METODIK FÖR SÄKERHETSANALYS
BRAND - KÄRNBRÄNSLEFÖRVARET/SFR

2017-04-19
UPPDRAG
275007, SKB, Metodik för säkerhetsanalys brand

Titel på rapport:
Metodik för säkerhetsanalys brand

Status:
Slutversion

Datum:
2017-04-19

MEDVERKANDE

Beställare:
SKB

Kontaktperson:
Michael Öster, Tina Johansson

Uppdragsansvarig:
Lotta Fredholm

Handläggare:
Lotta Fredholm

Kvalitetsgranskare:
Björn Nilsson

Uppdragsansvarig:

Datum: 2017-04-27

Handlingen granskad av:

Datum: 2017-04-27
SAMMANFATTNING

Rapporten beskriver krav och rekommendationer för genomförande av säkerhetsanalys utifrån dimensionerande brandscenario.

Målet är att metodiken ska kunna användas för att bedöma om en dimensionerande brand kan orsaka sådan påverkan på ett skyddsoobjekt att uppsatta acceptanskriterier enligt SAR Allmän del kapitel 3 ej uppfylls.

Metodiken omfattar beskrivning av grundläggande förutsättningar samt beskrivning av de olika delarna i nedan angivna arbetsgång:

- Väl av dimensionerande brandscenario
- Väl av brandmodell
- Beräkna brandförlopp
- Värdera resultatet
- Osäkerheter och känslighetsanalys
- Dokumentation och kontroll

Rapporten ska kunna användas som underlag/referens till säkerhetsrevisning.
INNEHÅLLSFÖRTECKNING

1 INLEDNING ............................................................................................................. 5
  1.1 BAKGRUND ....................................................................................................... 5
  1.2 MÅL OCH SYFTE ............................................................................................. 5
  1.3 OMFATTNING .................................................................................................. 5
  1.4 AVGRÄNSNING ............................................................................................... 5
  1.5 ÖVERGRIPANDE MYNDIGHETSKRAV .............................................................. 5
  1.6 UNDERLAG OCH TILLÄmplIGA RIKTLINJER .................................................. 6

2 GENERELLA FÖRUTSÄTTNINGAR .................................................................... 7
  2.1 ANALYSMETOD ............................................................................................... 7
  2.2 KOMPETENS .................................................................................................. 7
  2.3 BRANDUPPKOMST .......................................................................................... 8
  2.4 ANALYSENS MÅLSÄTTNING .......................................................................... 8
  2.5 SKYDDSOBJEKT .............................................................................................. 8
  2.6 ANALYSOMRÅDE ............................................................................................ 8
  2.7 KREDITERING AV AKTIVA SKYDDSÅTGÅRDER ........................................... 8
  2.8 KREDITERING AV PASSIVA SKYDDSÅTGÅRDER ......................................... 8
  2.9 KREDITERING AV MANUELLA SKYDDSÅTGÅRDER ..................................... 9
  2.10 GRUNDLÄGGANDE INDATA ....................................................................... 9

3 METODIK .............................................................................................................. 10
  3.1 ARBETSGÅNG ................................................................................................ 10
  3.2 VAL AV DIMENSIONERANDE BRANDSCENARION ...................................... 10
    3.2.1 IDENTIFERA BRANDSCENARION .......................................................... 10
    3.2.2 DIMENSIONERANDE BRANDSCENARION .......................................... 10
  3.3 VAL AV BRANDMODELL ............................................................................... 11
  3.4 BRANDFÖRLOPPSBERÄKNING ..................................................................... 12
  3.5 VÄRDERA RESULTATET ................................................................................ 12
  3.6 OSÄKERHETER OCH KÄNSLIGHETSANALYS ................................................. 12
  3.7 DOKUMENTATION ......................................................................................... 13
  3.8 EGENKONTROLL OCH GRANSKNING ............................................................ 13

4 REFERenser ........................................................................................................... 14
1 INLEDNING

1.1 BAKGRUND

SKB bedriver verksamhet som enligt lagen (1984:3) om kärnteknisk verksamhet kräver tillstånd för uppförande, innehav och drift av en anläggning för använt kärnbränsle. För att erhålla tillstånd krävs att en säkerhetsredovisning upprättas. Inom ramen för säkerhetsredovisningen ska en säkerhetsanalys upprättas som visar att det inte blir några utsläpp av radioaktiva ämnen vid konstruktionsstyrande händelser eller att de utsläpp som kan uppstå är inom uppsatta acceptanskriterier.

1.2 MÅL OCH SYFTE


1.3 OMFATTNING

Uppdraget omfattar att ta fram en rapport som beskriver en metodik för genomförande av säkerhetsanalys utifrån dimensionerande brandscenario.

Metodiken ska omfatta krav avseende:
- Val av dimensionerande brandscenario
- Kreditering av automatiska och manuella släckningsutrustning och skyddssystem
- Modellering av brandsförlopp
- Känslighets- och osäkerhetsanalys
- Dokumentation

1.4 AVGRÄNSNING

Acceptanskriterier specifiseras inte i metodiken utan anges i respektive SAR Allmän del kapitel 3. Analyser av brandpåverkan på egendom och personer ingår inte i denna metodik.

Ytterligare påverkan, dvs brand utanför anläggningen omfattas ej.

En förutsättning för metodiken är att en inventering av händelser har genomförts. Inventering av händelser omfattas därför ej.

1.5 ÖVERGRIPANDE MYNDIGHETSKRAV


* Vid analys av brand i anläggningen, bör en brand som slår ut all utrustning i en brandcell antas kunna inträffa. Om det kan visas i en brandanalyser att sannolikheten för utsläpp av en hel brandcell är låg, genom att skyddsåtgärder har vidtagits för att förhindra brandspridning, behöver inte utsträckningen av hela cellen förutsättas. En sådan brandanalyser bör omfatta alla åtgärder som behövs till dess branden är släckt. I första hand bör passiva skyddsåtgärder tillämpas såsom rumsavskiljande väggar, inkapsling eller avskärmning av utrustningar,*
minimerad brandbelastning och avstänning mellan utrustningarna. Om enbart avstänningseparation tillgodogöras som skyddsåtgärd mellan redundant utrustningar, bör detta avse tillräckligt stora utrymmen och under förutsättning att brandanalyserna bekräfta att separationen är tillräcklig för att förhindra brandspridning.

I SSMFS 2008:1 anges bland annat följande generella krav på säkerhetsanalysen:
- Analysens syfte, osäkerheter och begränsningar
- Spårbarhet, motiverade antaganden och representativa indata
- Slutsats inom ramen för analysens förutsättningar och begränsningar
- Modeller, metoder och data ska vara validerade och förekommande osäkerheter beaktade

Tolkning av generella krav på säkerhetsanalys framgår av SAR Allmän delkapitel 3.

1.6 UNDERLAG OCH TILLÄMNINGA RIKTLINJER

IAEA Safety Guide NS-G-1.7 [1] omfattar riktlinjer för hur risker avseende brand och explosion ska hanteras inom kärnkraftverk. De syften som nedan återges i korthet är dock relevanta även för övriga kärntekniska verksamheter:
1. Identifiera objekt (med detta avses; strukturer, system och komponenter) viktiga för säkerheten och att fastslå placeringen av individuella komponenter i brandcellerna
2. Analysera den förväntade utvecklingen av brand samt brands effekter på objekt viktiga för säkerheten
3. Fastställa erforderlig brandteknisk klass på brandtekniska avskiljningar
4. Fastställa omfattning av erforderliga passiva och aktiva brandskyddsåtgärder
5. Identifiera fall där ytterligare brandskyddsåtgärder erfordras

BBRAD [2] utgör råd för analytisk dimensionering av byggnadens brandskydd och anger att följande steg bör ösa in i en dimensioneringsprocess:
- Identifiering av verifieringsbehovet
- Verifiering av tillfredsställande brandsäkerhet
- Kontroll av verifiering
- Dokumentation av brandskyddets utformning

1. Förhindra brand från att uppstå
2. Snabbt detektera, kontrollera och slåck de bränder som uppstå
3. Skydda strukturer, system och komponenter så att bränder som ej snabbt släcks inte förhindrar väsentliga funktioner från att utföras, inklusive krav på analys brandrisken.


Kvalitetsmanual för brandtekniska analyser vid svenska kärntekniska anläggningar [5] är framtiden med syfte att den ska användas vid brandtekntiska analyser vilka utförs inom ramen för säkerhetsanalyser. Kvalitetsmanualen omfattar beskrivning av arbetsgång, vägledning vid modellering, exempel på indata samt specific information om modellersverktyget FDS.

2 GENERELLA FÖRUTSÄTTNINGAR

2.1 ANALYSMETOD


Om resultatet av scenarioanalysen bedöms bli alltför konservativt kan en kvantitativ riskanalys vara lämplig. Denna kan då utföras i enlighet med beskrivningen av detaljerad brandmodellering i NUREG/CR-6850 [4], arbetsgång för detta redovisas i Figur 1.

![Diagram](image)

Figur 1 Arbetsgång detaljerad brandmodellering enligt NUREG/CR-6850 [4].

2.2 KOMPETENS

Kompetens inom brandingenjörsvetenskap krävs för att kunna genomföra och granska en analys enligt denna metodik.
2.3 BRANDUPPKOMST

Utgångspunkt för metodiken är att en brand kan uppstå i alla utrymmen där brännbara ämnen finns permanent och där brännbara ämnen inte kan uteslutas finnas tillfället. En brand antas därmed uppstå även där inga permanenta tändkällor finns.

2.4 ANALYSENS MÅLSÄTTNING

Analysens målsättning påverkar val av brandscenario och lämpliga brandmodeller. Målsättningen med säkerhetsanalys avseende brand är att verifiera att en dimensionerande brand ej kan orsaka sådan påverkan på ett skyddsobjekt att uppsatta acceptanskriterier enligt SAR Allmän del kapitel 3 ej uppfylls.

2.5 SKYDDSOBJEKT

Ett skyddsobjekt som vid brandpåverkan har potential att utmana acceptanskriterier enligt SAR Allmän del kapitel 3 kan utgöras av en barrfär i form av kapsel för inneslutning av använt kärnbränsle men kan också utgöras av behållare innehållande radioaktivt avfall eller eventuell utrustning ingående i anläggningens säkerhetsfunktioner (ej aktuellt för varken Kärnbränsleförvalt eller SFR). Ett annat exempel på möjligt skyddsobjekt är en brandcellssalvetillende eller bärande konstruktion.

Verifiering av skyddsobjektets integritet eller funktion under och efter dimensionerande brandförlopp förutsätter att skadekriterier för objektet är kända. Skyddsobjekt behöver även beskrivas med placering, materialegenskaper och eventuella beroende till andra system eller strukturer.

2.6 ANALYSSMÅLRADE

Med analyssmålet avses den del av anläggningen som omfattas av analysen. Ett analysområde kan vara allt från en del av ett utrymme till en hel anläggning. Analysområdet ska verifikeras vara beroende av yttre brandpåverkan och avgränsningen ska dokumenteras.

2.7 KREDITERING AV AKTIVA SKYDDSÅTGÄRDER

Exempel på aktiva skyddsåtgärder är släcksystem, brandlarm och brandgasventilation med hjälp av fläkt.

Aktiva skyddsåtgärder ska primärt inte krediteras.


2.8 KREDITERING AV PASSIVA SKYDDSÅTGÄRDER

Exempel på passiva skyddsåtgärder är strålsjägare som förhindrar direkt värmestrålning från flamma till skyddsobjekt. Till passiva skyddsåtgärder räknas även branddörrar och genomföringar.

Vid kreditering av passiva system ska dessa verifieras ge erforderlig effekt med hjälp av modellering av brandscenario. För branddörrar innebär detta att modellering av brandscenario ska påvisa att erhållna temperaturer inte överstiger de temperaturer som dörren är provad för.

Till passiva system räknas inom ramen för denna beskrivning även brand-/brandgasspjäll. Detta förutsätter dock att de har en dokumenterat hög tillförlitlighet.

Uppdrag:275007.
Beställare:Svensk Kärnbränslehantering AB
O:\Mål\275007\B鸷\Arbetsarea\Metodik för säkerhetsanalys Brand 20170419.docx
8(14)
För att passiva skyddsåtgärder ska krediteras krävs att kontroll och provning av dessa ingår i det systematiska brandskyddssarbetet.

För passiva skyddsåtgärder som är flyttbara krävs att flytt tillståndshanteras och återställande efter flytt kontrolleras.

Passiva skyddsåtgärder som uppfyller krav enligt ovan kan i en scenarioanalys krediteras utan beaktande av falskningsok. Övriga passiva skyddsåtgärder ska hanteras i likhet med aktiva skyddsåtgärder.

2.9  KREDITERING AV MANUELLA SKYDDSÅTGÄRDER


2.10  GRUNDLÄGGANDE INDATA

Grundläggande indata som krävs för genomförande av en brandteknisk analys är:

- Mängd och placering brännbara ämnen
- Potentiella tändkällor
- Säkerhetsrelaterad utrustning
- Skadekriterier för skyddsobjekt
- Brandtekniska avskiljningar
- Rumsgeometri, konstruktion och ventilation
3 METODIK

3.1 ARBETSGÅNG

De huvudsakliga stegen för analysen består av:

- Val av dimensionerande brandscenarion
- Val av brandmodell
- Beräkna brandförlopp
- Värdera resultatet
- Osäkerheter och känslighetsanalys
- Dokumentation
- Egenkontroll och granskning

Respektive delsteg kommer att beskrivas i efterföljande kapitel.

3.2 VAL AV DIMENSIONERANDE BRANDSCENARION

Val av brandscenarion bör ske i en systematisk process, som sammanfattas i nedanstående punkter:

1. Identifiera möjliga brandscenarion med potential att utmana skyddsobjektets skadekriterier
2. Välj ut dimensionerande scenarier som representerar möjliga scenarion eller scenariogrupper
3. Välj för respektive dimensionerande brandscenario ut relevanta och representativa parametrar

3.2.1 IDENTIFIERA BRANDSCENARION

Dimensionerande brandscenarion ska vara påfrestande för det system som studeras. Detta kan inkludera både allvarliga scenarier långt bort från skyddsobjekt och mindre allvarliga scenarier placerade i skyddsobjektets direkta närhet. Även brandscenarion utanför den aktuella brandcellen kan behöva beaktas.

Vid behov kan scenariogrupper skapas utifrån brandens storlek och typ av brinnande material, grupper kan också utgå från brandens placering eller tillväxthastighet och varaktighet.

3.2.2 DIMENSIONERANDE BRANDSCENARION

Utifrån identifierade möjliga scenarion och eventuella scenariogrupper ska ett eller flera dimensionerande scenarion väljas. Om scenariogrupper används bör minst ett dimensionerande scenario från respektive grupp definieras.

De dimensionerande branderna ska karakteriseras genom följande, tidsberoende, variabler (givet att de är nödvändiga för att verifiera brandsäkerheten):

- Effektutveckling och tillväxthastighet
- Produktion av brandgaser och sot
- Brandens storlek
- Påverkan på skyddsobjekt (direkt flampåverkan, plyn- eller takstrålsåverkan, omslutande brandgaslager, värmestrålning från flamma)

Exempel på faktorer som behöver specifileras för att kunna beskriva ovanstående variabler är:

- Tändkälla
- Typ av brännbart material
- Placering brännbart material
- Rummets geometri
- Ventilationsförhållanden
- Värmestrålning
- Exponerad yta
Avseende val av dimensionerande brands effektutveckling och tillväxthastighet rekommenderas följande:

- För bränder i fordon: effektutveckling väljs i enlighet med representativt (eller konservativt) fordon enligt Brand i fordon [7].
- För brand i tillfälliga brandbelastningar som exempelvis en sopsack: effektutveckling väljs i enlighet med Dimensionerande brandscenario. Brand i sopsack [8].
- För de antändningskällor som omfattas av (NUREG/CR-6850 [4]): effektutveckling (HRR) väljs i enlighet med 98% percentilen enligt Appendix E (se Figur 2).

<table>
<thead>
<tr>
<th>Case</th>
<th>Ignition Source</th>
<th>HRR kW (Btu/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vertical cabinets with qualified cable, fire limited to one cable bundle</td>
<td>69 (65)</td>
</tr>
<tr>
<td>2</td>
<td>Vertical cabinets with qualified cable, fire in more than one cable bundle</td>
<td>211 (220)</td>
</tr>
<tr>
<td>3</td>
<td>Vertical cabinets with unqualified cable, fire limited to one cable bundle</td>
<td>90 (85)</td>
</tr>
<tr>
<td>4</td>
<td>Vertical cabinets with unqualified cable, fire in more than one cable bundle</td>
<td>232 (220)</td>
</tr>
<tr>
<td>5</td>
<td>Vertical cabinets with unqualified cable, fire in more than one cable bundle closed doors</td>
<td>232 (220)</td>
</tr>
<tr>
<td>6</td>
<td>Pumps (electrical fires)</td>
<td>69 (65)</td>
</tr>
<tr>
<td>7</td>
<td>Motors</td>
<td>32 (30)</td>
</tr>
<tr>
<td>8</td>
<td>Transient Combustibles</td>
<td>142 (135)</td>
</tr>
</tbody>
</table>

Figur 2 Lista på maximal effektutveckling för olika antändningskällor enligt (NUREG/CR-6850) [4].

Vad gäller placering av branden i förhållande till skyddsobjektet ska flamman antas omsluta skyddsojektet. Undantag från detta kan göras om det kan uteslutas på grund av att objektet är skyddat eller att flamhöjden ej når objektet. På motsvarande sätt ska placering beakta plym- och taksträdpåverkan. Påverkan i form av värmestrålning från flamma är ofta dimensionerande vid korta avstånd mellan brand och skyddsojekt (>5 m). Påverkan från flamma kan uteslutas om avskärmning finns från alla håll där bränsle kan vara placerat.

Generellt bör vården väljas på parametrar utifrån rådande praxis. I övrigt rekommenderas att vården på parametrar väljs så att de är konservativa och ofta bedöms att vara så kallade värsta troliga. Det kan finnas skäl att välja mer troliga (medianlika) vården, men då behöver analysen kompletteras med en mer avancerad känslighetsanalys där osäkerheten i variabeln undersöks i detalj.

3.3 VAL AV BRANDMODELL

Det finns flertalet brandmodeller tillgängliga för att beräkna brandförloppet i ett utrymme. Dessa sträcker sig från enkla handberäkningsuttryck baserade på empiriska korrelationer till avancerade flödesdynamiska modeller (CFD). Val av brandmodell ska göras i enlighet med Kvalitetsmanual för brandtekniska analyser vid svenska kärntekniska anläggningar [5].

Specifika förutsättningar som ska beaktas vid val av modell är att stora bergrum med stor avkylnings medför låg sannolikhet för uppkomst av brandgaslager vid mindre bränder.

Vald modell ska verifieras uppfylla följande:

1. erforderlig precision
2. tillämpbar för det aktuella scenariot
3. validerats och verifierats i tillräcklig omfattning

Ovanstående innebär att modellen ska vara tillräckligt bra för det aktuella problemet, det vill säga att den inte ska vara mer komplicerad än vad som krävs.
3.4 BRANDFÖRLOPPSBERÄKNING


3.5 VÄRDERA RESULTATET

I enlighet med avsnitt 2.4 är målsättningen med säkerhetsanalys avseende brand att verifiera att en dimensionerande brand ej kan orsaka sådan påverkan på ett skyddsobjekt så att uppsatta acceptanskriterier enligt SAR Allmän del kapitel 3 ej uppfylls.

Att värdera resultatet omfattar att jämföra resulterande temperaturer och värmestrålningssnivåer med de skadekriterier som gäller för aktuellt skyddsobjekt.

Om skadlig påverkan ej kan uteslutas utifrån resultatet av scenarioanalys i enlighet med denna metodik kan åtgärder rekommenderas. Rekommenderade åtgärder ska då verifieras genom förbehållsvis skydd. Denna verifiering kan till exempel bestå av en ny scenarioanalys med nya förutsättningar eller baseras på provningsresultat. Ett alternativ till att införa åtgärder är genomförande av en mer noggrann analyser av brandsäkerheten i form av en kvantitativ riskanalys. Denna ska då utföras i enlighet med NUREG/CR-6850 [4].

3.6 OSÄKERHETER OCH KÄNSLIGHETSANALYS

Alla brandtekniska analyser innehåller osäkerheter. En scenarioanalys hanterar dessa genom att utgå från varierande grad av konservativa val för de ingående variablen. I syfte att kunna bedöma robustheten i analysens resultat rekommenderas att en känslighetsanalys genomförs.

Känslighetsanalysen bör omfatta en studie av påverkan på resultatet då en variabel i taget varieras. Dessa variabler beskrivs då med ett troligt högsta och ett troligt lägsta värde, tillsammans med det som utgör det så kallade grundvärdet. Genom att låta alla variabler utom en anta grundvärdet kan effekten på resultatet avläsas när den undersökte variabeln ändras inom sitt intervall. I vilken omfattning denna variation bör göras är beroende av problemställningen och graden av konservativt och osäkerhet i valda indata.

Om variationen mellan en variabels maximala och minimala värde endast ger en marginell effekt på det förväntade värdet (resultatet av analysen) behöver inte denna variabel behandlas vidare. I scenarioanalysen får det göras en bedömning av om variabeln är tillräckligt väl beskriven för att hantera den möjliga osäkerheten. Ett annat alternativ är att utöka graden av skyddsmekanismer för att på det viset minska sannolikheten att extrema värden förekommer alltför frekvent.

Ett annat möjligt sätt att genomföra känslighetsanalysen på är att i enlighet med NFPA 805 beskriva brand som överstiger ett eller flera prestendekriterier, ett så kallad Limiting Fire Scenario. Detta tas fram genom att variera indata till dess att skadekriterier överskrids. På detta sätt kan slutsatsen dras avseende om det finns kombinationer av indata som är kritiska för analysen och vilken marginal för osäkerhet som finns. Om denna metod används bör åtminstone följande parametrar varieras tills feltillstånd resulterar : Effektutveckling (HRR), tillväxthastighet eller flamspridningshastigheten,flammans emissivitet, och placeringen av branden i förhållande till målet (om variabel). Om valda indata ej är så kallade värsta troliga behöver analysen kompletteras med en mer avancerad känslighetsanalys där osäkerheten i variabeln undersöks i detalj. Detta kan göras genom att kombinera olika osäkerheter och genom att tilldela variblerna statistiska fördelningar i stället för punktskattningar.
3.7 **DOKUMENTATION**

Nedan beskrivs en struktur som är lämplig när analysen ska dokumenteras:

1. Målsättning
2. Skyddsobjekt
3. Analysområde
4. Referenser
5. Indata
6. Brandscenario
7. Antaganden och förenklingar
8. Sammanfattning av beräknings- och analysresultat
9. Slutsatser
10. Bilagor

Specifikt bör beaktas att beskrivningen av brandscenario (urvalsprocessen samt dimensionerande scenarion) bör vara tillräckligt tydlig för att informationen kan användas i framtida analyser.

3.8 **EGENKONTROLL OCH GRANSKNING**

4 REFERENSER