � � �� � � �� �� (16) 

where f denotes the transfer function and the variables xj cover the effects on 
fatigue life of load (‖��‖�), material (C) and initial crack geometry (a and l). The 
effects of other parameters such as for instance the nominal pipe geometry 
dimensions or the fatigue growth law exponent have not been directly included in 
the current study. A more explicit expression of the transfer function is obtained by 
taking the natural logarithm of Equation (9) yielding, 

 ��� � ��	���‖��‖���	�� � � ���� ��� � � �� ��� (17) 

The expected values (μ’) and standard deviations (s’) of the selected logarithmic 
variables are considered known. They can namely be expressed as follows for a 
given variable xj: 

 ��� � ����� � �� ��� � �� �� (18) 

 ��� � ����� �
���
���

� ��
�� � �� � ��� (19) 

where wj denoted the coefficient of variation of variable xj.  

Under the assumption that the input variables are independent, the standard 
deviation of the logarithmic fatigue life is approximated by means of the Gauss 
approximation formula: 

 

���� � 	 ��� � �����������
�

���
� ��������

�

���
� 	�����

�

���
	 (20) 

where cj denotes the sensitivity coefficient belonging to �� ��. Equation (20) yields 
thus an estimation of the coefficient of variation of the propagation fatigue life, i.e. 
wN. The sensitivity coefficients are the partial derivatives of the transfer function 
with respect to the input variables taken around the expected values of the input 
values, which for a given variable xj gives: 

 �� � ����� �
��

���� ������
 (21) 
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Considering Equation (17), analytical expressions of these sensitivity coefficients 
can be derived for the load or equivalent nominal strain amplitude and the fatigue 
crack growth law factor C: 

 ����‖��‖�� � ��� (22) 
 ���� � ��� (23) 

However for the two remaining variables related to the initial crack geometry no 
analytical solutions are directly available. The sensitivity coefficients are then 
estimated numerically by a central difference approximation using ProSACC. 

Knowing the standard deviation of the logarithmic fatigue life by means of 
Equation (20), allows the determination of prediction limits. The 90% prediction 
limits will be determined assuming a normal distribution of the logarithmic fatigue 
life, and aims at illustrating the variation in estimated fatigue life due to variation 
in selected input parameters for the best-estimate flaw tolerance approach.  
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Figure 4 illustrates the different estimates of fatigue life and related prediction 
limits for both the conservative standard and best-estimate approaches obtained for 
the two investigated crack geometries. The estimate of the mean total fatigue life 
based on experimental results (Nexp - mean) is defined by Equation (15) and 
represented with a solid black curve. The dashed black curve (Nexp - 90%) 
corresponds to the lower 90% prediction limit or design curve derived in [5]. 
Experimental data points relevant for the considered crack geometry are included 
in Figure 4 using  in Table 5 as equivalent strain measure. The different 
symbols used for the experimental data points refer to the different load types. The 
mean expected fatigue life consumed by propagation obtained with the standard 
approach (Np - ASME) and best-estimate approach (Np - VMEA - mean), are 
respectively represented with a magenta and cyan solid curve. These mean curves 
are defined by Equation (9) and the η factors in Table 6.  

A first difference between the mean curves for Nexp and Np is the difference in 
slope, which is due to the different exponents of the Basquin equations, i.e. m ≠ β. 
The estimate of Np using the standard approach inspired on ASME XI [4] is always 
situated below the fitted estimate of Nexp, for the considered equivalent strain 
amplitudes. This observation is valid for both considered crack geometries and 
illustrates the extensive conservatism of the standard approach. Using a flaw 
tolerance approach based on the best-estimate approach preserves conservatism for 
equivalent strain amplitude less than 0.05 %. For the smaller equivalent strain 
amplitudes a significant reduction of conservatism is obtained. For larger 
equivalent strain amplitudes the mean estimate of propagation fatigue life exceeds 
the fitted estimate of Nexp, resulting in non-conservatism. It can however be noted 
that the extent of conservatism for the best-estimate approach will strongly depend 
on the slope of the mean curve, i.e on the fatigue growth law exponent m which 
was assumed equal to the one of the standard approach. Larger exponents are 
expected to increase conservatism of the best-estimate approach. 

When the Np estimates are assumed to represent the total number of cycles of 
fatigue life consumed by propagation, then one can compute the ratio λ = Np / Nexp, 
for the different crack geometries and flaw tolerance approaches, see Figure 5. The 
ratio λ indicates then the portion of the total fatigue life consumed by propagation, 
whereas 1- λ would inform about the portion of the total fatigue life consumed by 
initiation. 

For the standard approach, the total fatigue life consumed by actual crack 
propagation is less than 10% for the smaller equivalent strain amplitudes, whereas 
it is approximately less than 20% for the larger equivalent strain amplitudes. For 
the smallest considered equivalent strain amplitudes the standard flaw tolerance 
approach predicts that almost the entire total fatigue life is consumed by fatigue 
crack initiation. For the best-estimate approach, λ is larger as it predicts a larger 
portion of the fatigue life to be consumed by propagation of the flaw. For 
equivalent strain amplitudes exceeding approximately 0.05 %, λ approaches unity, 
which can be interpreted as a negligible contribution of fatigue crack initiation to 
the total fatigue life. An increase in λ is observed for increasing equivalent strain 
amplitudes, i.e. fatigue crack initiation represents a smaller part of the total fatigue 
life when larger loads are applied. These results indicate that a larger portion of the 
total fatigue life is consumed by initiation for the smaller equivalent strain 
amplitudes than for the larger ones. 
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(a) 

(b) 
Figure 4 Equivalent strain amplitude vs number of cycles for (a) an internal fatigue flaw and (b) an 
external fatigue flaw. 
 

Figure 5 Equivalent strain amplitude vs portion of total fatigue life consumed by propagation. 
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7 Discussion 
Fatigue flaw tolerance assessments are expected to yield a conservative estimate of 
total fatigue life by modelling fatigue crack propagation only. Initiation or 
nucleation fatigue life is then neglected, as well as fatigue crack propagation up to 
the postulated initial flaw size. Additionally, in the current investigation, the 
number of cycles consumed by fatigue crack growth for a ≥ 0.8t, are also 
neglected. Besides the limits imposed on the fatigue flaw size, the use of 
conservative estimates or upper-bounds of the material parameters for the fatigue 
crack growth law also contribute to the overall conservatism of the flaw tolerance 
assessments. Indeed an increased fatigue growth law factor or exponent induces 
larger crack growth rates, which yields shorter estimated fatigue life.  

The performed sensitivity analysis illustrated the importance of the load description 
for the results from the flaw tolerance assessment. Several assumptions related to 
the load description are intended to ensure the inherent conservatism of the used 
procedures. First, the load description is based on elastic pseudo-stress. Any 
reduction in stress due to local plastic deformation is thus neglected, although 
inelastic deformations are definitely expected to have occurred in the vicinity of the 
welding joint during fatigue testing [5]. Hence, a reduction of the stress intensity 
factor range due to plasticity is not accounted for, which will induce larger crack 
growth rates. Furthermore, the performed fatigue flaw tolerance assessments 
assume absence of crack closure effects on the fatigue crack growth rate. This 
assumption also ensures conservatism of the estimated fatigue life, as crack closure 
is expected to have occurred during the performed fatigue experiments in [5]. 
Using the entire stress intensity factor range is then an over-estimation of the 
fatigue crack driving force. Conservatism of the fatigue flaw tolerance assessment 
may be reduced with the use of an effective measure [12]. Finally, the VA load 
spectra applied during testing, such as VAP and VAG, included many load cycles 
with small amplitudes. Initially during the damage process, these load cycles may 
not have contributed to fatigue crack growth, however at a later stage when the 
crack propagated due to the larger load cycles included in the load spectrum, these 
same small load cycles may start to gradually contribute to the damage process by 
participating in driving fatigue crack propagation. Such sequence or history effects 
are also expected to have occurred during fatigue testing with VA loads. The 
fatigue flaw tolerance assessments assume however conservatively that all load 
cycles, including thus even the smallest load cycles, contributed to fatigue crack 
growth propagation during the entire damage process, by setting the threshold ΔKth 
to zero. 

The load description is based on a load model using a constant stress concentration 
factor Kt and a normalized through-thickness evolvement of the stress 
concentration F, which were derived by FE analyses assuming a specific weld joint 
geometry. These quantities define how much the local stress field in the vicinity of 
the weld differs from the nominal stress field away from the welding joint. The 
load model also neglects the effect of the local stress field varying in the 
circumferential direction. The stress concentration actually occurring in the test 
specimens will therefore to some extent differ from the description used in the flaw 
tolerance assessments. The stress concentration factor is however expected to 
primarily affect the stress field near the initiation surface. Consequently, its effect 
at advanced fatigue crack growth can be considered to be relatively small. The 
assumed through-thickness evolvement F may also differ from reality, as for 
instance increased cap height will reduce the stress in the vicinity of the capping 
and thus directly affect F. The load model in the current investigation did 
furthermore not consider the weld residual stress. The through-thickness residual 
stress field will however directly affect the mean load, i.e. the load ratio R, which is 
expected to influence the fatigue crack growth rate in the flaw tolerance 
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assessments. A tensile weld residual stress will induce an increase in load ratio, 
which can give an increased fatigue crack growth rate, especially when R becomes 
positive with the fatigue growth law defined in ASME XI [4]. Tensile weld 
residual stresses can for the considered butt weld and pipe geometry be expected 
on the inside of the component. A reduction of the estimated propagation fatigue 
life can thus be expected for the internal fatigue flaw. The importance of this effect 
will depend on the relative importance of the weld residual stress magnitude 
compared to the magnitude of the stresses introduced by the external load. The load 
model is nevertheless considered as adequate for the investigation of the piping 
component, although some uncertainties about the actual effect of the weld joint 
geometry and the importance of the weld residual stress field remain and could 
potentially yield non-conservatism of the adopted assumptions. 

The flaw tolerance approaches performed in the current investigation are based on 
the applicability of LEFM, which is not valid for short or small cracks, as they may 
present increased crack growth rates when compared to long or large cracks [12]. A 
crack can furthermore be physically, mechanically or microstructurally small, 
when the crack size is less than, or of comparable size as a characteristic dimension 
or limit: 

 A crack is typically considered as physically small when the crack size is 
less than 1 mm. 

 A crack is referred to as microstructurally long or large when its size is 
significantly larger than a characteristic dimension of the microstructure 
[12], such as the average grain size, dg. For the considered austenitic 
stainless steel, dg ≈ 40 μm, which is to be compared to the initial crack depth 
used in the flaw tolerance approach. 

 A crack with a size comparable to the cyclic plastic zone radius, rpc, at the 
crack tip is referred to as mechanically small [12]. The initial crack depth is 
then compared to the cyclic plastic zone size radius, which can be estimated 
under plane strain conditions [9] by 

 
��� � 1

��� �
��
������

�
 (25) 

The estimates of rpc for the different analyses performed in the current 
investigation are summarized in Table 8 and based on the total stress 
intensity factor range, computed neglecting crack closure effects and 
considering the initial flaw size. 

 
Table 8 Characteristic dimensions for the microstructure and cyclic plastic zone size depending on the 
considered crack geometry and flaw tolerance approach.  

Characteristic dimension Crack geometry or  
initiation location 

Flaw tolerance assessment 

Standard Best-estimate 

dg [μm] 40 

rpc [μm] 
Internal 65 55 

External 86 68 
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The results in Table 8 indicate that the cyclic plastic zone size radius is always 
larger than the average grain size diameter, which is typical for the Paris regime of 
fatigue crack growth [12], where Equation (1) is assumed valid. The postulated 
initial flaw depth, see Table 2, is less than 1 mm for the best-estimate approach, but 
the initial flaw length exceeds 1 mm. The crack is then considered as physically 
short, but not small. For the standard approach the initial flaw is considered 
physically large. Comparison of the initial crack depths postulated for the different 
flaw tolerance assessments with dg indicates that the initial fatigue flaws may be 
considered as microstructurally long. Considering the initial a/l ratio of 1/6, the 
crack front of the initial planar semi-elliptical crack will cover in average at least 6 
times more grains than along the initial crack depth. Consequently microstructural 
effects on the simulated fatigue damage process may be assumed negligible. 
Furthermore, are the initial flaw sizes larger than the cyclic plastic zone radius. The 
margins may be considered sufficient for the standard flaw tolerance approach, but 
are limited for the best-estimate approach and in particular when considering 
initiation from outside. The initial crack depth is then indeed slightly larger than 7 
rpc. The used approach in the current study assumed LEFM to be applicable, which 
may be questioned for the best-estimate approach. The computed crack growth 
rates may thus under-estimate the actual crack growth rates experienced by the 
physically or mechanically short cracks, which is a source of potential non-
conservatism. The effect of increased crack growth rates related to short cracks is 
nevertheless studied through variation of the fatigue growth law factor in the 
sensitivity analysis, which underlines the importance of estimating the variation of 
the computed fatigue life. 

An estimate of the total fatigue life is thus obtained by the performed assessments 
based on multiple assumptions related to the initial flaw size, the fatigue growth 
law parameters and the load description. The assumptions induce in general 
conservatism, but some potential sources for non-conservatism remain. These are 
related to the applicability of LEFM to short cracks, the effects of the weld residual 
stress field and uncertainties about the actual local stress field prevailing in the 
vicinity of the weld. Comparison between the experimental total fatigue life and 
the computed estimate of the fatigue life informs about the actual margins and 
degree of overall conservatism for the considered flaw tolerance approach. The 
results in Figure 4 show that the standard flaw tolerance approach inspired by 
ASME XI [4] always yields a conservative estimate. The estimate is for the 
considered experiments always considerably less than 10% of the actual number of 
cycles resulting in failure of the investigated piping component, see also Figure 5. 
This would imply that at least 90% of the total fatigue life is consumed by 
initiation. The best-estimate approach, which used an initial flaw size and fatigue 
growth law factor reduced with approximately 1/3, yielded estimation of the total 
fatigue life presenting a significant reduction and for larger loads even loss of 
overall conservatism. This is related to the mentioned potential sources for non-
conservatism, but is compensated by the additional sensitivity analysis, which 
yielded 90% prediction limits bounding the data points of the experimental study in 
[5], see Figure 4. The results of the best-estimate approach imply a negligible 
contribution of initiation fatigue life to the total fatigue life of the performed 
experiments. The estimated lower and upper 90% prediction limits represent 
approximately a factor 15 in fatigue life, which informs about the variability in 
computed estimates given a certain variation in selected input variables. The 
performed VMEA indicates a predominant role of the load magnitude in the 
variation of the predicted total fatigue life. This observation highlights the 
importance of accurate load description for fatigue flaw tolerance assessments, in 
order to reduce variation in the computed fatigue life estimate. The material 
description through the fatigue growth law factor will also give a non-negligible 
contribution to the variation in assessment output, when the variation in load does 
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not exceed the one in the fatigue growth law factor. These results are based on a 
VMEA considering only a selection of four independent variables. The effects of 
the fatigue growth law exponent, elastic material properties or the nominal pipe 
geometry were not considered explicitly, in order to simplify the analyses by 
avoiding dependencies between variables. Their effect was however to some extent 
included by assuming increased variation of their dependent variables. 

8 Conclusions 
The current investigation examined fatigue flaw tolerance approaches based on 
fracture mechanical analyses used to estimate fatigue life and determine service 
intervals for components. The investigation considered the welded austenitic 
stainless steel piping component used in the experimental fatigue study in [5], and 
was performed using ProSACC (version 2.1 rev 2). It included a standard 
conservative approach inspired by Appendix L in ASME XI [4], and a best-
estimate approach with a sensitivity analysis. The main findings of the current 
investigation considering both an internal and external fatigue flaw are: 

 The conservative ASME inspired fatigue flaw tolerance approach yields 
extensive conservatism and consequently implies that an extensive part of at 
least 90% of the fatigue life is consumed by fatigue nucleation. 

 Conservatism is significantly reduced and may even be lost for the best-
estimate flaw tolerance approach, which implied a negligible contribution of 
fatigue initiation to the total fatigue life. 

 Assumptions related to neglecting tensile weld residual stress fields, 
applying LEFM to short or small cracks and uncertainties about the actual 
local stress field prevailing in the vicinity of the weld joint constitute 
potential sources of non-conservatism in the estimate of total fatigue life. 

 Overall conservatism of the fatigue flaw tolerance approach is preserved by 
assuming a relatively large initial flaw size and neglecting effects from 
inelastic material behavior, sequence effects for variable amplitude loads and 
crack closure effects. Conservatism may also be introduced or extended by 
selecting increased fatigue growth law parameters. 

 Variation of selected input data covering initial crack geometry, growth law 
and load description induced relatively large variability of the estimated 
fatigue life, but the estimated 90% predictions limits contained the 
experimental results.  

 The VMEA indicated that the extent of the variability of the estimated 
fatigue life is primarily due to the variation or uncertainty in load and to 
some minor extent also to the fatigue growth law parameters. 

 The coefficient of variation of the estimated fatigue life is expected to 
rapidly exceed unity for increasing uncertainty in load. Load measurement or 
monitoring programs may contribute to accurate or relevant load description 
enabling significant reduction of the variability of the output of the fatigue 
flaw tolerance approach. 

The results support the use of flaw tolerance approaches for demonstrating 
reliability of a component using fracture mechanics methods, although the choice 
of input data is shown to strongly affect the overall degree of conservatism for the 
obtained fatigue life estimate. The performed work has contributed to verification 
of flaw tolerance approaches used in industry, which will facilitate the choice of 
optimal and safe control intervals for components subjected to fatigue loads.  
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9 Recommendations 
During the course of the current investigation, some limitations were observed, 
which may be resolved by considering the following actions: 

 Small postulated initial fatigue flaws were assumed, but considering the 
relatively small wall thickness of the considered component, the postulated 
initial crack depths were relatively large compared to the wall thickness. As 
a result the extent of actual simulated fatigue crack growth was fairly small 
compared to the wall thickness. A similar investigation considering a thick-
walled piping component would be valuable to confirm the obtained results 
and allow generalization to a broader range of piping components than the 
considered specific welded piping geometry. 

 The VMEA provided valuable information on variation in the computed 
fatigue life estimate and the relative contributions due the uncertainty related 
of each input parameter. The analysis considered though only a few 
independent variables. A more extensive sensitivity analysis can be 
performed by also including other dependent variables, such as the nominal 
pipe geometry, fatigue growth law exponent, stress concentration factor, etc. 

 The used load model presented some limitations, amongst which the 
omission of the contribution of the weld residual stress. The magnitude of 
the weld residual stress field may be determined and its effect on the load 
ratio can be investigated. This study would aim at evaluating the error 
introduced by neglecting its contribution in the performed flaw tolerance 
approaches. 
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