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Summary

In this report, detailing the progress made in Phase II of the SKI radionuclide-
colloid migration project, the model specified in Phase I is further refined
and calculations of radionuclide dispersal and transport are made assum-
ing a background level of colloids, free and immobile, present in the frac-
tured rock.

Model data requirements include dispersion rates, flow rates, and sorption
rates for colloids in fractured rock. Accordingly, such data is derived, and
its dependence upon colloid size, composition, fracture size, and micro-
scopic surface forces analyzed.

In the subsequent radionuclide-colloid analysis, radionuclides bound to
colloids disperse with such characteristics, and the enhancement or retar-
dation of radionuclide migration due to colloidal sorption is assessed.

The colloid migration analysis in this report is based upon theoretical
considerations and does not rely on macroscopic, empirically defined con-
stants. We discuss possible validation of the methodology, and use the
results to make predictions for individual colloid penetration. We obtain
the quantitative behaviour of the transport parameters, taking suitable
values for the fracture width, groundwater flow rate, and a range of forces
due to surface charge. The numerical algorithm used has been verified

against analytic results in the special case where surface charges are neg-
ligible.

The calculated breakthrough curves for radionuclides illustrate the effects
of colloids. The radionuclides are present within the fracture either in
solution, bound to free colloids, or bound to immobile colloid material.
Radionuclides may also diffuse into the pore space and become sorbed to
the porous rock surfaces.

We present a unified theoretical approach spanning considerations of dis-
persal and surface forces on the scale of individual colloids O(10~8m), up
to the breakthrough behaviour over length scales O(10°m). One major
achievement of this work is to address the gap between standard contin-
uum migration models, where best-fit parameters are often determined
from the available experimental and field data, and the considerations of
colloid science, where natural and synthetic colloids and complexes are
subject to microscopic analysis.
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Introduction

The precise role of colloids in the transport and dispersal of radionuclides
through fractured and porous rock is, to date, poorly understood. Al-
though some laboratory and field data regarding colloid and groundwater
chemistry is available, there have been few attemipts to incorporate such
information into a dynamic colloid migration model.

Radionuclides present in groundwater sorb strongly on to rock surfaces.
Not all such surfaces are immobile though, and it is well known that ra-
dionuclides may become sorbed to colloidal particles present within the
groundwater. Once sorbed to colloids, their transportation becomes rad-
ically altered. Amongst other properties, the fact that colloids are ad-
vected by the fluid flow at a faster mean rate than dissolved nuclides has
been well-documented. Thus, if a significant proportion of the available
radionuclides become colloid-bound, the non-colloid models may underes-
timate the transit speeds (possibly by as much as 30 — 40%).

In Phase I of the SKI radionuclide-colloid modelling project a number of
conceptual factors were identified, reviewed and formulated as a mathe-
matical nuclide-colloid transport model [10]. In Phase II this work was
utilised as the basis for both modelling and calculations of colloid mi-
gration and the subsequent effect upon the transport and dispersal of

radionuclides in fractured rock. This report documents the results from
Phase II.

In addition to the model calculations, it was necessary to develop a mathe-
matical technique capable of reducing the microscopic mathematical mod-
els of the processes affecting colloids in water-filled fractures, to the macro-
scopic parameters defining colloid dynamics over much larger scales. This
work provides a firm theoretical basis for the subsequent model calcula-
tions, and allows the calculation of dynamic parameters that are otherwise
unavailable. We must pass from the consideration of surface forces and
dispersal on the scale of individual colloids O(1078)m to that of the ra-
dionuclide dispersal models in fractures, where nuclides must travel over
distances O(10%)m. Thus our analysis incorporates effects valid on spatial
scales differing by eleven orders of magnitude. The mathematical tech-
nique, based upon an asymptotic comparison of spectra, is derived in the
appendix of this report.

There is a large literature concerning the chemistry of colloids and com-
plexes. This involves the analysis of naturally occurring colloids, ground-
water chemistry, and batch experiments on radionuclide-colloid sorption.
However, much of this work, including the consideration of different kinds
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of s e forces, has largely ignored the dynamical aspects of colloids.

On tie other hand, a number of advection-dispersion-sorption equations
utilized in previous migration models, reviewed in [10] (a more recent
example being [11]), make no attempt to tie the 1 .rameters controlling
the dispersal of colloids, in fractured or porous media, to the underlying
colloid science. They are merely numbers to be determined.

One of the central aims of the work presented here is to bridge the void
between these opposing viewpoints by developing the underlying princi-
ples, formulated in [10], into a colloid migration model acceptable on large
spacial scales, in a coordinated fashion. The resulting calculations of ra-
dionuclide migration and dispersal in the presence of colloids compare
directly to the no-colloid case, and allow us to consider the effects of frac-
ture aperture, flow rates, colloid size, colloid density, and surface forces
upon the subsequent enhancement or retardation of radionuclides .

In section 2 we discuss the colloid migration models and derive parameters
governing colloid dispersal from a consideration of the underlying physical
and chemical processes. We have taken the analysis in [10] much further
in order to discuss quantitatively the behaviour of colloids in a single
fracture. The mathematical technique is more sophisticated than that of
[10] and is expounded in detail within the appendix.

In sections 3 and 4 we utilize the results from the colloid dispersal calcula-
tions of section 2 in order to assess the effect upon radionuclide migration
within the fractured rock. In particular we model the dispersal of ra-
dionuclides assuming background populations of colloids, both free and
immobile, to which they may become sorbed. Breakthrough curves are
calculated allowing unknown partition coefficients to vary over four orders
of magnitude independently.

In section 5 we discuss some extensions of the basic model scenaric.

Finally in section 6 we make concluding remarks and observations indicat-
ing the major achievements of Phase II of the SKI Radionuclide Colloid
modelling initiative.

(8]




Colloid migration and dispersal

In this section, we shall consider colloid dispersal in a single, idealised
fracture. As discussed in [10], this must present the colloids with their
best opportunity to migrate over long distances, at average flow rates 20-
30% in excess of that of any solutes present. Since the real flow paths are
irregular and tortuous, this would both perturb the assumed flow rate,
and increase the rock surface area available for colloid adsorption.

Radionuclides are transported both in solution and adsorbed to colloids.
In order to analyse radionuclide-colloid fracture transport models in sec-
tion 3 (including matrix diffusion and retardation of the solute in the
surrounding rock), robust quantitative values for colloid transport param-
eters, as compared to the solute, are required as input data.

The idealised fracture is also suggestive of dynamic colloid migration ex-
periments that could be carried out utilising capillary tubes, of suitable
material in order to measure colloid dispersal and validate the modelling
approach.

In [10] there is a brief review of colloid migration modelling along with
the conceptual and mathematical specification of the microscopic models
used as the starting point below.

The aim of the current section is to make the calculation of the macro-
scopic flow parameters, valid on length scales many orders of magnitude
larger than that associated with individual colloids and surface forces,
for colloids explicit, emphasising their dependence upon the chemical and
physical data available from laboratory and field studies. We obtain a
colloid migration model, using such parameters, which may be solved to
estimate colloid migration and dispersal within the fracture.

In [10], a2 number of models are discussed for nuclide-colloid migration in
a single rock fracture. Consideration is given to the mathematical form of
surface forces acting on the colloids, as well as the diffusive and advective
processes present.

Rather than deal with full three dimensional fractures, it is more relevant,
and more tractable, to consider the dispersal of colloids in a single direction
- the direction of the groundwater flow. Accordingly, in the Appendix of
this report, a method is derived for reducing the full three dimensional
models to one dimensional axial low models. This method may properly
be thought of as a generalisation of the approach used by standard Taylor
dispersion theory for solutes in impermeable pipes or fractures. The novel
element is that, in the colloid model, we must allow for the cross-fracture




2.1

advection due to surface forces and for the adsorption of colloids to the
fracture faces. Thus we must calculate an axial dispersivity (due to both
molecular diffusion and hydrodynamic dispersion), an average advection
rate (due to groundwater flow), and a sorption rate for colloids in the
fracture. All of these terms are size dependent. We consider colloids
having radii in the range (10-1000 nm).

The plan of this section is as follows. We outline a full fracture transport
model for a population of spherical colloids of uniform radius, a. Owing
to the linearity of the problem, the behaviour of colloids of differing sizes
may be superimposed. In section 2.2, we discuss a one dimensional model
for colloid transport in the direction of the advective groundwater flow.
The macroscopic flow parameters are derived in a number of cases using
the asymptotic comparison method developed in the appendix to this re-
port. In section 2.3, we discuss some solutions of the models derived in
section 2.2. Specifically, we consider the evolution of colloids released into
an infinite fracture as well as the time dependent and steady state distri-
butions when colloids are supplied at a given concentration at a fracture
inlet.

The sorption of radionuclides to colloids is reversible so that even though
individual colloids are not transported over relatively large distances, the
nuclides may exchange (repeatedly) from the solute to colloid-bound states,
taking advantage of the increased colloid flow rates.

Colloid Migration in a Single Fr..cture

We consider colloids having hydrodynamic radii, a, in the range 10-1000
nm. We shall assume that the hydrodynamic radius is equal to the aver-
age physical radius of the colloids, though the generalisation is straight-
forward. Moreover, the models discussed in this section are linear with
respect to the colloid density functions, so the distributions of colloids of
different sizes may be superimposed. Hence there is no loss of generality
in assuming a population of colloids having uniform radius a, and allowing
this to vary.

Following [10], we consider a uniform planar fracture of half width L (in
metres), see figure 1.




We assume that the migration problem is symmetrical about the centre
plane (z = 0). The equations derived in [10] governing the dispersal of
spherical colloids, having radius a(m), in the absence of sources, are given

by

¢ = D(czz+c2z) — (cv(2)), —u(z)ex (1)
for0<z<L—a, t>0
c,=0 at z=0,

c=0 at z=1L-—a,

where ¢(z, z,t) denotes the density function for colloids in the fracture.
Colloids at z = L — a are in contact with the rock face and are assumed
to be adsorbed there (hence the boundary condition).

The terms in (1) are defined as follows.

D is the diffusivity of colloids with radius a, in groundwater. It is given
by the Stokes-Einstein relation

D )
D==  (w/yr). (2)
D is a constant given by
- kT 3
D=gm (w/y)

where k; is the Boltzmann constant, T is the absolute temperature, and u
is the viscosity of groundwater. Typical values are given in table 1 below.

The groundwater flow is assumed to be so slow that Poiseuille approxima-
tion is valid. We have

u(z) = guo(l - —z—z-) (m/yr) (3)

where the constant ug denotes the cross-fracture average velocity.
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L 107 m

a 1078 —107®m
k| 138 x 10-3 J/K
T 270-280 K

4 |38 x107M Nyr/m?
' 5.4x1071? m*/yr

U, 10 — 50 m/yr
X 0(10%) m™!
7 10-° —10-2' J

Table 1: Parameter values.

Colloids are subject to surface forces acting across the fracture. Free
colloids are also subject to drag forces opposing their motion relative to
the groundwater. As in [17], we shall write

v(z) = £(z.0) , (4)

6rua
where v(z) denotes the cross-fracture component of the velocity of colloids,
of radius a, as a function of their cross-fracture location, z. F(z,a) is the
surface force, acting on colloids in the z-direction, due to the presence of
the rock surfaces.

Following [10], F(z,a) is the sum of separate terms. The force on a colloid
due to the presence of electric double layers (surface charges) is of the form

yramk .
_ By amb T o(—x(L — o)) sinh xz, (5)

where y. and y, are dimensionless potentials of the colloidal and rock sur-
face (assumed equal for both rock faces); x is the Debye-Huckel parameter
(see table 1); m is the number of ions per unit volume in the groundwater
(m™3) (see [9] for a fuller description).

If y.y, > 0, as for example when the colloids and the rock are of similar
composition, then this for:= is repulsive, causing the colloids to stay more
centre stream.

The van der Waals force, due to the interaction of molecules on the colloid
and rock surfaces, is attractive but acts over short distances. It is given
here by

2 a(L—a)zy

3((L —a)? = 2?)’
where 7 is the Hamaker constant, depending upon the composition of the
colloid and rock surfaces (see table 1).

6
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2.2

Other long or short range forces may be considered within our present
approach. We merely require their functional form together with associ-
ated parameter values. In view of the ongoing debate on surface forces, it
seems wise to allow for alternative theories to be included in any model for
colloid dispersal. For example DLVO theory, based upon surface charges
and molecular interactions, has been recently questioned [8].

In this report, we shall concentrate on the effect of surface charges held
on the colloids and the rock faces. From (4) and (5), we obtain

8ycy-mky T
6ux

v(z) = exp(—x(L —a))sinhxz (m/yr). (6)

In [10], we use a van der Waals type term, but this is likely to be of im-
portance only where the colloids are extremely close to the walls. Thus we
shall assume that the sorption process itself is initiated by large attractive
van der Waals forces between the colloids and the rock faces, whilst the
forces due to surface charges, giving rise to (6), are dominant away from
the fracture (see [9]) also. Further centre stream diffusion is the dominant
dispersal phenomena.

One Dimensional Transport Models

Despite the complexity of its terms, (1) represents a linear diffusion-
advection-sorption process albeit in a two dimensional spatial domain

((z, z)-space).

In the appendix we show how problems in the form of (1) may be reduced
to one dimensional transport models via an asymptotic spectral compar-
ison method. Employing this technique here, we obtain a model of the
form

¢t = D cpr —u*c; — 8%c, (7

where the parameters D™ (m?/yr), u* (m/yr) and s*(1/yr) depend upon
L, a, D, u(z) and v(z). Here, c is used to denote the distribution of
colloids per unit fracture length (colloids per m, whereas ¢(z,z,t) in (1)
is colloids per m?).

The sorption rate, s*, the average velocity, u*, and the effective diffusion
term, D*, are calculated by seeking to solve (1) in a certain asymptotic
limit. This is a generalisation of Taylor dispersion theory. Here, we utilize
the ¢ = 0 boundary condition at z = L — a, as well as the cross-fracture
advection term, v(z): both effects are absent in classical Taylor dispersion

7
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[16]. The precise details are not relevant here, sa = -r the fact that the
method is valid for solutions dominated by small v... .e numbers in the z-
direction (for example, for smooth distributions or large time). Note also
that the sorption process (modelled in the boundary condition imposed
on :he full model) appears as a dynamic loss rate in (7). The relevant
mathematical theory is developed in the appendix.

The full calculation of D*,u* and s* is analytically intractable unless v =
0. However, their numerical computation is straightforward and we have
an algorithm based on the method in the appendix.

In the special case where v = 0, we obtain s*,u* and D* analytically. We
have

Dn?
4(L — a)?

. 3 1 1+\(L-a)?
v = Swfi-2( - )5

(L — a)®u?0.026303995
+ —_—

D* =
b L+ D w2

(where D = D/a).

Thus for v = 0, we have verified our numerical code directly, see figure 2
where s*,u”, D* are shown as functions of a. The parameter values used
are as in table 1. We also graph z* = u*/s", which is the :nean distance
travelled by individual colloids in the fracture.

Note that in all numerical calculations we have used millimetres, rather
than metres, in order to obtain more manageable orders of magnitude.

To include the effects of surface forces (v # 0), we analyse the same
problem, taking

v(z) = —vpsinh(xz) exp(—(L — a)x),
as in (6).

Here vy and x are constants. Although v. depends upon the chemical
properties of the rock faces and the colloias, we may assess the sensitiv-
ity of results to v(z) by allowing vo to vary over a number of orders
magnitude. When vy > 0, the colloids are repelled from the rock faces,
and consequently s* should be decreased and u* increased. We may also
expect that D* decreases with respect to vg since colloids stay more centre
stream which lessens the effect of the hydrodynamic flow profile. When
vo < 0, colloids are attracted towards the adsorbing rock faces, and hence

8




s* should be relatively large while u* is smaller. Thus for fixed a, z* ought
to be increasing with the parameter vy. In figure 3 we show values for
D*, s*, u* and z* as functions of a, taking ve=0, 10%, 107/2, 10* mm/yr.
For simplicity, we have taken y = 1. This also exaggerates the effect of
surface charges.
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600 - & 13090 -
O D* numerical O u* numerical
=== D* analytic = u* analytic
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Figure 2: Analytical verification of the numerical method for generating
macroscopic flow parameters.
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Figure 3: Graphs of numerical results showing the effect of increasing the

surface charges.
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We make the following remarks concerning the results depicted in figure

3:

e The values of D* differ significantly over the range 30-1000nm. For
smaller colloids, we have D* = D.

e As v is increased, the effect of hydrodynamic dispersion hecomes

less important, although D* remains an order of magnitu.'- greater
than D for colloids O(100 nm).

e The effects of size and surface charge upon u” and s* were as antici-
pated. In particular, the mean distance of individual colloid migra-
tion increases with v, especially for the larger colloids.

oz fs of the order of 1-100 cm. Clearly these results depend delicately
upon surface charge. There is also an obvious dependency upon a,
Ug andL If vy =0 and 0 < a < L, we obtain

- aL 'U,o 3
illustrating the sensitivity of z* to our particular choice of parameter
values.

It remains to specify the true vaiue for vy (given a certain class of colloids)
and x given a certain groundwater chemistry. In table 1, we have given a
value for y approximate to those given in [9].

Our calculations have a further utility, since the scaling of D* and u* with
respect to ug can be shown to obey simple relationships (s* is independent
of u*). If ug # 10000 mm/yr, as it was for the calculations in figure 3, then
the new values for D* and u™ are given by

2

D + (Dg D)108

mm?/yr,

u’G.ﬂ)— mn:/yr

104 '
respectively, where D (mm?/yr) and u§; (nim/yr) are read from the graphs
previously calculated. (Note that when vy = 0, our ana. rtical expressions
obey this scaling).




2.3

Analytical Solutions

Consider (5) modelling a fracture of infinite extent in the axial direction
of water flow. A population of M colloids supplied at z = 0 at t = 0 yields
the solution

M oy (e—(z—u't)2/4tD'>
Cc = €

VartD*

In particular, the mean position of the colloids is given by

T =u't, .
while the variance is given by
5
o = 2Dt. v
The population mass is simply
Me™*",

A key question is what fraction, H, of colloids penetrate to a distance
greater than some X, fixed, before becoming sorbed to the rock face?

This is equal to the fraction of colloids sorbed to the rock at z > X over
all time. That is a fraction, H(X), of colloids given by

/oo/oos‘cxt dX dt
= € - erfc( )
V4tD*

- w(f—vz%)e"p( -5

H

I

B Ext

gt
LV TE

ﬁ

where
u*?

4D+

p=s+

Choosing D* etc given in tables 2 and 3, we have H = H(X) as shown in
figure 4.



a (mm) 107% | 107* | 1073
D* (mm?/yr) | 545 103 | 470

s*(1/yr) | 133000 | 13400 | 1360
w* (mm/yr) | 13000 | 13000 | 13100

Table 2: Typical parameter values for uo = 10000 mm/yr (using
v(z) =0).

a (mm) 107% | 107* | 1073
D* (mm?/yr) | 663 | 1280 | 11600
s (1/yr) | 133000 | 13400 | 1360
u* (mm/yr) | 65200 | 65200 | 65400

Table 3: Typical parameter values for uo = 50000 mm/yr (using
v(z) =0).

H(x)

15
mm

u,=10mAr case

X
A

60 80 100 120 140
mm

u,=50m/yr case

Figure 4: H(X); the fraction of colloids sorbed at a distance greater than

X =long the fracture.
14
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Consider -an alternative scenario with a semi-infinite fracture (z > 0)
and colloids continuously supplied at a known concentration at the inlet
(z = 0). The corresponding solution of (7) is given by [6], viz.

cof - z(u”+ Vur? 4 4D*s*) T Viu2 D* + 4s*D*2t
c = — exp( )erfc( + )
2 | 2D~ V4 D+t 2D~
z(u* — m))erk( T JwiD 4 4s*D*2t)
2D VAD*t 2D~ '

+exp(

Ast — 0, ‘this approaches the steady state

2w — VETTADT)
¢ = cpexp 2D~ . i

Now consider the fraction G(X) of colloids which penetrate to a distance
greater than X. We have

X(u* — Vu*? +4D=s*)

X)= i
G(X) exp( 5D
In figure 5, we depict the behaviour of G for the parameters used previously
in figure 4. Clearly there is a close agreement between figures 4 and 5. In

fact
1

G(X
242v(1 —/(141/v)) (%)

where v = u*?/4Ds*. Hence future calculations should utilize the more
simple form G(X). The difference between the two lies in the source.
In the calculation of H, some colloids may diffuse back along the frac-
ture, from z = 0, against the fluid flow, whereas such behaviour is not
considered in the calculation of G.

H(X) =

15



a=10"*mm

5 10 15 20 25 X
mm
u =10m/yr case
G(x) °
1
-3
0-8 a=10"mm
X
20 40 60 80 100 120 140
mm

u=50m/yr case

Figure 5: G(..); the fraction of colloids which penetrate to a distance
gre er than X along the fracture.

Individual co ‘»ids do not migrate over large distances (> a few centime-
tres) given the parameter values used here. When v # 0 and a repulsive
force (due to surface charges) exists, colloids will migrate further.

Figures 4 nd 5 should not be interpreted as an indication that colloids
are not a:. effective medium in the dispersal of radionuclides. Rather 1t
represents the penetration of individual cc:.oids.

Natural colloids may migrate, become sorbed to the rock face, get re-
Jeased by hydrodynamic scouring, migrate, and so on. The effect would
be a constant supply of colloids along the fracture with each colloid mi-
grating according to processes reflected in figure 5. The effect is to provide
an alternative means of transport for sorbing/desorbing nuclides, shifting
from colloid to solute to colloid. Whilst colloid bound, their macroscopic
transport (dispersion, advection) is altered to that of colloids (for example,

16




an average flow rate 30% above that of the fluid).

Let g(z,t) denote the supply rate of colloids per unit fracture length per
year, then (7) becomes

¢t =D%cpr —uc; —S"c+q. (8)

Our aim is to include the colloid behaviour, illustrated above, in a nuclide-
colloid fracture migration model in section 3.

Such problems have recently been considered in [11] and it is constructive
to discuss the treatment of colloid dispersion, migration and sorption in
the light of that approach and its data requirements. We shall consider
the associated nuclide-colloid interactions elsewhere.

In [11], the macroscopic colloid transportation model is a one-dimensional
fracture (cf. (7) above) and must assume values for colloid dispersion
coeflicients (D* here), and the colloid flow rates (u*).

It is possible to avoid an explicit consideration of colloid sorption rates
by introducing an empirical partition coefficient representing the constant
fraction of sorbed colloids.

Clearly our derived values for D* and u* could be utilized in the subse-
quent analysis employing these models. In [11], no attempt is made to
suggest the dependencies of the parameters upon colloid size, composition
or fracture transmissivity. In our present model, by taking ¢ constant
and allowing (8) to equilibrate, we obtain a colloid migration situation
~ analogous to that of [11]. We obtain

¢ = co, say,

where g = cos”.

Thus radionuclide migration may be considered against the background of
a constant ambient colloid population of individuals dispersing according
to the processes derived above.

The important fact is that rather than assume values for dispersivity, flow
rates, sorption rates and equilibrium constants on the basis of experi-
ence, experiment and expectation, we have been able to derive estimates
depending upon the quantitative microscopic physical and chemical pro-
cesses at work.
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2.4

Experimental data

Although we have considered a planar fracture, similar calculations can be
made for a fracture having : uniform circular cross-section. Clearly there
would be much utility in performing laboratory experiments employing
capillary tubes; well documented, uniform (perhaps synthetic) colloids;
slow pump rates. The colloid radii should be varied over a number of
experiments, as could the surface charges, the water chemistry, the flow
rates, and fracture apertures. Some such data may already be available
in the form of hydrodynamic chromatography employing porous capillary
membranes.

Such experiments and data could be used to validate the theoretical model
presented here, and refine the predictions made on both the laboratory and
field scales of space and time. -

The method deployed in [10] and this report could be used to analyse ex-
perimental data from hydrodynamic chromatography [5]. In such experi-
ments (and generalisations [7]), colloids and larger particles are dispersed
in fluid pumping through a capillary tube. There is no adsorption at the
capillary faces, though repulsive surface charges may be present. Hence
the particles flow through at a rate close to that of the fluid. Typical
experiments measure a retention factor Ry defined by

mean flow rate of particles  transit time for fluid

Ry =

mean flow rate of luid  transit time for particles’

Using the asymptotic spectral comparison method [10], we may calculate
R; values, given that particles at a distance r from the centre of the
capillary are advected at a rate v(r) towards the capillary surface, at
T =To.

‘We obtain
To—a 2 ~
2] (1 = Z)rf(r)dr
Ry= 00—
] rf(r)dr
0
where

f(r) — oo v(A)DAF

Here a is the particle radius; D is the diffusivity, given by (2); and the
fluid flow rate is proportional to (1 —r?/r3). ‘

An experimental calibration curve is given in [5]. If v =0
Rf _ (2 _ (ro - a>2>
To
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which is well below the observed curve.

In order to illustrate the effect of surface forces we set
v = —vgr,

where vy > 0 represents advection due to a repulsive force falling off
linearly to zero as the particle approaches r = 0.

We obtain
4D  (ro —a)? 2

R,=2— .
1T % T el —a)) — 1)

For values of vy between 2 and 20 mm/yr the corresponding behaviour of
Ry, as a function of colloid radius, is depicted in figure 6.

More analysis along these lines, with realistic functions v(r), could be
undertaken, possibly in collaboration with hydrodynamic chromatography
expertise.

1.6

154

1.4 9

139

Rf

1.2

1.1 9

Colloid radius (mm)

Figure 6: R, as vg varies.
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Almost all previous colloid migration - erimental programmes have con-
centrated on the advection, dispersal and sorption of colloids in packed
columns, an early example being [1]. Indeed it is likely that the major
experimental work carried out in the next phase of the CEC MIRAGE
programme will again be dominated by column experiments.

However, available results and the application of filtration-type theories
suggest that such porous media provide an effective barrier to colloid trans-
port. Hence our present emphasis on fracture flow. For more convoluted
or tortuous fractures, capillaries, or pores, the microscopic model remains
unchanged: we should merely specify a more complex geometry. Of course
some effort would be required to obtain the dynamic parameters valid on
the larger scale in an analogous manner to the theory developed here.

A further experimental issue is the identification of the relevant surface
forces. Recent results [8] have suggested the inadequacy of DLVO-type
theories when applied on the scale of nanometres. As this debate continues
we are free to recalculate the parameters of this section, substituting in
any preferred functional form for the advection due to surface forces (v(z)
in (1)). Colloid and surface science is an active and developing field, and
our modelling approach has allowed for such fundamental considerations
to be included at the first stage.

Overall the results of this section are in harmony with the conceptual and
experimental view of colloid migration. Surface forces, and size keep col-
loids more centre-stream than solutes. The consequence is an increase in
their average advection and a decrease in their hydrodynamic dispersion.
We have also made predictions for sorption rates and individual migration.
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3.1

Radionuclide-Colloid migration modelling

A radionuclide transport model

Here we shall define a nuclide migration model, taking account of the effect
of a background population of colloids within a planar fracture.

We shall assume that colloids are either free, being advected downstream
within the fracture, or stationary, sorbed to the rock faces. Such colloids
will be assumed to have equilibrated, so that the rate at which free colloids
become sorbed is balanced by the source term, g (see below), representing
the release of stationary colloidal material into the fracture.

The geometrical set-up is shown in figure 7. Radionuclides are present in
one of the following ways:

e free, in solute form within the fracture;

e sorbed to free colloids;

e sorbed to stationary colloids;

e in solute within the water-filled pore space;

e sorbed to the rock mass, in equilibrium with the concentration within

the pore space.

As in other standard radionuclide transport models, we shall allow the
solute present within the porous rock to diffuse only in the z direction,
perpendicular to the fracture plane, see figure 7. We begin by assuming
that the colloids are of uniform size, with radius a, say.
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Let us define

c(z, 1)

d(z,t)

w(z, 2, t)

W(z,z,t)

v(z,1)

p(z,1)

Figure 7: The fracture zone

density of free colloids present within the fracture (colloids
per unit volume);

density of immobile colloids present within the fracture (col-
loids per unit fracture volume);

concentration of radionuclides in solution within the frac-
ture (mols per unit fracture volume);

concentration of radionuclides in solution within the pore
space (mols per unit rock mass volume);

concentraticn of radionuclides bound to free colloids within
the fracture (mols per unit fracture volume);

concentration of radionuclides bound to immobile colloids
within the fracture - 10ls per unit fracture volume).

Let ¢(d) denote the rate at which colloids are released from the immobile
colloidal mass into the fracture. Conservation of mass, along with the
one-dimensional colloid migratic.. model developed in section 2, imply
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¢t = D¢z —u"c; —s"c+ q(d)
d;

|
»

*
(9}

!
B
—

(<9
~

(9)

Here D*,u* and s* are as defined in section 2. In addition, we now include
the source term ¢(d). The system (9) is assumed to be in equilibrium on
the timescale associated with radionuclide release, transport and dispersal.
Hence we have

c=c¢ and d=d,

where s*co = ¢(do). Note that 7 pmara’cy is the total mass per unit volume
of free colloids within the fracture (of radius a and material density ppa.)-
So far, we have not discussed ¢(d) explicitly, but we shall return to its
effect later.

Let g1(v) denote the rate per unit volume at which nuclides become un-
sorbed from free colloids and released into solution (mols per unit fracture
volume per unit time). Let g,(p) denote the rate per unit volume at
which nuclides become unsorbed from immobile colloids and released into
solution, (mols per unit fracture volume per unit time). ‘

Let s1(co,w) and s3(do,w) denote the rates per unit volume at which
nuclides in solution become sorbed to free and immobile colloidal surfaces
respectively (mols per unit fracture volume per unit time).

Let G(p,v,do) denote the rate at which nuclides are exchanged between
immobile and free colloids as a consequence of instantaneous colloidal
rock sorption or release. From our earlier constructions, it is clear that

P

z, (10

q(pa v, dO) =s"v — Q(do)

since £ denotes the average mass of nuclides sorbed to each colloid and
s* and q(dp) are defined in (9).

Using the above terms, together with (9), and employing a standard dis-
persion theory argument for the solute within the fracture, we obtain

wy, = Dw,, —dw, + %Wz - Aw
—Sl(Co,w) _SQ(dO’w)+gl(v) +g2(p)a (11)
v = D —utvy, — v —§(p,v,do) + s1(c,w) — g1(v), (12)
Pt = —)\P + 6(p, v, dO) - 92(1)) + 32(d01w)) (13)
z>0, t>0.
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Here ¢ denotes the porosity of the rock; D denotes the molecular diffusivity
of the solute with the pore water; L is the half fracture width, as before;
D denotes the effective diffusivity of the solute, including standard Taylor
dispersion within the fracture (see the Appendix); @ is the cross-fracture
average fluid velocity; and ) is the decay rate of the nuclide. For simplicity,
we have considered a single nuclide decay chain: the generalization being
obvious. D*,u* and s* are as defined in section 2 and (9).

Now (9) must be solved in conjunction with

RW, = DW,, — RA\W, z2>0, >0, t>0. (14)

Here R is the retarda ion of the nuclide in the porous rock. At z =0, we
have continuity of coi.centration:

w(0,z,t) = w(z, 1), t>0.

Adding (11), (12) and (13), we obtain

éD

wy+ps v = Dwgy + D*vpp —iw, —u"v, — AM(w+p+v)+ TW,, (15)

Now assuming that the equilibrium of nuclides within the fracture between
solute and colloid-bound states occurs on a scale fast compared to that
associated with their transport and dispersal, we shall employ(15; instead
of (11)-(13), along with the linear partitions

= klw, (16)
p = kg'LL',

describing this pseudo equilibrium, valid at low concentrations of col-
loids (free and sorbed). The relationship between k;,k; and the terms
$1,82,01,92 and g is discussed below in subsection 3.2.

Using this simplification, (15) becomes

14k +k)w = (D+kD)wey — (@ + ku)w,
éD

=M1+ ki + k)w+ TWz, (17)

z>0, t>0.

‘We shall solve (17) together with (14), imposing suitable initial and bound-
ary conditions at = 0, £ — 00, z — o0, and t = 0.
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3.2

Partition Coefficients

In order to motivate the definition of the linear partition coefficients k;
and k; in (16), we proceed as follows.

We assume that the nuclides reach a local equilibrium distribution between
solute and free and immobile colloid-bound species on a fast timescale

relative to that of the transport and dispersal processes. Thus in (11),
(12) and (13), we have

Sl(Co,w) = gl(v)+6(p7vad0) (18)
s2(do,w) = ga(p) — q(p,v,do)

Without this assumption, (15) is still valid but cannot be reduced to a
single equation in one unknown (c.f. (17)).

The terms s; and s; depend upon the local concentration of nuclides, w,
and the available sorption sites on the colloidal surfaces, for populations
¢o and dy respectively.

In [10], it is suggested that such interactions have the form

s1(co, w) x Mama’cow, (19)
s2(do, w) & nadraldow.

Here 4ma%cy denotes the free colloid surface area per unit fracture volume,
and 7; denotes the sorption rate of nuclides per unit area of free colloidal
surface. Similarly, 4wa%dy and 7, for immobile colloid-nuclide sorption.

Note that if s; is written in terms of free colloid mass density (colloidal
mass per unit fracture volume), peol = 37 pmara’co, then we obtain

3P col

QPmat

Sicm w

so that the analogue of the usual K} is inversely proportional to the colloid
radius.

Using (10), (19) and (20) in (18) and (19), we obtain

d
maralcow = g,(v) +s*v — %L)p

0

d
ndra’dow = ga(p) — s™v + %ZP-



Nex. xpand g; = gjv + O(v?) and g, = g3 + O(v?) and we obtain to first
order a linear system for v and p valid at low colloid concentrations. This
last yields

dra*w [ g(do) q(do)
v o= Co +g2]+d —],
(g593 + s g5 + g%?lg;) M| do 93] + dona A
4ra’w

= (g;g§+3'95+%%igi‘) [007715 + dona(s +91)].

Thus comparing with (16), we have

4ma? (Com(ﬂf%l +g7)+ nzq(do))

kl = 4 9 (20)
(gi0s + 795 + 2l
4 (Co7715' + domz(s™ + .‘ff))
ko = - . (21)
(5395 + 5703 + Llgy )
Note, by hypothesis, s*co = ¢(do)-
If g(do) = qodp is linear, then these simplify to become
dma’co (771(‘10 +93) + 7723')
kl = 5 (22)
(gfgi‘ + 5792 + Qogf)
47ra%o(ms" + £0a(s” + g ))

(grga +s7g; + qogI)



Model Calculations

In order to assess the effect of colloids upon the migration and dispersal,
we consider the following system (14), (17) which was derived in the last
section:

L4k +k)w, = (D4 kD) we — (84 kyu)w,

D
—M1+k1+kgw4~%TWQ
z>0, t>0, (24)
RW, = DW,, — RA\W
4

2>0, t>0.

W =0 as zZ — 00 z>0 t>0,

W, w—0 as T — 00 t>0,
W(z,0,t) = w(z,t) z>0 t>0,
w(z,0) = 0 z >0,
W(z,2,0) = 0 z>0 z>0.

At z = 0, we impose the boundary condition

q . . )
h(t) = u'x of radionuclides = (@i + kyu")w — (D + by D",
into the fracture

where h is given. For simplicity, we begin by taking

h(t) = hoe_)‘t.

A measure of the natural barrier afforded by the fracture, the colloids,
and the porous rock is given by the breakthrough flux of nuclides through
the fracture at a distance zo along the fracture. Thus we shall observe
the time dependent behaviour of the normalized flux down the fracture at
T = o, given by

1) = %{(a + kit )w(zo, 1) — (D + le*)wI(xo,t)}.

Note that the constant ho scales h(t) so that f(t) represents the flux
through the fracture, at z = z, given the corresponding normalized influx
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h(t)/ho. Of -  parameters employed in (24), k; and k; are the least
certain. They .n be defined by

kq _ fraction of nuclides within the fracture
o 14k 4k sorbed to free colloids
k, _ fraction of nuclides within the fracture
14k +k sorbed to immobile colloids.

Alternatively, they are given in the previous subsection as functions of
known microscopic parameters and (currently uncertain) sorption rates.
Given this uncertainty, we shall allow k; and k; to vary over four orders of
magnitude each. For each pair of values, we obtain a breakthrough curve.
Note that k; = k; = 0 represents the no colloids case.

Employing the Laplace transform, we solved this problem in the Laplace
domain to yield the transform, f , of f. Next we inverted by using a
numerical algorithm due to Talbot [15]. This has been extensively used
...... : and verified for similar calculations over a number of years [19] . We
- made all our numerical cziculations employing a symbolic mathematics
package able to work to any specified precision. This also provided the
graphical output. Calculations were verified against existing Fortran codes
for Talbot’s method.

The < naining parameter values employed are given in table 4. Before
examining the results, we briefly discuss their selection.

L |{10™*m
D | 1073m?/yr
D | 1073m?/yr
D* | 10~*m?/yr
- | 10m/yr

. <* | 13.5m/yr
¢ | 107*
R |10
A | 107 %yr?
zo | 1000m

Table 4: Parameter Values

We choose L and @ so as to be commensurate with the earlier calcula-
tions in section 2. The values for D* and u* follow assuming that the

e
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colloids have radii ~ 100nm, and that there are relatively large surface
forces keeping free colloids centre stream (vp large in figure 3). This is the
conservative assumption maximising the effect of the free colloids upon
nuclide migration along the fracture.

For particles in solute, a molecular diffusivity of 1073 m?/yr is of the correct
order. Following the Appendix, the corresponding Taylor dispersivity is
of order 10-5m?/yr. Thus we take D = D in these calculations. A decay
rate of 107%yr~! is long enough so as not to have any large effect upon the

breakthrough behaviour, which occurs around 100 years, for zo given by
1000m. '

The retardation, R, is given by

Prock I{d (1 - ¢)
¢

where pro is the density of rock material, ¢ is the porosity and Ky is the
usual sorption partition coefficient.

1+

The breakthrough behaviour is highly sensitive to ¢.

For the values given in table 4, our results are shown in figures 8 (a)-(e).
In figures 8 (b)-(e), we fixed k, = 0.001,0.01,0.10,1.00 respectively, whilst
k; was varied. Figure 8(a) depicts 14 out of the total of 16 breakthrough
curves. We also show the no colloid, ky = k; = 0, base case.

In figure 9 (a)-(e) we depict the total concentration of nuclides per unit
fracture volume as functions of time at £ = zo. This includes nuclides
present in solution and bound to free and immobile colloids. Again the

breakthrough curves are plotted as k; and k; vary over four orders of .

magnitude independently.

29

SRy




1,_
0.8
f(t) 0.071
Scaled Flux
(mol m/yr) 0. 44
0.271

80 100 120 140 160 180 200
t (years)
(a)

1} 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
55100 T30 140 Té0 T80 200 80 1060 120 140 160 180 200
(b) k,=0.001 (c) k,=0.01

1 k=30 1

0.8 0.8
0.6 0.6
0.4 .4
0.2 0.2

80 100 120 140 160 180 200

(d) ky=0.1

Figure 8: Breakthrough curves for k; and k, varying
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Figure 9: Concentration breakthrough curves for k; and k; varying
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5.1

Further Applicat::ns

Calculations of breakthrough curves, such as those in the previous section,
could be made for a range of scenarios. In particular, here we shall discuss
the effect of

e an inhomogeneous background population of colloids

e dissolution of true colloids supplied, together with the solute at the
fracture inlet.

The breakthrough curve for radionuclides in the absence of colloids has
been observed to lie between the ex:ireme cases postulated for radionuclide-
colloid sorption equilibria. These are given by large k; and small k,, and
large k; and small k,, respectively. By allowing the partition coeflicients
to vary independently over four orders of magnitude we have illustrated
the sensitivity of the results to their possible chosen values.

Clearly it would be desirable to integrate such calculations within the
Geosphere cases to be produced for Project 90. By choosing commensurate
physical and geochemical parameters the variability of breakthroughs with
respect to background levels of colloids could be assessed.

- Having made test calculations based upon uniform, steady-state, popula-

tions of free and immobile colloid material, we examine two alternative
model scenarios.

Inhomogeneous colloid distributions

Here, as before, we assume that colloids are supplied to, and captured
from, the fracture reaching equilibrium in (9) (section 3.1) between the
free and immobile states. That 1s

s*c = ¢q(d). (25)

We also assume that there is an increased influx of colloidal material at
the fracture inlet due to the presence of the repository. The resulting
distributions for ¢ and d are no longer independent of space and time. We
solve

¢ = D¢y —u"c 2>0,t>0,
C(x, 0) = Ceo T > O’
C(O,t) = t> 0,




where co - and ¢, are constants representing the background constant level
of free colloids (prior to the commencement of the repository source term

at t = 0), ~and the increased in flow concentration of colloids supplied at
the inlet (for ¢ > 0).

We have

c(z,;1) = coot (a ;Coo) {exp(:;;t )erfc(\/él_xD_;.i+ jg‘)

z tu

+erfc(\/m—- 4D‘*)}' (26)

This in turn defines d(z,t), via (25).

The inhomogeneity in colloid distribution within the fracture directly af-
fects the radionuclide migration model (24) through the definition of the
partition coefficients, k; and k,. For simplicity we assume g(d) is linear
so that k; and k, are given by (22) and (23) respectively, with ¢, replaced
by ¢(z,t) from (26), (if g(d) were nonlinear k; and k, would be given by
(20) and (21) with co replaced by c(z,t)).

Then it is clear that k; and k, are both proportional to ¢(z,t), say

by = kic(z,t), (27)
ky = ky(z,t), (28)

where k; and k, are constants. We may seek to solve (24) with spatially
and temporarily inhomogeneous coefficients k; and k;. Without loss of
generality we may absorb ¢; into k; and k, and use (27) and (28) together

with
o) = = (1) (e (e + )

+erfc(\/__ 4D*)}’

This indicates that we now have three degrees of freedom: l~<:1, 7:;, and the
ratio ce/c1, which must be specified in any approach to the radionuclide
migration problem.

The resulting equations are no longer amenable to solution via Laplace
transform methods owing to the non-constancy of the coefficients in (24).
Nevertheless it remains linear and we shall solve it using appropriate tech-
niques in the next phase of the SKI Radionuclide-Colloid Migration Ini-
tiative if appropriate.
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5.2

The migration of true colloids

Thus far we have sought to model systems where the colloid material,
whatever its source, was conserved, with radionuclides coming from solu-
tion to sorb to colloid surface sites. This implicitly includes all pseudo-
colloid migration scenarios.

An area where this assumption is less valid is the disj-ersal of true colloids:
aqueous colloids formed from the nucleation of radionuclides.

The formation of such colloids would require supersaturation of the dis-
solved species in a neighbourhood of the source term. In field stud-
ies anomalous rapid transport of radionuclides has occasionally been ob-
served. In [18] instances are cited where Pu and Am migrated over a
distance of 30m through unsaturated tuff in 30 years.

In order to utilize the results of section 2 to model the dispersal of true col-
loids, we suppose that true colloids are supplied at the fracture inlet, along
with an unsaturated level of the dissolved species. The true colloids are
dispersed within the fracture according to (9), with the additional caveat
that the colloids dissolve, becoming smaller and smaller. Strictly the rate
of dissolution depends upon the local level dissolved concentration, and
we envisage including such effects in future modelling and calculations.

Here we shall simplify matters by assuming that the rate of dissolution 1s
effectively constant, so that an individual colloid is decreased in volume
at a rate proportional to its surface area. Consider a spherical colloid, of
radius a(t) then
d(4/3ma3)
dt

x 4ma’L
Thus % 1s constant.

Consider a population of such colloids, with initial radius @ = ao, supplied
within an infinite fracture at z = 0, at time {.

We consider

¢ = D*(a)czr —u™(a)e; — s™(a)e+ q(d),

ag — as
d = sc—¢qo(d) —co<T <00, 0<t< 2 ,
©

where a = ao — put.

Here we assume that the decay rate of the actinide is small so as to con-
~entrate on the colloid dispersal mechanism; p is a constant determining
the rate of dissolution of the colloids, and t = (ag — a,)/u represents the
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time at which the colloids become completely dissolved, when a = a; the
radius of a single radionuclide. Let us assume local equilibrium between
the free and immobile colloids within the fracture so that we have

d = kc.
Then we may solve
(14 k)ee = D*(a)cgr —u”(a)cy, (29)
a = ag— pt, —oo<:c<oo,0<t<ao_as, (30)

U

with ¢(z,0) = §(z), the Dirac point mass centred at the origin.

We have a linear system with time dependant coefficients. This problem
may be solved via the Fourier transform method once D*(a) and u*(a)
are specified. We should choose appropriate forms which fit the curves
derived in section 2, see figure 3.

Such calculations, and those for more sophisticated versions of the model
could be made to estimate distances travelled by colloids prior to dissolu-
tion. Of course, the conservative case is given by £ = 0 (no retardation
due to fracture surface sorption), and g = 0 (no dissolution). We envisage
completing such calculations in some detail in the future.

As an example, we solve (29) and (30) choosing D*(a) = 5.4 x 107'*/a

(m/yr), u*(a) = 13 + (a — a,)/(ao — a;) (m/yr), ap = 107¢ (m), a, =
54 x107° (m), k =0, g = (ap — a,)/500 (m/yr).

At t = 500 years, all of the colloids have radii a = a, (that of a single
radionuclide). The distribution of such colloids represents the furthest
penetration of true colloidal material within the fracture. Subsequent
radionuclide migration will be in solute form, since all of the colloids have
been dissolved away to individual radionuclides which henceforth disperse
independently. We have

C(.’L‘, 500) —_ \/§e-(1’+3)21r2/.4 ,

where
477'2[) ag
A = P ln(z),
—as 2
B - _6500+500(a0 as + 5;1)'

10— — a,

This distribution may be compared directly with the corresponding distri-
bution of radionuclides released at z = 0, and transported as true colloids
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2.057

consisting of single nuclides (ie. effectively in solution), having k¥ = 0,
diffusivity D*(as) and advection u*(a;). In figure 10 we depict both distri-
butions. Since larger colloids are less hydrodynamically dispersed, and are
advected further, the true colloids are seen to penetrate further through
the fracture.

A fuller calculation is necessary to account for the subsequent sol:  irans-
portation of the radionuclides dissolved from the true colloids. £ ue col-
loids dissolve they provide a mobile source for the solute species. Hence
we should complement the above calculation, which tracks a population
of true colloids, with an equation for the simultaneous dispersion of the
radionuclides in solution.

True colloids at
ol the point of
dissolution

/\ Single radionuclides

It I

6500 6550 6600 6650 6700 6750

Distance (m)

Figure 10: Distributions at ¢ = 500
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Summaryl

In this second phase of the SKI radionuclide-colloid migration project the
model specified in Phase I has been further refined and calculations of
radionuclide dispersal and transport were made assuming a background
level of colloids, free and immobile, present in the fractured rock (see
section 4).

Model data requirements include dispersion rates, flow rates, and sorption
rates for colloids in fractured rock. Accordingly, such data have been de-
rived, using a mathematical method developed here in the appendix, and
its dependence upon colloid size, composition, fracture size, and micro-
scopic surface forces has been analyzed.

The colloid migration analysis in section 2 was based upon theoretical
considerations and did not rely on macroscopic, empirically defined con-
stants. We discussed possible validation of the methodology, and the use
of the results to make predictions for individual colloid penetration. We
obtained the quantitative behaviour of the transport parameters, taking
suitable values for the fracture width, groundwater flow rate, and a range
of forces due to surface charge. The numerical algorithm used has been
verified against analytic results in the special case where surface charges
are negligible.

In the subsequent radionuclide-colloid analysis, radionuclides bound to
colloids dispersed with the characteristics of their hosts, and the enhance-
ment or retardation of radionuclide migration due to colloidal sorption was
assessed. In particular, we automated the calculations of dynamic colloid
data and radionuclide breakthrough curves.

The calculated breakthrough curves for radionuclides illustrate the effects
of background colloids, see section 4. The radionuclides are present within
the fracture either in solution, bound to free colloids or bound to immobile
colloid material. Radionuclides may also diffuse into the pore space and
become sorbed to the porous rock surfaces.

Clearly it would be desirable to integrate such calculations within the
Geosphere cases to be produced for Project 90. By choosing commensurate
physical and geochemical parameters the variability of breakthroughs with
respect to background levels of colloids could be assessed.

In addition we have discussed the extension of the methodology presented
here to cope with spatial and temporal heterogeneities in the distribution
of colloids. This included a consideration of the penetration of true col-
loids, simultaneously dissolving within the fracture groundwater. Such
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models, can be ...ade on the basis of the data derived earlier in this report.

We have presented a unified theoretical approach spanning considerations
of dispersal and surface forces on the scale of individual colloids O(10~3m),
up to the breakthrough behaviour over length scales O(10°m). We feel that
a major achievement of this work has been to address the gap between
standard continuum migration models, where best-fit parameters are of-
ten determined from the available experimental and field data, and the
considerations of colloid science, where natural and synthetic colloids and
complexes are subject to microscopic analysis.

38




Appendix: The Asymptotic Spectral Compar-
ison Method

Many transport models for substances in fluid environments contain dis-
persion terms, designed to model the mixing (or dispersive) phenomena
brought about by heterogeneities within the microscopic velocity fields
(see [4], [13] and the references therein).

The idea that the velocity varies locally about the mean velocity is illus-
trated at its simplest by a consideration of Poiseuille (slow) flow through
a slab or cylindrical pipe [3].

If our three dimensional pipe-flow model is replaced by a (more computa-
tionally amenable) one-dimensional model for transport in the axial direc-
tion alone, the inclusion of a dispersion term is, by now, almost standard
practice [13].

However, the theoretical basis for such a term is perhaps not so clear,
despite intuitive arguments. In particular the original derivation of a
dispersive term in this setting relies on no-flux boundary conditions at
the pipe walls.

Increasingly scientists are considering fracture-flow problems where ideal-
ized fractures allow the outflux of solutes or particles at the walls. The
desire to form computationally acceptable models has lead to the continual
employment of diffusion-type dispersion terms.

In a recent review of radionuclide transportation by groundwater [12] it
was made clear that such hydrodynamic dispersion is a very complex pro-
cess and the inclusion of Fickian dispersion terms provides only a sim-
plification of reality. Moreover, it is often the case that dispersion and
molecular diffusion processes are lumped together (since they are qualita-
tively similar), so that many investigations make it difficult for the reader
to appreciate precisely what assumptions are being made, and which pro-
cesses are being taken into account.

The present interest in dispersal arises from the study of colloid trans-
port in groundwater through fractures presented in section 2. Com-
putational requirements force us to simplify the above model to a one-
dimensional axial transport problem. Thus one must calculate average
advection rates, average capture rates and effective diffusion-dispersion
terms for colloids with various properties and sizes.

In this case we shall not simply write down a qualitative fudge factor, but
rather seek a theoretical basis which can be employed in order to reduce
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general three-dimensional fracture/pipe-flow problems to one-dimensional
axial transport problems.

We shall introduce a general methodology based on an asymptotic spec-
tral comparison approach, which seeks to match the spectra of the two
problems in a certain asymptotic limit. Then the problems, having a simi-
lar spectral behaviour, will show similar time-dependent responses to axial
perturbations dominated by low wave numbers. Hence the axial behaviour
of the solutions will remain qualitatively and quantitatively similar, and
the one-dimensional problem can be realised (in an algebraic sense) as the
best-fit to the full :hree-dimensional model.

Taylor’s original result [16] is recoverable by the present approach, which
is suggestive of its general nature. We shall illustrate these ideas with an
example where the classical approach fails to provide any theoretical basis
for a Fician dispersion term.

In this appendix shall concentrate on fracture-flow, and the techniques
developed here will be utilized in this report with reference to the colloid
transport probiems. '

We begin by recalling the classical approach to dispersion. The following
derivation is due to Sir Geoffrey Taylor [16], [17], and (along with var-
jous generalizations [2]) has become an accepted and oft cited basis for
the inclusion of an anisotropic Fickian diffusion process as representing
dispersal due to local deviations in the advective velocity field.

For brevity we restrict our consideration to the Poiseuille (slow) flow of
fluid though a cylindrical pipe of radius L. Let = denote the axial coordi-
nate and r denote the distance from the cylinder axis. Then we consider
the transport of some chemical or population of particles having concen-
tration or density c. We consider,

¢ = D(cr + ET’_ + ¢czz) —uo(l — -g—)cz. (31)
Here ug is constant and ug/2 corresponds to the mean speed of the fluid.
The boundary conditions are
c,=0atr=1L
together with the requirement that ¢ be bounded at r = 0.

We shall assume that L is small so that cross-fracture diffusion takes
place on a more rapid timescale than that associated with longitudinal
advection.

40




Set z = r/L and y = z — 10, for some constant §. y provides a moving
frame in which to analyse any axial dispersal. Of course we must choose
0 appropriately.

Writing ¢ as a function of ¢,y and z, (31) becomes
L2 2

c, L
3ct =c,, + " + chyy + 3(0 —uo(l — zz))cy. (32)

Now we assume that the L?c,, term is negligible, while 8 is such that c; is
small (this is equivalent to assuming that the cross-fracture distribution
equilibrates rapidly with the source term due to axial advection).

Thus we seek to solve

0= +3+L2(e (1—2%)) (33)
= C,, . D Ug z27))cy

instead of (32) as a first approximation.

Next we make the further assumption that the variation with respect to z
in ¢ is small (since the solution is rapidly equilibrated in the z direction).
Thus ¢, should be thought of as predominantly constant with respect to
z, so that we may integrate (33) to obtain
L? L?
c=co— (0 —up)—=cyz® —ug——=c,z* 34
Co ( 0)4D yz 0 16.D Y I ( )

where ¢g is the value of c at z = 0.

Applying the boundary condition at z = 1 to (4) we obtain 6 = ug/2, the
average flow rate.

Now the total flux, @, through the cross section y =constant is

1

Q= -—27rL2/ c(uo(l = 2%) = 0)zdz = — (35)
0

Let é denote the mean concentration over a cross section. Then since our

earlier assumptions imply ¢ & ¢, we have

7TL2Et + Qz = 0.
Thus
ét = déyy,
where
d = L*u2/192D. (36)
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Hence in (z,t) coordinates we obiain an advection-diffusion equation with
dispersion constant given by d.

The limiting factor in this argument is that the no-flux boundary condition
cannot be relaxed. We must rely on the fact that ¢ ~ ¢y =~ ¢ across
the fracture, and any other boundary condition representing an outflow
of particles would result in all these terms being set to zero as a first
approximation.

Thus in problems such as the dispersal of species with outflow at the
fracture walls, or the dispersal of colloidal particles in fractures, where
the colloids sorb to the fracture walls, the above analysis i: ‘nappropriate.
Moreover in such problems, there is in addition often an ivective term
across the fracture due to surface forces. Clearly if one dimensional models
are to be employed we must set out a new basis for the inclusion and
estimation of a Fickian-like dispersal term.

Intuitively, at least the aim is clear. A population of particles, initially
located at the same cross-section, will disperse in the axial direction due
to the non-uniformity of the velocity field. We wish to fit this dispersal to
a one dimensional transport model by the imposition of a Fickian diffusion
term in the axial direction. Such a term will be referred to as a dispersion
term.

We have seen how this may be achieved in special circumstances by Tay-
lor’s method, but this approach cannot be generalised as it stands. Here
we present an alternative approach.

Consider the general advection diffusion model of the form

(ro(r)e)

G = D(crr + & + cz::c) - U(T)CI -
T r

37)
together with the boundary condition at r = L:

ac+ fe, =0,

for constants a and 3, and the requirement that ¢ be bounded at r = 0.

Here u(r) represents the axial advection due to the fluid flow — think of
u(r) as ug(l — r?/L?), while v(r) represents any radial advection due to
surface forces, etc.

Equation (37) is linear, so we begin by seeking solutions of the form

c = e*Ttotf(r). (38)

We obtain
fr

D(f.r + ?) — %(rvf), — (tku(r) + kK* +0)f =0, (39)
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where

and f is bounded at r = 0.

This last problem is an eigenproblem for the pair (o, f). For each k, fixed,
there will be infinitely many solutions {(oym, fm) : m = 0,1,2,...} ordered
so that

Re(oo) > Re(o1) > ...

Since the corresponding solution u behaves O(e’™t), the zero* mode will
be dominant for all but short times. Let us write 0 = o,,(k) to express
the functional dependence of o in the m*® mode upon k. Each o,,(k) is a
complex valued function of the wave number, k.

The set of values taken by o as k varies in R, and m = 0,1, 2, ... is known
as the spectrum for the differential form on the right hand side of (37).

Now consider a one dimensional equation, which we shall use to approxi-
mate the axial behaviour of (37);

& = D*¢pp — u*G, — s"C. (40)

This incorporates a source/sink term as well as advection and Fickian
diffusion. We must choose D*, u* and s* so that

2 a
;/; crdr = é(z,t),

c(z,t) =~

that is, so that the solution of (40), ¢, approximates the cross-sectional
mean, ¢, of the solution, c, of (37).

Now let us find the spectrum of the differential form on the right hand
side of (40). Substituting ¢ = e”**** into (40) we obtain

o =-D"k* —iku* —s". (41)
As k varies, the quadratic (41), usually called the dispersion curve, gives
the response of the equation (40) to perturbations with wave number, k.
Now integrating rc from (38) with respect to r, and normalizing f, we

obtain
eik:t:+at

¢ =

Recall that the possible relationships between o and k for the full problem
are given by the eigenmodes o,,(k)
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Now we will have & ~ ¢ pr¢ ling the 0 — k relationship for ¢, given
by (41), is close to that for &, which is given by the eigenproblem (39).
Of course (39) possesses an extra degree of freedom in that one may
choose a particular mode (parameterized by integer m). However we have
observed that the zeroth mode will dominate for all but short times. Hence
in making this spectral comparison, we choose D*, u* and s™ so that
the function

g = O'o(k)

is approximated by (41). In particular we require that the agreement is
good for k small (where go(k) is relatively large). Thus an asymptotic
approach to the solution of (39) is appropriate.

In summary we proceed as follows.

Firstly we solve (39) asymptotically for small k. It is appropriate to ex-
pand og as a power series. Thus we obtain

Uo(k) =Y =+ k’)’l + k2')’2 + O(ka) (42)

for some constants vo, 71,---

Secondly we equate coefficients of successive powers of k between (41)
and (42), so that D*, u*, and s* are determined. For these values, the
solution of (40) provides an asymptotic approximation to the behaviour
of the cross-sectional average of the solution, ¢, of (37), valid while ¢
is dominated by small wave numbers in the axial direction and by the
corresponding simplest eigenmodes in the radial direction.

In fact by using the method of steepest descent [14] one may show that if
&(z,0) is chosen appropriately, we will have

| c(z,7,t) — &(z,0) fo(r) IS O(e"s"/t)

where f, solves (39) when o = —s* and k = 0.

As an illustration of the asymptotic spectral comparison method let us
re-examine Taylor’s scenario.

Consider the system given by (31). Then in the notation of the previous
section we have

_I)_(_];.r_ﬂl = (o + iku(r) + DE*)f , (43)
where u(r) = uo(1 — r?/L?).

Introducing the asymptotic series

f = f0+kf1+k2f2+...
o = Yt+tkn+tkEn+...,

44




we substitute for f and o and solve for successive f;’s, so determining the
~:’s by the imposition of solvability criteria.
To O(1) we obtain

D(fo,r) = rv0f0 »
fo,=0atr=1L,
and f bounded at r = 0.
Thus fo =1 and 75 = 0.

To O(k), we have

D(fi,r)r = (1 + tuo(l —

2

T
)
fi,.=0atr=1L,

and f; bounded at r = 0.

Integrating both sides from r = 0 to r = L we obtain

. Ug
= —2",

the average fluid velocity. For this choice of 4; we obtain

; 4
tUg
hr)=zp

(2r? — —2—5) + constant.
To O(k?), we have

2

D(fz,r)r =r(v2+ D + fl(’”)iUO(§ - fg))
fop,=0atr=1L,

and f, bounded at r = 0.
Integrating both sides from r = 0 to r = L we obtain
L? L? u? , .1
APy = Sk TG TR

_ ul?

T D496
Thus 22

—_p_
2=-D - proy
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Hence

= + O(k%). (44)

Comparing (44) with (41) we must choose

Ly?
D* _ D 0
+D.192
ut = Yo
2
s =0

for our one dimensional model (40). The correction
L2
D.192

to the axial diffusion term agrees precisely with that given by d in (36).
Thus we have recovered Taylor’s result.-

However the advantage of the present approach is that it remains valid in
circumstances where the earlier analysis fails.

Consider the following example of a two dimensional fracture of constant
width, 2L, in the (z, z) plane.

We have;
ce=D(czz + ;) —u(z)e; z€R, z€(0,L),t>0, (45)
c=0 z=1
c;=0 z=0.

Notice that we are imposing a zero boundary concentration at the fracture
wall, which will cause an outflux of particles from the fracture.

In the notation of the previous section, (39) becomes

Df,. = (o + iku(z) + k*D)f (46)
f=0 z=1 '
f=0 z=0.

We shall calculate the dispersion curve o = o¢(k) obtained from the sim-
plest mode solutions to (46) and compare it to (41) asymptotically, for
small k, just as in the previous example.
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Let us first choose
22 3

3
so that we again have Poiseuille flow along the fracture.

u(z) = uo(l —

Substituting

f = f0+kf1+k2f2+
c = Yo+tkn+tkyn+...,

into (46), to O(1) we obtain

Dfo,, = 10 fo
f=0 z=1
foz'—"-O z =0.

Whose simplest solution is given by

2D

Tz
fo = Acos( 1z

2L) and Yo = —

for any constant A. Without loss of generality we take A = 1.
To O(k) we obtain

m’ (711 + 2u(2)) fo(2)
flzz 4L2f D -
f] =0 =z L
f]z =0 =z 0.

Multiplying by cos(3%), and integrating from z = 0 to z = L, we obtain
L L
71/ cosz(;rZ)d = —iuog/o (1- -z-—-)cosz( )

For this value of v; one may calculate

™8 Tz Tz

fi= 2L {Sin(ZL)/ cos(2L) (s )dS_COS(QL)/ 51n(2L) (s )ds}+hcos(2L)

where 7(2) = (71 + 1u(z)) fo(z)/D, and h is any constant.

Notice that



by definition of ~;.

Finally, to O(k?) we have,
m? b= ((v2 + D) fo(2) + (n +iu(2)) f1(2)
417 D
fg =0 z=1
fgz =0 z=0.

f'b’zz

Multiplying i y cos(32), and integrating from z =0 to z = L, we obtain

(72 + D)/ cosz( = —/ 7 + 1u( z))fl(z)cos( )

from which we determine v,. (The term with the constant k in f; makes
no contribution to this last integral.)

Thus we have determined
o =90 +71k + 7k + O(k?)

and o, 71, and 7, determine r, u*, and D" (respectively) in (41). In this
case a long calculation ensues in order to calculate D*. We have

. 72D
. 3
o= (1+ p)uo (48)
2,2
D" = D+ L*u?20.026303995
D w2

Note also that ug is the average axial velocity of the fluid which is less
than the average axial velocity, u®, of the particles, or solute.

It is interesting to compare the abov: -esults with the dispersion coefficient
arrived at by Taylor’s theory (when t:e zero boundary condition imposed
on (45) at z = L is replaced by ¢, = 0). In this case

s =0
ut = 9
2u2L?
L D 0
D 105D

In [10] various mathematical models are developed for the migration of
colloids in fractured rock. Here we consider such a model where colloids
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are subject to advection, by the groundwater flow within the fracture, as
well as attractive surface forces between themselves and the fracture walls.

Let a denote the radius of a colloid particle and let ¢(z,2,t) denote the
density of free colloids in a uniform slot fracture (with symmetry in the
y-direction). We have

¢t = D(a)(czz + €2z) — u(2)e: — (v(a)e)., (49)

for
z€e€R, 2€(0,L —a),

c, =0 z=0,
c=0 z=L-a,
(compare (49) with (1)).

Using our asymptotic spectral comparison method, we may calculate the
terms D*,u*, s* in (40), so that (40) represents an axial transport process
asymptotically equivalent to that for the cross sectional average of ¢, given
by (49). We have performed a number of such numerical calculations in
this report (see section 2). Notice that v may be singular at z = L —a, so
care must be taken there, [10]. The results are comparable to those given
in [10], where a slightly different approach was taken. In particular in [10]
dispersion is ignored, an assumption vindicated by our present analysis
for small colloids, but less useful as a is increased.

The results for u* and s* are qualitatively of the form anticipated in [10],
but D* is not monotone decreasing due to the presence of a dispersion
term. However this last, D* — D, is nct straightforward since a standard
Taylor dispersion term could only yield

D'=D+ 0(-]15) = 0(2) + O(a)

and not the sigmoidal behaviour observed in section 2.

The asymptotic spectral comparison method developed here, as part of
this project may well be of wider interest, and it is envisaged that a fuller
account of this will be published shortly in a suitable scientific journal.
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