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Research and Development Program in
Reactor Diagnostics and Monitoring with

Neutron Noise Methods: Stage 4

Summary

This report gives an account of the work performed by the Department of Rea
Physics in the frame of a research contract with the Swedish Nuclear Power Inspec
(SKI). The present work constitutes Stage 4 of a long-term research and developmen
gram concerning the development of diagnostics and monitoring methods of nuclear
tors. The long-term goals are elaborated in more detail in e.g. the Final Reports of St
and 2 (SKI Rapport 95:14 and 96:50, Refs. [1] and [2]).

Some important parts of this development program consist of modelling of
noise source, calculation of the space- and frequency dependent transfer function, ca
tion of the neutron noise via a convolution of the transfer function of the system and
noise source, i.e. the perturbation, and finally finding an inversion or unfolding procedu
determine noise source parameters from the neutron noise.

Most previous work is based on very simple (analytical) reactor models for the
culation of the transfer function as well as analytical unfolding methods. The purpos
this program is to abandon this restriction by calculating the transfer function in more
istic models as well as elaborating powerful inversion methods that do not require anal
transfer functions.

Concurrently with the main program, further aims of the project are to study
possibly solve certain selected reactor diagnostic problems, initiate and perform stud
theoretical problems of neutron fluctuations in nuclear systems and perform physica
simulated experiments to support the analysis of fluctuations in nuclear systems.

A further aim of the program is to build up competence within the Departmen
Reactor Physics, Chalmers, regarding reactor physics calculations, reactor dynamic
noise diagnostics in order to be able to solve real problems in the most effective way.

The program executed in Stage 4 consists of the following parts:

• Investigation of a non-homogeneous analytical reactor model for the calculation of
tron noise;

• Calculation and evaluation of the adiabatic approximation in the reactor model desc
in the previous point;

• Development of methods for the separation of concurrent global and regional p
oscillations in boiling water reactors (BWRs);

• Investigation of the possibility of using the flux gradient in monitoring and diagnostic
reactor cores.

This report is based primarily on work performed by Imre Pázsit (principal inve
gator) and Joakim Karlsson. A proposal of items for the continuation of this program
Stage 5 is given at the end of this report.
- 1 -



most
which
gnos-
ion of
ng or
form

ion of
gated
e 1-D

real-
ing an
oise
and
with

ted in

ction
n in
to a

n be

be
nfunc-
being
two
part
ble,

ing
cal-
can be
How-

s and
Section 1

Investigation of models for the calculation of neutron noise

1.1  Background

In conceptual and model studies of neutron noise and diagnostics, and even in
practical applications, simple homogeneous reactor models have been used so far, in
closed form analytical solutions are possible. The reason for this is that to achieve dia
tics, i.e. unfolding of noise source properties from the induced reactor noise, an invers
the resulting neutron noise formula is necessary. Before the advent of powerful unfoldi
inversion methods such as neural networks, this was mostly possible if simple, closed
solutions of the so called direct problem, i.e. the neutron noise expressed as a funct
the noise source (perturbation) could be obtained. Accordingly, in most cases investi
so far, simple homogeneous cores with or without a reflector were considered in simpl
or 2-D geometries, with a point, plane or line source being present.

In many practical diagnostic problems these models are too simple and more
istic models are required. We have taken a step towards less trivial models by develop
axially non-homogenous reactor model. In this model both the static flux and the n
equations can still be solved by analytical methods, and thus we retain the simplicity
convenience that closed form analytical solutions bring. Thus, a number of problems
practical relevance can be explored. These investigations and results will be repor
detail in a couple of papers ([4] and [5]).

The model consists of a 2-D homogeneous rectangular core in which a -fun
(Feinberg-Galanin) control rod is inserted partially. A sketch of the model core is show
Fig. 1. Solution of both the static and the dynamic equations (the latter corresponding
rod manoeuvring experiment in which the rod is moved up and down periodically) ca
given by two different analytical methodologies.

First, the static problem will be investigated. The solution can in general
obtained by two different methods. One is based on a series expansion w.r.t. the eige
tions of the statically unperturbed system, i.e. a homogeneous system without the rod
present. However, a much more effective method is to divide the system axially into
regions, one containing the full extent of the rod and the other being the remaining
which is free of the rod. In both regions solution with separation of variables is applica
and the solutions can be coupled to each other by interface conditions.

Second, the neutron flux fluctuations, induced by the periodic lifting and sink
of the rod (which in normal reactor operation jargon is called rod manoeuvring) will be
culated and discussed. Even in this case, both above mentioned solution methods
used. Actually this perturbation can be represented by a point source at the rod edge.
ever, this point source is acting in a static system which is axially non-homogeneou
this fact makes the problem non-trivial.

δ
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In this Section, we will derive and discuss the solution and analysis of the s
and dynamic problems, respectively. For brevity, the solutions given in this report are
derived using the method of dividing the core into two separate regions, which is als
most effective method (i.e. it requires the least CPU time to calculate). The derivation o
static and dynamic solutions using the method of unperturbed eigenfunctions and
more details regarding both methods are given in [4].

1.2  Solution of the static problem

The model consists of a 2-D rectangular reactor of extrapolated size by
with an absorber rod present half-way through the reactor from the top to the mid-p
(Fig. 1). The absorber rod is the only inhomogeneity in the model and the reactor medi
otherwise considered homogeneous with constant material properties. To simplify the
lytic calculations, the rod has been placed in the centre of the -direction and in the ca
tions we will use one-group diffusion theory and one group of delayed neutrons. Exten
to non-central rods and two-group theory is straightforward.

In this method, we divide the core into two regions: one region containing the
and one without the rod (see Fig. 1). The result of this division is that

region for which will experience the presence of the absorber all through the reg
Thus the - and -variables can be disconnected from each other and the method of s
tion of variables can be used for each region.

For Region 1, we have the diffusion equation

(1)

where  is the diffusion coefficient and the buckling  is

2h

h

0
- a 0 a

Fig. 1. The 2-D reactor model with an absorber rod present
from the top to the mid-plane of the reactor.

x

y

Region 1

Region 2

2a 2h

x

y h> y h<
y h>

x y

φ1 x y,( ) B
2φ1 x y,( ) γ

D
----δ x( )φ1 x y,( )–+∆ 0=

D B
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where is the eigenvalue of the system. However, for all practical purposes we will in
continuation use  as the eigenvalue of the system.

Using separation of variables, we obtain the solution as

(3)

Here, the functions

(4)

are the solutions to the 1-D diffusion equation in Region 1, i.e.

(5)

with the boundary conditions

(6)

The boundary conditions here are automatically fulfilled by the choice of in the fo
(4). Integration of (5) between and and letting yields the values

 with which (5) is fulfilled in form of a transcendental equation

(7)

The values of are then chosen such that each member of the sum in (3)
fies equation (1). This is achieved by the following choice:

(8)

and the functions  are defined as

(9)

This way all eigenvalues and eigenfunctions of the form (9) will be real. Formally
course, one could use either sin or sinh functions only, with negative values of
thus imaginary for all above certain n value. It was only for the sake of conv

B
2

νΣ f

k
--------- Σa–

D
----------------------=

k
B

φ1 x y,( ) An
n
∑ µ1 n, a x–( ) λ1 n, 2h y–( )sin*sin=

φn x( ) µ1 n, a x–( )sin=

x2

2

d
d φn x( ) µ1 n,

2 φn x( ) γ
D
----δ x( )φn x( )–+ 0=

φn x( ) 0= x a±=

φn
x ε–= x ε= ε 0→

µ1 n,

µ1 n,
γ

2D
------- µ1 n, atan–=

λ1 n,

λ1 n,
2

B
2 µ1 n,

2
–= B

2 µ1 n,
2≥

λ1 n,
2 µ1 n,

2
B

2
–= B

2 µ1 n,
2<

λ1 n, 2h y–( )sin*

λ1 n, 2h y–( )sin*
λ1 n, 2h y–( )sin B

2 µ1 n,
2≥

λ1 n, 2h y–( )sinh B
2 µ1 n,

2<






=

λ1 n,
λ1 n,

2

λ1 n, λ1 n,
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From the above it follows that each member of the sum fulfils (1) including
discontinuity of the -derivative at , and the boundary conditions

(10)

The only hitherto unspecified quantities are the coefficients . The coefficients wi
derived from the interface condition between regions 1 and 2.

For Region 2, the diffusion equation reads

(11)

The boundary conditions for this region are

(12)

The solution from separation of variables becomes

(13)

where

(14)

Further,  and  are defined similarly as (8) and (9), respectively.

The continuity conditions at the interface between the two regions are

(15)

and

(16)

where we have used the fact that the diffusion coefficients are equal for the two reg
Inserting (3) and (13) into (15) and (16), multiplying with and integrating, w
obtain the two equations

x x 0=

φ1 a y,±( ) 0=

φ1 x 2h,( ) 0=

An

φ2 x y,( ) B
2φ2 x y,( )+∆ 0=

φ2 a y,±( ) 0=

φ2 x 0,( ) 0=

φ2 x y,( ) Cn
n 1=

N

∑ µ2 n, x λ2 n, ysin*cos=

µ2 n,
2n 1–

2a
---------------π= n 1 ... , N.,=

λ2 n, λ2 n, ysin*

φ1 x h,( ) φ2 x h,( )=

y∂
∂ φ1 x y,( )

y h=
y∂

∂ φ2 x y,( )
y h=

=

µ2 p, xcos
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(17)

and

(18)

Both equations above can now simply be written in matrix form as

(19)

and

(20)

where the column vectors and contain the coefficients and as their elem
respectively. The elements of the matrices  and  are defined through (17) and (18

By taking the difference between equations (19) and (20) above, we obtain
eigenvalue equation for the flux as

(21)

and the criticality equation becomes

(22)

From (21), both the fundamental and symmetric higher order eigenmodes can be calcu

The static flux has been calculated from (21) and the result is given in Fi
together with the critical buckling . The reactivity value of the rod in Fig. 2 is -0.41 $ o
310 pcm. We have intentionally selected a strong rod to illustrate the resulting depress
the flux around the absorber. The flux gradient w.r.t. the -direction is discontinuous ac
the absorber as it should. The rod also forces the axial maximum of the flux downw
below the geometrical centre of the reactor. It is further interesting to note how the effe
the rod vanishes close to the rod edge.

In the neighbourhood of the rod edge, the flux is rather strongly distorted and
can be applied to the identification of the axial position of the rod tip [11], [12]. The neut
current, or the gradient of the flux assuming diffusion theory, is even more sensitive t
position of the rod edge. The present model has already been used to illustrate the po
applications of the neutron current in core monitoring and diagnostics [10].

Cp An
n
∑

λ1 n, hsin*

λ2 p, hsin*
------------------------ 1

a
--- µ1 n, a x–( )sin µ2 p, xcos xd

a–

a

∫⋅=

Cp An

λ1 n, λ1 n, hcos*

λ2 p, λ2 p, hcos*
------------------------------------ 1

a
--- µ1 n, a x–( )sin µ2 p, xcos xd

a–

a

∫⋅
n
∑–=

c Ma=

c Ka=

a c An Cp
M K

M L–( )a 0=

det M L–( ) 0=

B

x
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1.3  Solution of the dynamic (noise) problem

We will now apply the methods described in the previous section to find the e
solution to the noise due to vertical oscillations (vibration) of an absorber rod in a 2-D
tem. The vertical oscillations of the rod can be described by the time-dependent m
scopic absorption cross-section as

(23)

where is the vibration amplitude in the positive -direction. By expanding (23) i
Taylor series around and neglecting second and higher order terms in
obtain the perturbation represented by the oscillations as

(24)

This corresponds to a point source of variable strength, positioned at the tip of the rod

By introducing the time-dependent absorption cross-section into the time-dep
ent one-group diffusion equation with one-group of delayed neutrons, linearizing and
ing a Fourier transformation, the resulting noise equation is obtained as

(25)

where

−50

0

50

0
50

100
150

200

0

0.5

1

1.5

2

x

y

Fig. 2. The static neutron flux. Notice the depression of the flux
caused by the presence of the absorber rod and also that the flux
maximum is pushed down from the centre of the reactor.

B = 0.02679 cm-1

x [cm]

y [cm]

Σa
r

x y t, ,( ) γδ x( )Θ y h– ε t( )–( )=

ε t( ) y
ε t( ) 0= ε

δΣa x y t, ,( ) ε t( )γδ x( )δ y h–( )–=

∆ φ x y ω, ,( )δ B
2 ω( ) φ x y ω, ,( )δ γ

D
----δ x( )Θ y h–( ) φ x y ω, ,( )δ–+ S x y ω, ,( )=
- 7 -
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(26)

and

(27)

The static flux which is present in the noise source (27) acts as a scaling factor fo
source amplitude. The boundary conditions for the noise equation are the same as th
the static equation.

The equation for the noise (25) is now complex due to the presence of the com
zero reactor transfer function in (26) and thus we expect the equation to ha
complex solution. Therefore, we have chosen to numerically determine the solution
fully complex quantities in the continuation.

The exact solution for the noise can be obtained using the method of dividing
reactor into two regions. Assume first that the noise can be expanded similarly as i
static case. We can write the noise as

(28)

for Region 1 and similarly for Region 2, we have

(29)

The effect of the noise source is taken into account by modifying the current co
nuity interface condition in (16). The modified interface condition is obtained in the sa
way as we took the absorber rod into account in the solution for the static flux in region
Thus, we integrate the noise equation (25) between and and l
tend to zero. This yields the modified continuity condition for the current (i.e. the grad
of the flux) as

(30)

The continuity condition for the flux is the same as in equation (15).

Putting (29) into (30) and (15), multiplying with and integrating, w
obtain the following expressions

B
2 ω( ) B0

2
1 1

ρ∞G0 ω( )
-----------------------– 

 =

S x y ω, ,( )
Σa x y ω, ,( )φ x y,( )δ

D
----------------------------------------------- ε t( ) γ

D
----δ x( )δ y h–( )φ x y,( )–= =

G0 ω( )

δφ1 x y ω, ,( ) An ω( )
n 1=

N

∑ µ1 n, a x–( ) λ1 n, 2h y–( )sinsin=

δφ2 x y ω, ,( ) Cn ω( ) µ2 n, x λ2 n, ysincos
n 1=

N

∑=

y h ε–= y h ε+= ε

y∂
∂ δφ1 x y ω, ,( )

y h=
y∂

∂ δφ2 x y ω, ,( )
y h=

– ε ω( ) γ
D
----δ x( )φ x h,( )–=

µ2 p, xcos
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(31)

and

(32)

We can write the equations in matrix form as

(33)
and

(34)

As expected, due to the inhomogeneous term in (33), corresponding to the r.h.s. of
these equations are not eigenvalue equations. The coefficient vectors and can be
lated by rearrangement as

(35)

The neutron noise is obtained by calculating the coefficient vectors and f
(35) and then using them in the expressions for the noise (28) and (29).

The amplitude and phase of the induced noise resulting from axial oscillation
1 cm amplitude of the absorber rod is shown in Figs. 3 and 4, respectively, for a
selected frequencies. At low frequencies, the noise behaves in a point kinetic fashion,
phase that is constant in space and an amplitude which has the same space-depend
the static flux. With increasing frequencies, both the amplitude and the phase delay be
more and more space dependent, the fastest changes being concentrated around the
bation (source).

1.4  Conclusions

Because of the straightforward manner in which both the static and the dyn
problem can be solved in this model, it is also suitable for analytical and numerical stu
of the applicability of various reactor kinetic approximations (point kinetic, adiaba
prompt jump approximations). It also constitutes a fairly realistic and powerful descrip
of realistic cases, i.e. partially inserted control rod and the so-called rod manoeuvring e
iment. It is going to be used for comparison with calculations from ICFM codes [6] as
as with eventual later experiments. Finally, the work has also some pedagogical va
nuclear engineering education, giving an advanced example of the separation of varia

An

λ1 n, λ1 n, hcos

λ2 p, λ2 p, hcos
--------------------------------- 1

a
--- µ1 n, a x–( )sin µ2 p, xcos xd

a–

a

∫⋅
n
∑ Cp+ =

ε ω( ) γ
Da
-------φ 0 h,( ) 1

λ2 p, λ2 p, hcos
---------------------------------⋅=

Cp An
n
∑

λ1 n, hsin

λ2 p, hsin
--------------------- 1

a
--- µ1 n, a x–( )sin µ2 p, xcos xd

a–

a

∫⋅=

Ra c+ d=

c Pa=

d
a c

a R P+( ) 1– d=

c Pa=

a c
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Fig. 3. The amplitude of the noise for four different frequencies of the source oscill
tion.

a) b)

c)
d)

−50
0

50

0
100

200

−100

−50

0

xy

Noise phase (source freq. 0.001 rad/s)

−50
0

50

0
100

200

−100

−50

0

xy

Noise phase (source freq. 0.05 rad/s)

−50
0

50

0
100

200

−100

−50

0

xy

Noise phase (source freq. 2 rad/s)

−50
0

50

0
100

200

−150

−100

−50

0

xy

Noise phase (source freq. 200 rad/s)

Fig. 4. The phase of the noise for four different frequencies of the source oscilla-
tion.
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Section 2

Evaluation of the adiabatic approximation in the reactor
model described in the previous Section

2.1  General

In many problems of reactor noise diagnostics, it may be of significant advan
to solve the time- or frequency dependent equations for the neutron noise in some r
physics approximation. The simplest non-trivial approximation is the adiabatic approx
tion, which was already described in the previous Stage (Ref. [3]). The advantages of i
are twofold. First, the solution via the adiabatic approximation lends itself to a simple p
ical interpretation, which enhances the understanding and interpretation of various phe
ena. This may have the further advantage that it even may help to elaborate unfo
(inversion) methods for diagnostical problems. Second, mathematically it is simpler
the exact method. In particular, at present the adiabatic approximation is the only on
can be used to estimate the neutron noise in real (inhomogeneous) reactor cores, by
existing ICFM codes.

This latter principle was demonstrated in the previous Stage where the ne
noise induced by a rod manoeuvring experiment was calculated by using SIMUL
together with the adiabatic approximation (“SIMULATE-Adiabatic”, see Ref. [3]). Ho
ever, one problem with the above mentioned procedure was that in absence of an “e
solution, it was not possible to estimate the precision of the SIMULATE-Adiabatic a
rithm.

The axially non-homogeneous reactor model, described in the previous Sec
gives a possibility to assess the suitability of SIMULATE-Adiabatic. Namely, in t
model, both the exact and the adiabatic solutions can be obtained to the same pertur
in a non-trivial model that is sufficiently similar to the SIMULATE calculations. Thu
some indications of the suitability of SIMULATE-Adiabatic can be obtained. This is
purpose of the present Section.

2.2  The adiabatic approximation

The concept of the adiabatic approximation and its application to the rod man
vring experiment were described in Stage 3 (Ref [3]), thus they will only be described
briefly here. The essence is to factorize the time-dependent flux into an amplitude a
shape function as

(36)

with the normalizing condition for the shape function in the form

φ x y t, ,( ) P t( )Ψ x y t, ,( )=
- 11 -
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(37)

where is the static flux. The above formulae are written directly in a 2-D
geometry, such that they suit the 2-D model of the previous Section.

Expressions for the neutron noise can be obtained from (36) by splitting all com
nents into a sum of a steady-state (time-independent) component and time- (freque
dependent fluctuations as

(38)

(39)

(40)

With (38) - (40), and assuming small fluctuations (neglecting second order terms), the
can be expressed as

(41)

The first term on the r.h.s. is called the reactivity or point kinetics component, and the
ond the space dependent component. Due to the linearisation process, this term is ind
ent of whether or not a reactor kinetic approximation is used. As is well known, this ter
given as the solution of the linearized point kinetics equations, whose solution in the
quency domain is given as

(42)

where is the zero reactor transfer function. Again, due to linearity, the react
can be calculated from a perturbation formula involving only the static flux and the pe
bation in the cross sections.

Application of the adiabatic approximation affects only the second term. It me
that the space-dependent term is determined from a static calculation. In
words, is calculated as the difference between two static fluxes, one belon
to the critical (reference) state, the other is the flux from a criticality (eigenvalue) calc
tion belonging to the perturbed reactor at timet.

Concretely, in our case, the critical equation is given as

(43)

and the static eigenvalue equation with the rod withdrawn from the critical position wi
distance  is

φ0 x y,( )Ψ x y t, ,( ) yd xd

0

2h

∫
a–

a

∫ φ0
2

x y,( ) yd xd

0

2h

∫
a–

a

∫=

φ0 x y,( )

φ x y t, ,( ) φ0 x y,( ) δφ x y t, ,( )+=

P t( ) 1 δP t( )+=

Ψ x y t, ,( ) φ0 x y,( ) δΨ x y t, ,( )+=

δφ x y t, ,( ) δP t( )φ0 x y,( ) δΨ x y t, ,( )+=

δP ω( ) G0 ω( ) ρ ω( )⋅=

G0 ω( )

δΨ x y t, ,( )
δΨ x y t, ,( )

φ0 x y,( ) B
2φ0 x y,( ) γ

D
----δ x( )Θ y h–( )φ0 x y,( )–+∆ 0=

ε t( )
- 12 -
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(44)

where the eigenvalue of the perturbed state is contained in the perturbed buckling .
here the adiabatic approximation of  is given as

(45)

Naturally, in order to obtain correct results, and need to be norm
ized in a proper way, i.e.  must satisfy (37).

Collecting both components of the noise, the final form of the adiabatic appr
mation of the neutron noise in the frequency domain can be written as

(46)

Again, because of linearity, i.e. neglection of higher order terms in the perturbation,
terms on the r.h.s. will be linear in the perturbation parameter, in our case . Th
because for small movements of the rod, the perturbation of the absorption cross s

 can be represented as

(47)

Thus the perturbation is equivalent to a time-varying point source of a time-depen
strength equal to . As a consequence, both the reactivity term and the space-dep
term will be linear in  ( ). The system response can then be characterised b

(48)

It is this quantity which will be shown in the quantitative work below. From the above it a
follows that both and are independent of the frequency of the perturba
The only frequency dependence in (48) arises from the zero reactor transfer fun

.

2.3  Quantitative results

A quantitative analysis of the adiabatic approximation, applied to the rod man
vring experiment, was performed in the same reactor model as in the previous Secti
summary of the results is shown in Figs. 5 and 6. In both figures, the space depende
the noise along a horizontal cross section of the core, i.e. along the x-axis, is shown a
eral axial elevations (y-values). In all figures the exact solution, the point kinetic compo
and the noise in the adiabatic approximation is shown.

Ψad x y t, ,( ) Bp
2Ψad x y t, ,( ) γ

D
----δ x( )Θ y h ε t( )+[ ]–( )Ψad x y t, ,( )–+∆ 0=

Bp
2

δΨ x y t, ,( )

δΨad x y t, ,( ) Ψad x y t, ,( ) φ0 x y,( )–=

Ψad x y t, ,( ) φ0 x y,( )
Ψad x y t, ,( )

δφad x y ω, ,( ) G0 ω( )ρ ω( )φ0 x y,( ) δΨad x y ω, ,( )+=

ε ω( )

Σa x y t, ,( )

Σa x y t, ,( ) γ
D
---- δ x( )Θ y h ε t( )+[ ]–( ) δ x( )Θ y h–( )–{ }=

γ
D
----ε t( )δ x( )δ y h–( )–∼

ε t( )
ε t( ) ε ω( )

δφad x y ω, ,( )
ε ω( )

--------------------------------

ρ ε⁄ δΨad ε⁄

G0 ω( )
- 13 -
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At the lower frequency of = 0.01 rad/sec (Fig. 5), the system response is ra
point kinetic. All three solutions (point kinetic, adiabatic, exact) are very close to e
other, and the space dependence of the noise is equal to that of the static flux. This
with the SIMULATE-Adiabatic results in [3], Fig. 16, except that a deviation was fou
there between the adiabatic and point kinetic terms in the close vicinity of the rod tip (
turbation point) which is absent in the results of the present analysis. The reason for th
ference is that this deviation is due to the local component of the noise, which can on
accounted for in 2-group theory. SIMULATE can thus reconstruct this local term, but
present 1-group model cannot.

At the higher frequency of =0.1 rad/sec, the deviations from point kinetic beh
iour are significantly larger, especially close to the perturbation point (Fig. 6.). At the s
time, the adiabatic approximation is still quite close to the exact solution, indicating tha
approximation is quite good at this reactor size and perturbation frequency. Also,
results are in a quite good qualitative agreement with the SIMULATE-Adiabatic calc
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Fig. 5. The space dependence of the neutron noise along the x-axis at several axial
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tions, Ref. [3], Figs. 17 and 18. The differences between these and the results in Fig.
are much smaller than in the previous case of low frequency, mainly because of the fa
the local component plays a much smaller role in this case (due to the overall strong
dependence of the noise).

It is thus concluded that the above analysis confirms our previous expectation
the method SIMULATE-Adiabatic can be a useful tool to calculate the neutronic resp
to certain perturbations. Of course the method is applicable within a limited freque
range only, and in each application a separate judgement need to be made to confi
applicability. However, since at present there are no dynamic codes available to calc
the space-dependent neutron noise in real heterogeneous reactors, it is very useful t
access to such adiabatic methods that can be used with existing codes.

The above figures show only the noise along certain cross sections of the cor
one-dimensional manner. It may be of interest to see the noise in the whole 2-D regi
the reactor. In Fig. 7a the space dependent component in the adiabatic approxim
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Fig. 6. The space dependence of the neutron noise along the x-axis at several axial
tions at =0.1 rad/s. The rod tip (perturbation position) is located at y=120 cm.ω
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he
, is shown as a 2-D function. Due to the normalisation conditi
(37), is orthogonal to the static flux, and thus it must have both positive and neg
values. The areas of positive and negative values are clearly seen in the figure, especi
the contour plot (Fig. 7b).

A more detailed report on the above results will be published separately (Ref
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Section 3

Development of methods for the separation of concurrent glo-
bal and regional power oscillations in boiling water reactors

(BWRs)

3.1  Introduction

Stability measurements performed in Ringhals 1 during start-up 1990 showed
limit cycle power oscillations occurred at 72.6% power and a core flow of 3694 kg/s. A
ysis of the phase relationships between the different local power range monitors (LP
showed that the first azimuthal mode was responsible for the oscillations (out-of-p
oscillations). Measurements performed in a nearby point on the power-flow map indica
stable situation with a DR of approximately 0.7. Further, the phase between LPRMs in
operating point showed that the power oscillations were in-phase.

The oscillations in both operating points occurred at the same frequency. This
seem like a contradiction, but in fact the explanation is that an in-phase (global) mode
present simultaneously with an out-of-phase (regional) mode and at the same frequ
These two modes had different amplitudes and different stability properties. The amp
of the two modes depended strongly on the operating point, with the effect that a chan
operating point seemed to make the DR “jump” from a value of ~0.7 directly to unity
was then realised, that in this case the conventional DR did not give an appropriate in
tion of how close one was to instability. In order to resolve this problem, the two flux mo
need to be separated and their DRs determined independently.

The out-of-phase component can be obtained by taking a weighted differen
signals from detectors 180 diagonally separated in the reactor. This method, wh
called the subtraction method, relies on the symmetry of the out-of-phase mode an
result is that in-phase components common to both detector signals cancel, while o
phase components are somewhat enhanced. A similar procedure was used with suc
determine the stability properties of the global and regional modes in the Ringhals cas
This method has also become the most widely used procedure so far in separation of
and out-of-phase modes in BWRs.

Alternatively, a decomposition method based on the factorisation of the flux ca
used to obtain the modes separately. This so called factorisation method, described m
detail below, has been attempted already in Ref. [7], but without success. The
described here started with the purpose of understanding the reason of the failure.

To summarize the results, the explanation of the failure lies in two facts. One is
approximate character of the factorization formula, approximating an integral over the
with a discrete sum over a number of detectors. The second is the presence of the loca
ponent of the noise (generation and axial propagation of the void), which introduces s
correlations between detectors in the same axial string. These two facts together intr

°

- 17 -
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extra components into the correlation functions from which the decay ratio is determ
hence leading to incorrect estimate of the decay ratio.

The work presented in this Section gives a quantitative description of the ab
facts. Based on the analysis, it was also found that a factorisation technique that is ba
detector signals from one axial level only, gives very good results. We call this metho
“partial factorisation technique”. Its use will be also demonstrated through an analys
the Ringhals measurements.

The work described here has been accepted for publication inNucl. Sci. Engng.
[9]. The current chapter summarizes the main findings, though a more detailed acco
the work performed is given in [9].

3.2  The factorisation method

The space-time dependent flux can be factorised into an amplitude and a s
function as

(49)

Assuming that the time-dependent fluctuations of the quantities in (49) are
small, each of them can be written as composed of a sum of a steady state value and
time-dependent perturbation. These expressions can be substituted into (49) and, afte
simplification, we obtain

(50)

The first term in (50) represents the fluctuations of the global mode (i.e. it has
same spatial dependence as the static flux ). The second term in (50)
tains all other fluctuations (i.e. higher order modes as well as a local component o
noise) present in the reactor. This term will be called the space-dependent componen

For (50) to be unambiguous it is sufficient to require that:

(51)

This integral expresses the fact that the shape function must be orthogonal to the
flux. Thus by multiplying (50) with the static flux and integrating over the core v
ume, the time-dependence of the reactivity component can be obtained as

(52)

φ r t,( ) P t( )Ψ r t,( )=

δφ r t,( ) δP t( )φ0 r( ) δΨ r t,( )+=

φ0 r( ) δΨ r t,( )

φ0 r( )δΨ r t,( ) Vd

V
∫ 0=

δΨ
φ0 r( )

δP t( )

φ0 r( )δφ r t,( ) Vd

V
∫

φ0
2 r( ) Vd

V
∫

--------------------------------------------

φ0 r i( )δφ r i t,( )
i 1=

M

∑

φ0
2 r i( )

i 1=

M

∑
---------------------------------------------≈=
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where the r.h.s was obtained by approximating the integrals with sums over a numb
detectors . Here, the static flux and the noise signal are obtained f
the mean value and fluctuating part of the detector signal , respectively. The space-de
ent, i.e. non-global part, of the signals can now be calculated using (50) as

(53)

Assuming now that the space-dependent component consists only of the firs
muthal mode, i.e. , this method should be able to separate
two modes present in the Ringhals measurements. This separation procedure wa
attempted in [7], where it was called the global/space dependent separation metho
without success.

No logical explanation of this failure was found at the time the original analy
was performed, especially not in the light of the successful separation obtained by usin
subtraction method on the same data. One would actually expect the factorisation met
be more accurate in practice, since it has several inherent advantages that should cou
the deleterious effects of the applied approximations. The advantages of the factori
method are the use of a large number of detectors in (52) and that the static flux is obt
from the measurement itself.

However, at one stage we realised that quite plausible results could be obt
with the factorisation based technique, if the orthogonality integral was approximated
sum over 36 detectors of one axial level, instead of all 72 detectors that are situated o
different axial levels. The reason for the success of the factorisation method when det
on a single axial level are used, compared to its failure when all detectors are used,
the presence of local noise fluctuations in the space-dependent component in ad
to the mode oscillations. This statement will be confirmed in the next subsection via a
ple phenomenological model of BWR noise. The factorisation method using detectors
a single axial level only will be called the partial factorisation method in the continuati

3.3  A phenomenological model of BWR noise

The success of the partial factorisation procedure may be understood throug
use of a phenomenological model of BWR noise. This model of the noise must contain
global oscillations and out-of-phase ones as well as
(axially propagating) local component . In formulae, the noise in this model ca
expressed as

(54)

In this context, the space-dependent term of (50) can now be identified as b
equal to

(55)

A phenomenological model similar to (54), but without the regional mode, has been

M φ0 r i( ) δφ r i t,( )
i

δΨ r t,( ) δφ r t,( ) δP t( )φ0 r( )–=

δΨ r t,( ) δR t( )φ1 r( )=

δΨ

δP t( )φ0 r( )( ) δR t( )φ1 r( )( )
δL r t,( )

δφ r t,( ) δP t( )φ0 r( ) δR t( )φ1 r( ) δL r t,( )+ +=

δΨ r t,( )

δΨ r t,( ) δR t( )φ1 r( ) δL r t,( )+=
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cessfully used in the past to support the analysis of BWR noise measurements.

Assuming statistical independence between the components of (54) and takin
auto-correlation of (55), we obtain

(56)

or, alternatively,

(57)

The physical properties described by the local component of the noise cons
the local void formation everywhere in the reactor and the axial upward propagatio
these void fluctuations. Thus, the correlation function of the local component h
peak centred at with a width depending on the bandwidth of the noise. The
thermohydraulical properties that determine void formation and propagation properties
be assumed statistically independent and thus no correlation exists between detectors
ferent radial positions on the same axial level. Further, if one takes the cross-corre
function between two detectors in the same string (i.e. one detector is situated di
above the other), the axial transport of the void fluctuations causes a peak to app

, where is the transport or delay time between the two detectors. The tran
time may be used to obtain the average steam velocity between the detectors. In th
quency domain, this corresponds to a linear behaviour of the phase with frequency.

The out-of-phase oscillation, on the other hand, shows a very different behav
in its auto correlation and power spectrum . Since the regio
mode is best described by a damped oscillator excited by white noise, its
show successive damped oscillations. In the corresponding power spectrum, the osci
yields a peak at the frequency of oscillation.

Since a small radial variation in the steam velocity exists also on a single a
level, variations will occur also in the width of the peak present in the . This
cause uncertainties in the determination of the DR for the regional component

. It is thus possible to explain, only by accounting for the local component, why
space-dependent component deviates from the out-of-phase mode, and in particula
the decay ratio derived from remains space dependent. However, since the axial
tion is considerably greater, one notes that some differences may be expected w
detectors from one elevation or two elevations are used in the approximate factoris
method, respectively.

This explains the appearance of space-dependent DRs, but the approxim
made in the summation step (52) need also to be taken into account for a full explan
Details of this analysis are given in [9], here we only summarize the findings. By taking
account the approximations performed and by using detector signals from one axial
only, the result for the auto-correlation function of the space-dependent component
is obtained as

ACFδΨ r τ,( ) ACFδR τ( ) φ1 r( ) ACFδL r τ,( )+⋅=

APSDδΨ r ω,( ) APSDδR ω( ) φ1 r( ) APSDδL r ω,( )+⋅=

ACFδL
τ 0=

τ τ0= τ0

ACFδR τ( ) APSDδR ω( )
ACFδR τ( )

ACFδL

ACFδΨ

δΨ

δΨappr
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(58)

where ,  and .

Equation (58) shows a structure similar to (56), but a difference is the presen
the ACF of the global component in (58), although with a small weight. The presence o
local and global components in the space-dependent signal causes the
ratio, derived from to deviate from that of the desired out-of-phase com
nent. The same is true for the global component . Due to the axial dependen

, even in this case it is obvious that the decay ratios, either global or ou
phase, will be axially dependent. However, with a relatively large number of detectors
dependence will be weak, and a rather good approximation of the global and out-of-p
decay ratios should be obtained.

We will now contrast the above results with those obtained in case the dete
used in the summation are situated at two different axial levels. This corresponds to th
torisation method as it was employed in [7]. The resulting ACF for this case is

(59)

Here, the summation extends over all 72 detectors corresponding to the Ringhals me
ments. The primes are used to distinguish between the lower and upper axial position

 and  are the two detector positions within the same detector string.

Equation (59) contains the same terms as (58), but in addition it also contain
cross-correlations of the local noise between detectors in the same string, c.f. the la
terms of the equation. These additional cross-correlation terms influence the determin
of a DR from (59) in a different and more important way than the preceding ones. The
ference is that the cross correlations have a peak at a value w

is the transport time of the void fluctuations between the two axial levels. In addit
since this transport time may vary substantially between the different radial posit

may show a much broader peak than the individual CCFs. The weight of
second last term in (59) is also larger than that of the last term in (58).

It is thus seen that there is a significant difference regarding whether dete
from one level only or detectors from two (or more) levels are used. Reasonably
results can be obtained for the global and regional decay ratios if detectors from one
are used. If detectors from at least two levels are used in the flux decomposition proce
then reconstruction of the in-phase and out-of-phase components is practically not po
This is why the attempt made in [7] was not successful. Not only become the ACFs o
global and out-of-phase components “distorted” by the presence of the cross-correlat
the local term, but this latter term also distorts the phase relationships of the factorise
nals , such that the out-of-phase quality of the signal is perturbed.

ACFδΨappr
r i τ,( ) A1

2φ1
2 r i( )ACFδR τ( ) A2

2
ACFδL r i τ,( ) εi

2φ0
2 r i( )ACFδP τ( )++=

A1 1≅ A2 1≅ εi
2

1«

δΨappr r t,( )
δΨappr r t,( )

δPappr t( )
ACFδL r τ,( )

ACFδΨappr
r i τ,( ) A1

2φ1
2 r i( )ACFδR τ( ) A2

2
ACFδL r i τ,( )+ +=

ε1
2φ0

2 r i( )ACFδP τ( ) εii ′CCFδL r i r i ′ τ, ,( ) ε2
2
CCFδL τ( )+ + +

r i r i ′

CCFδL r j r j ′ τ, ,( ) τ0 0>
τ0

CCFδL τ( )

δΨ r i t,( )
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Because of these difficulties, the method of subtraction is both simpler and m
effective. It is also possible to explain why it worked better in [7] than the factorisa
method. The reason is that in the subtraction method detectors from the same axia
were used, whereas in the factorisation method, from both axial elevations. However
also seen that the problems of factorisation can be avoid if only detectors from one
level are used. This so-called partial factorisation technique was suggested to use and
in some detail in this work.

3.4  Application of the partial factorisation method

The partial factorisation method has been used to obtain the global and reg
signal components in the Ringhals measurements in the two operating points lying c
to the point where the limit cycle oscillations occurred. The global component is obta
directly as a result of the partial factorisation procedure through (52). However, determ
tion of the regional mode is more difficult. This is because it is not given directly as an i
gral parameter such as the global component rather it is contained in all the calcu
space-dependent components . Moreover, in many of these signals the mod
a relatively low amplitude (weight).

Thus it is necessary to devise some averaging technique, similar to (52), to d
mine a reliable DR for the regional mode. Therefore, we suggest here a phase dela
rected averaging of the signals . The phase difference between each s

and a reference signal is determined at the resonance frequency
it is denoted by . The out-of-phase behaviour of the signals is not perfect and devia
occur, but by using the procedure below such deviations are corrected for in the final r
In formulae, we have

(60)

where the static flux is used as a weight function of the relative importance o
space-dependent signals. By using the above equation, the amplitude of the out-of-
component is strongly amplified, while a strong reduction in amplitude is obtained for
local noise component and for the term in , which is due to the approximation of
integral with sums.

Having obtained the two signals and , they can now be used to obta
DR for the global and regional components, respectively. An analysis of the performan
the method was made, and for details we refer again to Ref. [9]. Regarding the actual
mination of the DRs from the signals, three different methods were used similarly to
(see [7] for details). The different methods yield somewhat different results for the DRs
the DRs for the different axial levels are consistent within the same measurement
resulting DRs for the global component in both cases D and H were approximately 0.8
regional components showed somewhat higher DRs of around 0.85. The obtained
DRs are also consistent with those reported in previous publications ([7] and [8]).
regional DRs are also relatively consistent, although somewhat lower, compared t
results for the regional DRs obtained by the subtraction method in [7], and further the

δΨ r i t,( )

δΨ r i t,( )
δΨ r i t,( ) δΨ rk t,( )

ϕki

δRav t( )
δΨ r i t,( )

φ0 r i( )
---------------------- ϕki( )cos⋅

i 1=

M

∑=

φ0 r i( )

δΨ

δP δRav
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also somewhat higher than the results of the subtraction method obtained in [8]. This s
that the partial factorisation method and the subsequent amplification of the regional
ponent leads to reasonable, consistent results that are comparable to previous metho

Stability monitoring is not the only possible application of the factorisation meth
and it may sometimes be useful to separate different noise components and not only
frequency of a resonance. For example, in void transport measurements axial cross-c
tion between detectors in the same string is used and the local component is the inter
one. Elimination of the global component will improve the linear dependence of the ph
as is demonstrated below in Fig. 8. This possibility has not been investigated before.

Fig. 8 shows the coherence and phase between LPRMs 20:2-20:4, i.e. LPR
axial levels 2 and 4 in string No. 20, respectively, in measurement D. The coherence
raw (original) signals shows the usual broad-band character with some periodic dips
result of the interplay of the global and local components. Notice that in this case the g
component is not equal to the global oscillation mode, which is present only at 0.5 Hz i
coherence of the original signal in Fig. 8, but rather it arises from a global compone
white low-pass filtered background noise. Between 0 and 0.5 Hz, the magnitude o
coherence of the space-dependent component is much smaller than that of the origin
nal. This is because the global (reactivity) term is eliminated, only the local compo
remains in the space-dependent signal at these frequencies. At higher frequencies,
other hand, the original and space-dependent signals have very similar coherence, sh
that at these frequencies the global component has already diminished in the original s
As was mentioned previously, the upward transport of void fluctuations leads to a li
phase as a function of frequency (see Fig. 8). The slope of the phase yields the
port time , since . It is seen in Fig. 8 that the linear phase behaviou
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Fig. 8. Coherence (upper figure) and phase (lower figure) for the orig-
inal and space-dependent signals in measurement D LPRM 20.
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improved considerably at low frequencies by using the coherence between the s
dependent signals instead of the original signals. The effect of both the broad-band a
resonant global components is eliminated. This figure also illustrates the usefulness
factorisation technique in areas other than determining stability properties. It has
added that the component separation in this case cannot be achieved by the subt
method, for quite obvious reasons. The factorisation technique is also applied in som
ther examples shown in [9].

3.5  Conclusions

It has been shown that with the partial factorisation procedure, i.e. using dete
lying in one radial plane (one axial elevation) only, the global and space-dependent co
nents can be properly separated. A simple phenomenological model was introduced a
taking into account the approximate steps performed in the factorisation method, the
cess and failure of the present and previous versions of the method could be expl
Regarding BWR oscillations, the decay ratios of the global and the regional modes c
determined. A simple but somewhat improved method was elaborated for determinin
amplitude of the regional (out-of-phase) oscillations from the space-dependen
nals. Finally, we have shown an example of the application of the method also in mea
ments of the void transport time via correlations of detector signals.

δR t( )
- 24 -
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Section 4

Investigation of the possibility of using the current and the
flux gradient in core monitoring and diagnostics

4.1  Introduction

Generally, the neutron flux is angularly dependent. However, in prac
it is the scalar (angularly integrated) flux that is used in both calculations and m
urements. The angular dependence of the flux, or just the lowest order angular mome
neutron current, or its diffusion theory approximation, the flux gradient, is not utilized.
reasons are relatively obvious; it is not easy to measure anything else than the scala
and in calculations, such as criticality, burnup etc. it is still sufficient to use the scalar 

However, the situation is different in core monitoring and diagnostic problems.
anomaly is most often represented with a spatial discontinuity, such as a control or fue
surface or tip, around which the angular neutron flux is rather anisotropic. As a co
quence, the neutron current, or the flux gradient, are expected to behave in a much
space dependent manner than the scalar flux in the vicinity of such objects of diagn
interest. This is beneficial from the diagnostical point of view, since the spatial localisa
of such perturbations or objects is always dependent on the space dependence of the
the noise. Even if the space dependence of the current is not stronger than that of the
flux, it represents additional information that is not available in the scalar flux, and thus
help in a diagnostic task.

Since, with current technology, the possibilities to construct angularly sens
detectors or gradient detectors is much better than earlier, this possibility is quite prom
Thus we suggested to investigate the possible enhancements in core monitoring and
nostics with the utilisation of the current or flux gradient, in both static and dynamic c
(noise diagnostic with current/gradient). A theoretical analysis of this possibility was
formed and will be described here. A few selected model problems were investigated
titatively. Through these model cases examples of possible applications are describe

4.2  General

Here we collect some definitions and formulae that will be used in the followi
To facilitate the simplicity of description, one-group theory will be used throughout.
formulae can easily be generalized to many-group theory without any difficulty other
complications in the notations.

The neutron current, a vector quantity, is defined as the first angular moment o
angular flux:

(61)

With the scalar flux and the current, a two-term series expansion of the angular flux

φ r Ω,( )
φ r( )

J r( ) Ω φ r Ω,( ) Ωd⋅∫=
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(62)

In general, to calculate the current as defined by (61) requires the solution of the tran
equation. In this paper one problem will be treated in which the true current is calcul
and this will be performed by Monte-Carlo methods.

Diffusion theory is an approximation to transport theory in which it is assumed
the angular flux is close to isotropic. In this approximation, the neutron current is given
ply as the gradient of the scalar flux,

(63)

In this approximation it is sufficient to solve the diffusion equation, which is much simp
than to solve the transport equation. Also, regarding measurement techniques, it is ea
construct a gradient detector than a current detector. The disadvantage of using the g
is that close to strong inhomogeneities, such as control rods, reactor boundary etc., dif
theory is rather inexact, and the gradient can be a quite bad approximation to the tru
rent. Used with care, however, the gradient can be a very useful complement to the
flux.

In the dynamic case, a time-dependent neutron flux need to be used in the a
definitions to obtain the time-dependent current and gradient. In the following we will o
consider the fluctuations in the current in the diffusion theory approximation, i.e. the g
ent noise. For simplicity we will call it a “current noise”. By the usual way of defining no
as deviations from the expected value, we write

(64)

for the angular flux, where is the angular noise. Likewise, the scalar and
rent noise are defined through

(65)

and

(66)

Then, in the diffusion theory approximation, one obtains the time- or frequency depen
Fick’s law for the current noise, expressed as the gradient of the scalar noise:

(67)

The value of the above expression is emphasized when using together with the usual e
sion of the scalar noise in the frequency domain, i.e.

φ r Ω,( ) 1
4π
------ φ r( ) 3 Ω J r( )⋅ ⋅+[ ]≅

J r( ) D r( ) ∇φ r( )⋅–=

φ r Ω t, ,( ) φ0 r Ω,( ) δφ r Ω t, ,( )+=

δφ r Ω t, ,( )

φ r t,( ) φ0 r( ) δφ r t,( )+=

J r t,( ) J0 r( ) δJ r t,( )+=

δJ r t,( ) D– ∇δφ r t,( )⋅=
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(68)

Combining with (67) gives

(69)

Eqn (69) expresses the fact that the current noise can be calculated through the grad
the same transfer function as the one used for calculating the scalar noise. In all cases
there is an analytical formula available, this calculation can be performed in a straigh
ward way. Some examples will be given below.

In the examples below, we assume that one has access to a detector that can
ure both the current and the scalar flux (abbreviated as a C/F detector). In other word
assume that both the scalar flux and the current (gradient) are available in one single s
point. We give some examples below how this information can be used in various loca
tion tasks. More details and examples can be found in Ref. 10.

4.3  Examples of application: static cases

Localisation of a point source

As the first application, it will be illustrated how a static point source in a pur
moderating medium can be located in principle by a measurement in one single p
Again, as in the whole of this Section, one-group theory is used and we only deal with
mal sources and fluxes/currents.

Assuming a source at position , i.e.

, (70)

solution of the diffusion equation gives the scalar flux as

(71)

whereL is the diffusion length,

Finding the source position by measuring the scalar flux only requires at lea
traditional detectors at different spatial positions. However, since the neutron curren
three vector components in 3 dimensions, the scalar flux and the current, as measured
one point, is sufficient to locate the position of a source of unknown strength.

From (71) one obtains that

(72)

δφ r ω,( ) G r r ' ω, ,( ) S r' ω,( )⋅ r'd∫=

δJ r ω,( ) D ∇rG r r ' ω, ,( )∫– S r' ω,( )dr'⋅=

r0

Q r( ) Q δ r r 0–( )⋅=

φ r( ) Qe

r r 0–
L

-----------------–

4πD r r 0–
----------------------------=

L D Σa⁄( )1 2⁄
=

r0

J r( ) D– ∇φ r( )⋅ D
r r 0–

r r 0–
---------------- 1

L
--- 1

r r 0–
----------------+ 

  φ r( )⋅ ⋅= =
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Eqn (72) shows that the vector points into the direction . This means that d
ing a line from in the direction of , the unknown source position will lie on th
line. In other words, measuring the current in one point alone shows the direction whe
source is located. Although such a simple relationship is only due to the simplicity o
situation, namely a homogeneous infinite system, the directional selectivity of the mea
current is always present, although in a somewhat more indirect way.

The remaining parameter, the distance , can be determined by using the s
flux and  together. From (72) one obtains

(73)

Thus from and the distance can be obtained by inverting (73), see
Fig. 9. The Figure also shows that if is much larger than the diffusion length ,
ratio becomes insensitive to , which thus cannot be determined. Pointing
the direction

from (72) does however not suffer from this fact.

The above illustrates the fact that the spatial range within which source localisa
and other diagnostics can be performed byone current + flux (C/F) detector is more limited
than it would be if the same task is to be performed with, say, three or four flux detec
placed at suitable distances from each other and the source. However, in some case
may be only one detector position available in a localisation task close enough to the s
One such example is treated below. Then, use of the current and the flux together is th
chance to perform the diagnostics.

Diagnostics of control rods and control rod pins

The second application concerns the diagnostics of either whole control rod ro
individual control pins. Regarding complete control rods, some attention was paid rec

J r( ) r r 0–
r J r( )– r0

r r 0–
J r( )

J r( )
φ r( )
-------------- D

1
L
--- 1

r r 0–
----------------+ 

 =

J r( ) φ r( ) r r 0–
r r 0– L

Jr φ⁄ r r 0–

r r 0–

r r 0–
----------------

Fig. 9.  Dependence of the current to flux ratio on the distance from the source.

L 2L 3L r r 0–

Jr

φ
--------

D
L
----
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to the possibility of determining the axial position of a control rod from the axial flux sha
in the vicinity of the rod (Ref. [11]). In the above reference, the information in the distor
of the axial flux profile was used, in combination with a neural network technique, to de
mine the rod elevation. Due to the strong perturbation that a black absorber represen
core, it can be expected that the distortion in the axial dependence of the current v
becomes much more characteristic than that of the scalar flux. In this case, we refer
exact (transport theory definition) of the current, and not its diffusion approximation (
gradient), since in such cases diffusion theory does not give adequate results.

a) b)

c)
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. 10. The axial dependence of the flux and the current close to a partially inserted contro
cylindrical reactor, calculated by Monte Carlo (from Ref 12). a) scalar flux; b) absolute
current; c) radial component of the current. The numbers in the boxes represent radia
 the rod.
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Fig. 10. demonstrates that there is much more explicit information available on
rod position in the current than in the scalar flux. In all three diagrams in the Figure the
is inserted to the middle of the reactor (y = 0). Figs. 10b and 10c show that in these
one could make a quite good quantitative guess of the rod position from the measured
whereas the same estimate would be more uncertain from the flux data. The calcul
shown here were made by a Monte Carlo code in a 3-D cylindrical reactor, in orde
obtain the true current (Ref. [12]).

In the static control rod diagnostic case, the use of the current can be extended
axial dependence to the radial dependence as well. This is the case when the radia
muthal) position of the control rod is also an unknown. Such is the case if static failures
single control rod pin (finger) are to be diagnosed in a Westinghouse-type PWR. Fig
serves for an illustration. Assume that one single control rod pin, or some section the
breaks down and falls to a lower position. The flux and the current will be influenced
this change and thus there is in principle a possibility to both detect such an event and
tify the failed pin. However, due to the weakness of such a perturbation, the flux and cu
distortion can most likely not be detected outside the fuel assembly in question, not ev
a neighbouring assembly position. Thus the only possibility is to use a current/flux det
within the assembly. If a complete mapping of the axial dependence of the scalar flux
the current vector is performed by a movable detector, then there is a chance that bo
axial and the radial position of such a failed control rod finger can be determined. W
not have any simulated data to support this statement at present, but the problem c
studied via Monte-Carlo simulation and this is planned in future work.

Fuel rod

Instrument tube (detector position)

 Absorber pin
Fig. 11. Horizontal cross section of a PWR fuel assembly, containing a control
rod and an instrument tube for a movable detector

Failed control pin
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4.4  Applications in dynamical cases

Here we only discuss the possibility of using the current or gradient noise, toge
with the scalar noise, to locate a vibrating control rod or control rod pin. Another exam
the case of localisation of a point source of oscillating strength in an infinite, non-multi
ing medium, is described in Ref. [10].

The task of locating the position of a vibrating control rod from the neutron noise
treated in earlier applications by using three neutron detectors at the same axial ele
but at different radial positions (triangulation). Due to axial homogeneity, this is a
problem, and the task is to determine the rod position on the 2-D horizontal cross-sect
the reactor. The static rod is described by the absorption cross-section

(74)

where stands for the rod strength and is the static rod position. The vibrating r
represented by

(75)

where is a 2-D displacement vector describing the stochastic rod trajectory du
vibration. Thus the perturbation represented by the rod vibrations are given as

(76)

As described in the previous works, with the above perturbation, the induced neutron
can be written as

(77)

Here,

(78)

and similarly for .

Since the vibration components and are also unknown, one ne
at least 3 neutron detectors at positions , and . Then, the neutron noise measu
these positions is expressed by 3 equations of the type (77). Two of them can be u
eliminate and in the third, and thus to create an identity called the “localisation e
tion”. This latter is a transcendental equation which contains the unknown rod positio
its root. Alternatively, neural network methods can be used to train a network to identify
rod position from 3 neutron noise signals and using the direct expressions for the no
the form of (77).

In this 2-D problem, the current and the current noise are 2-D vectors. He
together with the scalar noise, one current/flux (C/F) noise measurement serves 3 inde
ent quantities just as in the case of 3 neutron noise detectors. In formulae, one C/F de
yields the measurement of the following 3 quantities:

Σa
rod γ δ r r p–( )⋅=

γ r p

Σa
rod γ δ r r p– ε t( )–( )⋅=

ε t( )

δΣa
rod r t,( ) γ δ r r p– ε t( )–( ) δ r r p–( )–[ ]⋅=

δφ r ω,( ) γ
D
---- Gxp

r r p ω, ,( ) εx ω( )⋅ Gyp
r r p ω, ,( ) εy ω( )⋅+{ }=

Gxp
r r p ω, ,( ) ∂

∂x'
------- G r r ' ω, ,( ) φ r'( )⋅{ }≡

r' r p=

Gyp
r r p ω, ,( )

εx ω( ) εy ω( )
r1 r2 r3

εx εy
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(79)

(80)

(81)

Here,

(82)

etc.

Eqns (79) - (81) contain the same amount of independent information on ,
and can be used to construct a localisation procedure as was the case with

measured at three different positions. With a C/F noise detector at one single poin
diagnostics of a vibrating rod, in particular its localisation, is possible. This may be e
cially useful in case of the failure of a single control rod pin, as it was discussed in the s
case, see also Fig. 11. The neutron noise induced by the vibration of one single contr
is not likely to be determined outside the assembly in which the pin is located, becau
such distances the amplitude of the noise induced by the vibrations will be smaller tha
background noise or noise from other sources. Thus it is essential to perform the diagn
by using one single measurement position, close to the perturbation. The use of a C/F
tor is again a promising possibility to achieve this.

4.5  Conclusions

It is planned that the feasibility of the use of the current will be investigated exp
imentally in further work. Regarding possible hardware development, both fibre-b
scintillation detectors as well as SPN detectors can be developed into current or gra
detectors. In order to achieve applicability in practice, a number of problems need
investigated and solved, both experimentally and conceptually. However, the potent
the method is quite promising, which justifies further work in this field.

δφ r ω,( ) γ
D
---- Gxp

r r p ω, ,( ) εx ω( )⋅ Gyp
r r p ω, ,( ) εy ω( )⋅+{ }=

δJx r ω,( ) γ– Gxxp
r r p ω, ,( ) εx ω( )⋅ Gxyp

r r p ω, ,( ) εy ω( )⋅+{ }=

δJy r ω,( ) γ– Gyxp
r r p ω, ,( ) εx ω( )⋅ Gyyp

r r p ω, ,( ) εy ω( )⋅+{ }=

Gxxp

∂2

∂x∂xp
---------------G r r p ω, ,( )φ r p( )=

εx εy
r p δφ r ω,( )
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Plans for the continuation

In Stage 5 we plan to include the following parts in the current R&D program:

• Continued investigation of the possibilities of using the flux gradient for diagnost
study of a detector and Monte-Carlo calculations. A new type of thin neutron dete
based on an optical fibre whose tip consists of a lithium or thorium loaded scintilla
has been developed in Japan. This detector has a spatial resolution of ~1 mm. We
received this new technology and also made some preliminary tests. In order to ev
the properties of this new detector, we plan to perform some measurements with a
tron source. We also plan to make comparisons between the measurement resu
Monte-Carlo calculations using the code MCNP.

• Comparative investigation of the problem of localization of vibrating control-rods us
ordinary noise and “current” noise. In Stage 4, we described how a vibrating abso
can be localized using measurements of the neutron noise and fluctuations of th
gradient (“current noise”). A quantitative investigation of this method is proposed u
simulated (calculated) noise signals.

• Calculation of the transfer function in a 2-region system using 2-group theory. The tr
fer function has hitherto only been calculated in 2-D bare systems using 1-group d
sion theory. Two-group theory is necessary to describe reflected systems as well as
called local component of the neutron noise, which exists 1-2 diffusion lengths from
source. In Stage 5, we plan to derive and calculate the complex transfer function fo
D cylindrical, reflected reactor. The local instability event in Forsmark 1, where the
turbance is located close to the reflector, confirmed the need for such a transfer fu

• Development of the theory of zero reactor noise with the purpose of using it to reac
measurements. Fluctuations in the number of detector pulses during start-up, i.e.
subcritical core with a source, have been used to measure reactivity for many decad
these methods, either the relative variance (Feynman-alpha method) or the correl
(Rossi-alpha) are measured as functions of time. By comparison with theoretical ex
sions for the same quantities, the reactivity can be determined by curve fitting.
development we suggest here concerns the use of “multiple” start-up sources, suc
Cf-252 source, instead of the traditional Am-Be or Pu-Be source. The difference is
the traditional sources emit only one neutron at a time, and have thus Poisson sta
Multiple sources emit several correlated neutrons, and this fact enhances the effe
of the method. However, the theoretical formulas used so far in the evaluation a
based on Poisson sources. We propose to elaborate the theory of Feynman-alp
Rossi-alpha measurements for multiple sources and to derive the Feynman-alph
Rossi-alpha formulae for such cases. In the first stage, similarly to all traditional wo
the literature, space-independent stochastic theory will be used. However, at a later
also space-dependent effects will be investigated through Monte-Carlo simulat
Space-dependent effects have relevance in the interpretation of some events (dev
between measured and true reactivity) that have occurred during start-up at ope
reactors.
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