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Research and Development Program in
Reactor Diagnostics and Monitoring with
Neutron Noise Methods: Stage 4

Summary

This report gives an account of the work performed by the Department of Reactor
Physics in the frame of a research contract with the Swedish Nuclear Power Inspectorate
(SKI). The present work constitutes Stage 4 of a long-term research and development pro-
gram concerning the development of diagnostics and monitoring methods of nuclear reac-
tors. The long-term goals are elaborated in more detail in e.g. the Final Reports of Stage 1
and 2 (SKI Rapport 95:14 and 96:50, Refs. [1] and [2]).

Some important parts of this development program consist of modelling of the
noise source, calculation of the space- and frequency dependent transfer function, calcula-
tion of the neutron noise via a convolution of the transfer function of the system and the
noise source, i.e. the perturbation, and finally finding an inversion or unfolding procedure to
determine noise source parameters from the neutron noise.

Most previous work is based on very simple (analytical) reactor models for the cal-
culation of the transfer function as well as analytical unfolding methods. The purpose of
this program is to abandon this restriction by calculating the transfer function in more real-
istic models as well as elaborating powerful inversion methods that do not require analytical
transfer functions.

Concurrently with the main program, further aims of the project are to study and
possibly solve certain selected reactor diagnostic problems, initiate and perform studies of
theoretical problems of neutron fluctuations in nuclear systems and perform physical and
simulated experiments to support the analysis of fluctuations in nuclear systems.

A further aim of the program is to build up competence within the Department of
Reactor Physics, Chalmers, regarding reactor physics calculations, reactor dynamics and
noise diagnostics in order to be able to solve real problems in the most effective way.

The program executed in Stage 4 consists of the following parts:

 Investigation of a non-homogeneous analytical reactor model for the calculation of neu-
tron noise;

» Calculation and evaluation of the adiabatic approximation in the reactor model described
in the previous point;

» Development of methods for the separation of concurrent global and regional power
oscillations in boiling water reactors (BWRS);

* Investigation of the possibility of using the flux gradient in monitoring and diagnostics of
reactor cores.

This report is based primarily on work performed by Imre Pazsit (principal investi-
gator) and Joakim Karlsson. A proposal of items for the continuation of this program in
Stage 5 is given at the end of this report.
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Section 1

Investigation of models for the calculation of neutron noise

1.1 Background

In conceptual and model studies of neutron noise and diagnostics, and even in most
practical applications, simple homogeneous reactor models have been used so far, in which
closed form analytical solutions are possible. The reason for this is that to achieve diagnos-
tics, i.e. unfolding of noise source properties from the induced reactor noise, an inversion of
the resulting neutron noise formula is necessary. Before the advent of powerful unfolding or
inversion methods such as neural networks, this was mostly possible if simple, closed form
solutions of the so called direct problem, i.e. the neutron noise expressed as a function of
the noise source (perturbation) could be obtained. Accordingly, in most cases investigated
so far, simple homogeneous cores with or without a reflector were considered in simple 1-D
or 2-D geometries, with a point, plane or line source being present.

In many practical diagnostic problems these models are too simple and more real-
istic models are required. We have taken a step towards less trivial models by developing an
axially non-homogenous reactor model. In this model both the static flux and the noise
equations can still be solved by analytical methods, and thus we retain the simplicity and
convenience that closed form analytical solutions bring. Thus, a number of problems with
practical relevance can be explored. These investigations and results will be reported in
detail in a couple of papers ([4] and [5]).

The model consists of a 2-D homogeneous rectangular core in widch a -function
(Feinberg-Galanin) control rod is inserted partially. A sketch of the model core is shown in
Fig. 1. Solution of both the static and the dynamic equations (the latter corresponding to a
rod manoeuvring experiment in which the rod is moved up and down periodically) can be
given by two different analytical methodologies.

First, the static problem will be investigated. The solution can in general be
obtained by two different methods. One is based on a series expansion w.r.t. the eigenfunc-
tions of the statically unperturbed system, i.e. a homogeneous system without the rod being
present. However, a much more effective method is to divide the system axially into two
regions, one containing the full extent of the rod and the other being the remaining part
which is free of the rod. In both regions solution with separation of variables is applicable,
and the solutions can be coupled to each other by interface conditions.

Second, the neutron flux fluctuations, induced by the periodic lifting and sinking
of the rod (which in normal reactor operation jargon is called rod manoeuvring) will be cal-
culated and discussed. Even in this case, both above mentioned solution methods can be
used. Actually this perturbation can be represented by a point source at the rod edge. How-
ever, this point source is acting in a static system which is axially non-homogeneous and
this fact makes the problem non-trivial.



In this Section, we will derive and discuss the solution and analysis of the static
and dynamic problems, respectively. For brevity, the solutions given in this report are only
derived using the method of dividing the core into two separate regions, which is also the
most effective method (i.e. it requires the least CPU time to calculate). The derivation of the
static and dynamic solutions using the method of unperturbed eigenfunctions and many
more details regarding both methods are given in [4].
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Fig. 1. The 2-D reactor model with an absorber rod present
from the top to the mid-plane of the reactor.

1.2 Solution of the static problem

The model consists of a 2-D rectangular reactor of extrapolate®size 2hby  and
with an absorber rod present half-way through the reactor from the top to the mid-plane
(Fig. 1). The absorber rod is the only inhomogeneity in the model and the reactor medium is
otherwise considered homogeneous with constant material properties. To simplify the ana-
lytic calculations, the rod has been placed in the centre okthe -direction and in the calcula-
tions we will use one-group diffusion theory and one group of delayed neutrons. Extension
to non-central rods and two-group theory is straightforward.

In this method, we divide the core into two regions: one region containing the rod
y>h and one without the rogg<h (see Fig. 1). The result of this division is that the
region for whichy > h will experience the presence of the absorber all through the region.
Thus thex -andy -variables can be disconnected from each other and the method of separa-
tion of variables can be used for each region.

For Region 1, we have the diffusion equation

Agy(x, ) + B @ (x V) - L8000, (x y) = 0 (1)

whereD is the diffusion coefficient and the bucklBg is



V2,

B” = —5 (2)

wherek is the eigenvalue of the system. However, for all practical purposes we will in the
continuation usd as the eigenvalue of the system.

Using separation of variables, we obtain the solution as
P Y) = 5 Apsinuy (a—[X)sinA; ,(2h—y) 3)
n

Here, the functions

@,(x) = sinyy (a—|x) 4)
are the solutions to the 1-D diffusion equation in Region 1, i.e.
d? 2 ) -
32 ) F 1y @ (X) = 5(X)@p(x) = 0 (5)

with the boundary conditions
¢, (x) =0 X = ta (6)

The boundary conditions here are automatically fulfilled by the choice, of in the form
(4). Integration of (5) betweer = —¢ amd= ¢  and letting> O yields the values of
My, with which (5) is fulfilled in form of a transcendental equation

Hyp = _5\/5 tanuly na (7)

The values ofA, , are then chosen such that each member of the sum in (3) satis-
fies equation (1). This is achieved by the following choice:

2
Al,n

2 2 2 2

B —Hin B 2Hyn ®)
2 2 2 2 2
Al,nzp'l,n_B B <Hyn

and the functionssin*)\ly n(2h—y) are defined as

O . 2 2

. Dsm)\l‘n(Zh—y) B =R I g

sinAy h(2h-y) = 0 , 9)
ES|nh)\1'n(2h—y) B <ui,

This way all eigenvalued, , and eigenfunctions of the form (9) will be real. Formally, of

course, one could use either sin or sinh functions only, with negative valub% of and
thus imaginaryA, ,, forall, , above certain n value. It was only for the sake of conven-
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ience in the numerical evaluations that we chose the above values and conventions.

From the above it follows that each member of the sum fulfils (1) including the
discontinuity of thex -derivative at = 0 , and the boundary conditions

(pl(ia’ y) = O
(10)
@(x,2h) =0
The only hitherto unspecified quantities are the coefficighys . The coefficients will be
derived from the interface condition between regions 1 and 2.
For Region 2, the diffusion equation reads
2
Apy(x, y) + B @y(x, y) = 0 (11)
The boundary conditions for this region are
P(tay) =0
: (12)
®,(x0) =0
The solution from separation of variables becomes
N
P(x y) = Z C,cosi, pXsin A, 1y (13)
n=1
where
_2n-1 _
Moy = a T n=1,..,N. (14)
Further,A, andsin*)\z .y are defined similarly as (8) and (9), respectively.
The continuity conditions at the interface between the two regions are
@1(x, h) = @,(x h) (15)
and
0 0
a_(p]_(xl y) = a_(pZ(X! y) (16)
y y= h y y= h

where we have used the fact that the diffusion coefficients are equal for the two regions.
Inserting (3) and (13) into (15) and (16), multiplying witosu, pX and integrating, we
obtain the two equations



a
sin'A; ,h .
C, = ;Anm [%J‘smuL n(@—[x)cosu, pXdx a7)
-a

and

a

A; ,COSA, h
c = 1n 1 nh %J'sinpl, a(a—[x)cosu, xdx (18)
-a

P T2 M cogA. h
T Mg pCOS A,

Both equations above can now simply be written in matrix form as

c = Ma (19)

and

c = Ka (20)

where the column vectora aml  contain the coefficielfs ~ @pd  as their elements,
respectively. The elements of the matritds kind  are defined through (17) and (18).

By taking the difference between equations (19) and (20) above, we obtain the
eigenvalue equation for the flux as

(M-L)a =0 (21)

and the criticality equation becomes

det(tM-L) =0 (22)
From (21), both the fundamental and symmetric higher order eigenmodes can be calculated.

The static flux has been calculated from (21) and the result is given in Fig. 2
together with the critical bucklin@® . The reactivity value of the rod in Fig. 2is -0.41 $ or -
310 pcm. We have intentionally selected a strong rod to illustrate the resulting depression of
the flux around the absorber. The flux gradient w.r.t. xhe -direction is discontinuous across
the absorber as it should. The rod also forces the axial maximum of the flux downward,
below the geometrical centre of the reactor. It is further interesting to note how the effect of
the rod vanishes close to the rod edge.

In the neighbourhood of the rod edge, the flux is rather strongly distorted and this
can be applied to the identification of the axial position of the rod tip [11], [12]. The neutron
current, or the gradient of the flux assuming diffusion theory, is even more sensitive to the
position of the rod edge. The present model has already been used to illustrate the possible
applications of the neutron current in core monitoring and diagnostics [10].
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Fig. 2. The static neutron flux. Notice the depression of the flux
caused by the presence of the absorber rod and also that the flux
maximum is pushed down from the centre of the reactor.

1.3 Solution of the dynamic (noise) problem

We will now apply the methods described in the previous section to find the exact
solution to the noise due to vertical oscillations (vibration) of an absorber rod in a 2-D sys-
tem. The vertical oscillations of the rod can be described by the time-dependent macro-
scopic absorption cross-section as

S5(% Y ) = y8(X)O(y—h—g(t)) (23)

where €(t) is the vibration amplitude in the positiye -direction. By expanding (23) in a
Taylor series arounce(t) = 0  and neglecting second and higher order terms in , we
obtain the perturbation represented by the oscillations as

0Z (X ¥, ) = —&(t)yd(x)d(y — h) (24)
This corresponds to a point source of variable strength, positioned at the tip of the rod.

By introducing the time-dependent absorption cross-section into the time-depend-
ent one-group diffusion equation with one-group of delayed neutrons, linearizing and mak-
ing a Fourier transformation, the resulting noise equation is obtained as

ABG(x, y, ©) + B(@)30(x, ¥ @) - £3()O(y - M3g(x, v, @) = S(x yw)  (25)

where



BX(w) = Bé%t—pm%o(w)g (26)
and

0% (X, Y, ,
S(x yoo) = eI IHED — )Y 550y Ryt ) 27)

The static flux which is present in the noise source (27) acts as a scaling factor for the
source amplitude. The boundary conditions for the noise equation are the same as those for
the static equation.

The equation for the noise (25) is now complex due to the presence of the complex
zero reactor transfer functio®G,(w) in (26) and thus we expect the equation to have a
complex solution. Therefore, we have chosen to numerically determine the solution using
fully complex quantities in the continuation.

The exact solution for the noise can be obtained using the method of dividing the
reactor into two regions. Assume first that the noise can be expanded similarly as in the
static case. We can write the noise as

N

6(p1(x1 y’ (JL)) = z An(w)Sinul, n(a_|X|)Sin)\l, n(2h - y) (28)
n=1

for Region 1 and similarly for Region 2, we have

N
P, (X, Y, W) = z C,(w)cogt, (XsinA, |y (29)

n=1

The effect of the noise source is taken into account by modifying the current conti-
nuity interface condition in (16). The modified interface condition is obtained in the same
way as we took the absorber rod into account in the solution for the static flux in region one.
Thus, we integrate the noise equation (25) betwgen h—¢ vard h+ ¢ arg let
tend to zero. This yields the modified continuity condition for the current (i.e. the gradient
of the flux) as

S0y @) —2 B0y = -e(@)Es009(x 1 (30)

y=h y=h
The continuity condition for the flux is the same as in equation (15).

Putting (29) into (30) and (15), multiplying witlcosu, pX and integrating, we
obtain the following expressions



a
M,nCOSM n

h .
nm |:%..IS"']H]_, n(a_lxl)COsz’ deX + Cp -

(31)
= e(w)g(0, h) G—
(p 2, pCOSA, ph
and
B sinA; ,h 4
C, = ZAHS'n}\z 0 J’smpl a(@a—1xX)cosu, ,xdx (32)
We can write the equations in matrix form as
Ra+c=d (33)
and
c = Pa (34)

As expected, due to the inhomogeneous term  in (33), corresponding to the r.h.s. of (31),
these equations are not eigenvalue equations. The coefficient vactorsc and can be calcu-
lated by rearrangement as

a=(R+P)d
c = Pa

(35)

The neutron noise is obtained by calculating the coefficient ve@ors cand from
(35) and then using them in the expressions for the noise (28) and (29).

The amplitude and phase of the induced noise resulting from axial oscillations of
1 cm amplitude of the absorber rod is shown in Figs. 3 and 4, respectively, for a few
selected frequencies. At low frequencies, the noise behaves in a point kinetic fashion, with a
phase that is constant in space and an amplitude which has the same space-dependence as
the static flux. With increasing frequencies, both the amplitude and the phase delay become
more and more space dependent, the fastest changes being concentrated around the pertur-
bation (source).

1.4 Conclusions

Because of the straightforward manner in which both the static and the dynamic
problem can be solved in this model, it is also suitable for analytical and numerical studies
of the applicability of various reactor kinetic approximations (point kinetic, adiabatic,
prompt jump approximations). It also constitutes a fairly realistic and powerful description
of realistic cases, i.e. partially inserted control rod and the so-called rod manoeuvring exper-
iment. It is going to be used for comparison with calculations from ICFM codes [6] as well
as with eventual later experiments. Finally, the work has also some pedagogical value in
nuclear engineering education, giving an advanced example of the separation of variables.
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Fig. 3. The amplitude of the noise for four different frequencies of the source oscilla-
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Section 2

Evaluation of the adiabatic approximation in the reactor
model described in the previous Section

2.1 General

In many problems of reactor noise diagnostics, it may be of significant advantage
to solve the time- or frequency dependent equations for the neutron noise in some reactor
physics approximation. The simplest non-trivial approximation is the adiabatic approxima-
tion, which was already described in the previous Stage (Ref. [3]). The advantages of its use
are twofold. First, the solution via the adiabatic approximation lends itself to a simple phys-
ical interpretation, which enhances the understanding and interpretation of various phenom-
ena. This may have the further advantage that it even may help to elaborate unfolding
(inversion) methods for diagnostical problems. Second, mathematically it is simpler than
the exact method. In particular, at present the adiabatic approximation is the only one that
can be used to estimate the neutron noise in real (inhomogeneous) reactor cores, by using
existing ICFM codes.

This latter principle was demonstrated in the previous Stage where the neutron
noise induced by a rod manoeuvring experiment was calculated by using SIMULATE
together with the adiabatic approximation (“SIMULATE-Adiabatic”, see Ref. [3]). How-
ever, one problem with the above mentioned procedure was that in absence of an “exact”
solution, it was not possible to estimate the precision of the SIMULATE-Adiabatic algo-
rithm.

The axially non-homogeneous reactor model, described in the previous Section,
gives a possibility to assess the suitability of SIMULATE-Adiabatic. Namely, in this
model, both the exact and the adiabatic solutions can be obtained to the same perturbation,
in a non-trivial model that is sufficiently similar to the SIMULATE calculations. Thus,
some indications of the suitability of SIMULATE-Adiabatic can be obtained. This is the
purpose of the present Section.

2.2 The adiabatic approximation

The concept of the adiabatic approximation and its application to the rod manoeu-
vring experiment were described in Stage 3 (Ref [3]), thus they will only be described very
briefly here. The essence is to factorize the time-dependent flux into an amplitude and a
shape function as

o(x, ¥, ) = P(H¥(x y, 1) (36)

with the normalizing condition for the shape function in the form
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a 2h a 2h

Op(% VW(x v, Ddydx = [ [op(x, y)dydx (37)
—-ao -ao0

where @y(x, y) is the static flux. The above formulae are written directly in a 2-D x-y
geometry, such that they suit the 2-D model of the previous Section.

Expressions for the neutron noise can be obtained from (36) by splitting all compo-
nents into a sum of a steady-state (time-independent) component and time- (frequency-)
dependent fluctuations as

(p(X’ y’ t) = (pO(X! y) + 5(p(X, y! t) (38)
P(t) = 1+0P(t) (39)
LIJ(X! yl t) = (pO(X’ y) + BLP(X’ y! t) (40)

With (38) - (40), and assuming small fluctuations (neglecting second order terms), the noise
can be expressed as

0Q(x, ¥, ) = dP()@y(x, y) +0W(x, Y, 1) (41)

The first term on the r.h.s. is called the reactivity or point kinetics component, and the sec-
ond the space dependent component. Due to the linearisation process, this term is independ-
ent of whether or not a reactor kinetic approximation is used. As is well known, this term is
given as the solution of the linearized point kinetics equations, whose solution in the fre-
guency domain is given as

OP(w) = Gy(w) Lp(w) (42)

where Gy(w) is the zero reactor transfer function. Again, due to linearity, the reactivity
can be calculated from a perturbation formula involving only the static flux and the pertur-
bation in the cross sections.

Application of the adiabatic approximation affects only the second term. It means
that the space-dependent tedH (X, v, t) is determined from a static calculation. In other
words, dW(X, y, t) is calculated as the difference between two static fluxes, one belonging
to the critical (reference) state, the other is the flux from a criticality (eigenvalue) calcula-
tion belonging to the perturbed reactor at time

Concretely, in our case, the critical equation is given as

Ago(x, ¥) + Bia(x V) - L3000y~ Mgo(x.y) = 0 (43)

and the static eigenvalue equation with the rod withdrawn from the critical position with a
distanceg(t) is
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AW (% ¥, )+ BgWag(x % ) = 53000y~ [+ e Wag(x v, 0 =0 (44)

where the eigenvalue of the perturbed state is contained in the perturbed b\Eﬁ;Iing . From
here the adiabatic approximation &% (X, v, t) IS given as

OWog(X Vi ) = Wag(X ¥, ) = @p(X, Y) (45)

Naturally, in order to obtain correct results)_ (X, y, 1) apg(x, y) need to be normal-
ized in a proper way, i.e¥, 4(x, y, )  must satisfy (37).

Collecting both components of the noise, the final form of the adiabatic approxi-
mation of the neutron noise in the frequency domain can be written as

0Q,q(X, ¥, @) = Gy(w)p(w)@y(X, y) +OW,4(X, Y, ) (46)

Again, because of linearity, i.e. neglection of higher order terms in the perturbation, both
terms on the r.h.s. will be linear in the perturbation parameter, in our easg . This is
because for small movements of the rod, the perturbation of the absorption cross section
2,(x, y, t) can be represented as

Zxyt = %{5(X)@(Y—[h+ e(t)]) —o(x)O(y—h)}
(47)
D—%s(t)é(x)é(y— h)

Thus the perturbation is equivalent to a time-varying point source of a time-dependent
strength equal te(t) . As a consequence, both the reactivity term and the space-dependent
term will be linear ing(t) €(w) ). The system response can then be characterised by

6(pacl(x! y! w)

£(@) (48)

It is this quantity which will be shown in the quantitative work below. From the above it also
follows that bothp/e andW¥, /€ are independent of the frequency of the perturbation.
The only frequency dependence in (48) arises from the zero reactor transfer function,
Gp(w) .

2.3 Quantitative results

A quantitative analysis of the adiabatic approximation, applied to the rod manoeu-
vring experiment, was performed in the same reactor model as in the previous Section. A
summary of the results is shown in Figs. 5 and 6. In both figures, the space dependence of
the noise along a horizontal cross section of the core, i.e. along the x-axis, is shown at sev-
eral axial elevations (y-values). In all figures the exact solution, the point kinetic component
and the noise in the adiabatic approximation is shown.
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Fig. 5. The space dependence of the neutron noise along the x-axis at several axial eleva-
tions atw =0.01 rad/s. The rod tip (perturbation position) is located at y=120 cm.

At the lower frequency otv = 0.01 rad/sec (Fig. 5), the system response is rather
point kinetic. All three solutions (point kinetic, adiabatic, exact) are very close to each
other, and the space dependence of the noise is equal to that of the static flux. This agrees
with the SIMULATE-Adiabatic results in [3], Fig. 16, except that a deviation was found
there between the adiabatic and point kinetic terms in the close vicinity of the rod tip (per-
turbation point) which is absent in the results of the present analysis. The reason for this dif-
ference is that this deviation is due to the local component of the noise, which can only be
accounted for in 2-group theory. SIMULATE can thus reconstruct this local term, but our
present 1-group model cannot.

At the higher frequency ofo =0.1 rad/sec, the deviations from point kinetic behav-
iour are significantly larger, especially close to the perturbation point (Fig. 6.). At the same
time, the adiabatic approximation is still quite close to the exact solution, indicating that this
approximation is quite good at this reactor size and perturbation frequency. Also, these
results are in a quite good qualitative agreement with the SIMULATE-Adiabatic calcula-
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Fig. 6. The space dependence of the neutron noise along the x-axis at several axial eleva-
tions atw =0.1 rad/s. The rod tip (perturbation position) is located at y=120 cm.

tions, Ref. [3], Figs. 17 and 18. The differences between these and the results in Fig. 6 here
are much smaller than in the previous case of low frequency, mainly because of the fact that
the local component plays a much smaller role in this case (due to the overall strong space
dependence of the noise).

It is thus concluded that the above analysis confirms our previous expectation that
the method SIMULATE-Adiabatic can be a useful tool to calculate the neutronic response
to certain perturbations. Of course the method is applicable within a limited frequency
range only, and in each application a separate judgement need to be made to confirm the
applicability. However, since at present there are no dynamic codes available to calculate
the space-dependent neutron noise in real heterogeneous reactors, it is very useful to have
access to such adiabatic methods that can be used with existing codes.

The above figures show only the noise along certain cross sections of the core in a
one-dimensional manner. It may be of interest to see the noise in the whole 2-D region of
the reactor. In Fig. 7a the space dependent component in the adiabatic approximation,
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Fig. 7. The space dependence of the space-dependent component of the noise in the
adiabatic approximation: a) 2-D plot; b) contour plot, showing the areas of positive
and negative values.

oW 4(X Y, w)/e(w) , is shown as a 2-D function. Due to the normalisation condition
(37), 0¥, is orthogonal to the static flux, and thus it must have both positive and negative
values. The areas of positive and negative values are clearly seen in the figure, especially on
the contour plot (Fig. 7b).

A more detailed report on the above results will be published separately (Ref. [5]).
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Section 3

Development of methods for the separation of concurrent glo-
bal and regional power oscillations in boiling water reactors
(BWRS)

3.1 Introduction

Stability measurements performed in Ringhals 1 during start-up 1990 showed that
limit cycle power oscillations occurred at 72.6% power and a core flow of 3694 kg/s. Anal-
ysis of the phase relationships between the different local power range monitors (LPRMs)
showed that the first azimuthal mode was responsible for the oscillations (out-of-phase
oscillations). Measurements performed in a nearby point on the power-flow map indicated a
stable situation with a DR of approximately 0.7. Further, the phase between LPRMs in this
operating point showed that the power oscillations were in-phase.

The oscillations in both operating points occurred at the same frequency. This may
seem like a contradiction, but in fact the explanation is that an in-phase (global) mode was
present simultaneously with an out-of-phase (regional) mode and at the same frequency.
These two modes had different amplitudes and different stability properties. The amplitude
of the two modes depended strongly on the operating point, with the effect that a change of
operating point seemed to make the DR “jump” from a value of ~0.7 directly to unity. It
was then realised, that in this case the conventional DR did not give an appropriate indica-
tion of how close one was to instability. In order to resolve this problem, the two flux modes
need to be separated and their DRs determined independently.

The out-of-phase component can be obtained by taking a weighted difference of
signals from detectors 180 diagonally separated in the reactor. This method, which is
called the subtraction method, relies on the symmetry of the out-of-phase mode and the
result is that in-phase components common to both detector signals cancel, while out-of-
phase components are somewhat enhanced. A similar procedure was used with success to
determine the stability properties of the global and regional modes in the Ringhals case [7].
This method has also become the most widely used procedure so far in separation of global
and out-of-phase modes in BWRs.

Alternatively, a decomposition method based on the factorisation of the flux can be
used to obtain the modes separately. This so called factorisation method, described more in
detail below, has been attempted already in Ref. [7], but without success. The work
described here started with the purpose of understanding the reason of the failure.

To summarize the results, the explanation of the failure lies in two facts. One is the
approximate character of the factorization formula, approximating an integral over the core
with a discrete sum over a number of detectors. The second is the presence of the local com-
ponent of the noise (generation and axial propagation of the void), which introduces strong
correlations between detectors in the same axial string. These two facts together introduce
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extra components into the correlation functions from which the decay ratio is determined,
hence leading to incorrect estimate of the decay ratio.

The work presented in this Section gives a quantitative description of the above
facts. Based on the analysis, it was also found that a factorisation technique that is based on
detector signals from one axial level only, gives very good results. We call this method the
“partial factorisation technique”. Its use will be also demonstrated through an analysis of
the Ringhals measurements.

The work described here has been accepted for publicatibfuah. Sci. Engng.
[9]. The current chapter summarizes the main findings, though a more detailed account of
the work performed is given in [9].

3.2 The factorisation method

The space-time dependent flux can be factorised into an amplitude and a shape
function as

o(r, 1) = P()W(r, 1) (49)

Assuming that the time-dependent fluctuations of the quantities in (49) are all
small, each of them can be written as composed of a sum of a steady state value and a small
time-dependent perturbation. These expressions can be substituted into (49) and, after some
simplification, we obtain

op(r,t) = dP(t)qy(r) +0W(r,t) (50)

The first term in (50) represents the fluctuations of the global mode (i.e. it has the
same spatial dependence as the static fjgkr) ). The seconddgt(n, t) in (50) con-
tains all other fluctuations (i.e. higher order modes as well as a local component of the
noise) present in the reactor. This term will be called the space-dependent component.

For (50) to be unambiguous it is sufficient to require that:
.[(po(r)&P(r,t)dV =0 (51)

This integral expresses the fact that the shape fun@ién must be orthogonal to the static
flux. Thus by multiplying (50) with the static fluxp,(r)  and integrating over the core vol-
ume, the time-dependence of the reactivity component can be obtained as

M
J/’cpo(r)&p(r,t)dv 3 Qo(r)30(r, 1)
~i=1 (52)

M
J/'cpé(r)dv S o5(r)

i=1

3P(1) =
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where the r.h.s was obtained by approximating the integrals with sums over a number of
detectorsM . Here, the static flug,(r;)  and the noise sighg(r;, t) are obtained from
the mean value and fluctuating part of the detector signal , respectively. The space-depend-
ent, i.e. non-global part, of the signals can now be calculated using (50) as

OW(r,t) = dq@(r,t) —dP(t)qy(r) (53)

Assuming now that the space-dependent component consists only of the first azi-
muthal mode, i.e. d¥W(r,t) = dR(t)@,(r) , this method should be able to separate the
two modes present in the Ringhals measurements. This separation procedure was also
attempted in [7], where it was called the global/space dependent separation method, but
without success.

No logical explanation of this failure was found at the time the original analysis
was performed, especially not in the light of the successful separation obtained by using the
subtraction method on the same data. One would actually expect the factorisation method to
be more accurate in practice, since it has several inherent advantages that should counteract
the deleterious effects of the applied approximations. The advantages of the factorisation
method are the use of a large number of detectors in (52) and that the static flux is obtained
from the measurement itself.

However, at one stage we realised that quite plausible results could be obtained
with the factorisation based technique, if the orthogonality integral was approximated by a
sum over 36 detectors of one axial level, instead of all 72 detectors that are situated on two
different axial levels. The reason for the success of the factorisation method when detectors
on a single axial level are used, compared to its failure when all detectors are used, lies in
the presence of local noise fluctuations in the space-dependent com@dhent in addition
to the mode oscillations. This statement will be confirmed in the next subsection via a sim-
ple phenomenological model of BWR noise. The factorisation method using detectors from
a single axial level only will be called the partial factorisation method in the continuation.

3.3 A phenomenological model of BWR noise

The success of the partial factorisation procedure may be understood through the
use of a phenomenological model of BWR noise. This model of the noise must contain both
global oscillations (dP(t)@,(r)) and out-of-phase ongDR(t)@,(r)) as well as an
(axially propagating) local compone®t(r,t) . Informulae, the noise in this model can be
expressed as

o@(r,t) = dP(t)@y(r) + dR(t) @ (r) +OL(r, t) (54)

In this context, the space-dependent tedi (r, t) of (50) can now be identified as being
equal to

SW(r,t) = SR(H@(r) +8L(r,t) (55)

A phenomenological model similar to (54), but without the regional mode, has been suc-
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cessfully used in the past to support the analysis of BWR noise measurements.

Assuming statistical independence between the components of (54) and taking the
auto-correlation of (55), we obtain

ACFgy(r, ) = ACF5x(T) Lipy(r) + ACF5 (1, T) (56)

or, alternatively,

APSDy,(r, w) = APSDg(w) Lip,(r) + APSDy, (r, w) (57)

The physical properties described by the local component of the noise consist of
the local void formation everywhere in the reactor and the axial upward propagation of
these void fluctuations. Thus, the correlation funct®@ F5, of the local component has a
peak centred at = 0 with a width depending on the bandwidth of the noise. The local
thermohydraulical properties that determine void formation and propagation properties, can
be assumed statistically independent and thus no correlation exists between detectors at dif-
ferent radial positions on the same axial level. Further, if one takes the cross-correlation
function between two detectors in the same string (i.e. one detector is situated directly
above the other), the axial transport of the void fluctuations causes a peak to appear at
T = 14, Wheret, is the transport or delay time between the two detectors. The transport
time may be used to obtain the average steam velocity between the detectors. In the fre-
quency domain, this corresponds to a linear behaviour of the phase with frequency.

The out-of-phase oscillation, on the other hand, shows a very different behaviour
in its auto correlationACFg,(T) and power spectruAiP S Dy (w) . Since the regional
mode is best described by a damped oscillator excited by white noisaQ;x(T) will
show successive damped oscillations. In the corresponding power spectrum, the oscillation
yields a peak at the frequency of oscillation.

Since a small radial variation in the steam velocity exists also on a single axial
level, variations will occur also in the width of the peak present in AteF5, . This can
cause uncertainties in the determination of the DR for the regional component from
ACF5y. Itis thus possible to explain, only by accounting for the local component, why the
space-dependent component deviates from the out-of-phase mode, and in particular, why
the decay ratio derived fro@W remains space dependent. However, since the axial varia-
tion is considerably greater, one notes that some differences may be expected whether
detectors from one elevation or two elevations are used in the approximate factorisation
method, respectively.

This explains the appearance of space-dependent DRs, but the approximations
made in the summation step (52) need also to be taken into account for a full explanation.
Details of this analysis are given in [9], here we only summarize the findings. By taking into
account the approximations performed and by using detector signals from one axial level
only, the result for the auto-correlation function of the space-dependent compﬁihgwr
is obtained as
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2 2 2 2 2
ACFwappr(ri,r) = ALQ(r))ACFsR(T) + ASACF; (1, T) + &7 @y(r;) ACF4sp(T) (58)
whereA, 01 ,A, 01 and;”«1 .

Equation (58) shows a structure similar to (56), but a difference is the presence of
the ACF of the global component in (58), although with a small weight. The presence of the
local and global components in the space-dependent si@lﬂ#g[)pr(r, t) causes the decay
ratio, derived fromdW, . (r,t) to deviate from that of the desired out-of-phase compo-
nent. The same is true for the global componéﬁgppr(t) . Due to the axial dependence of
ACF; (r, 1), even in this case it is obvious that the decay ratios, either global or out-of-
phase, will be axially dependent. However, with a relatively large number of detectors this
dependence will be weak, and a rather good approximation of the global and out-of-phase
decay ratios should be obtained.

We will now contrast the above results with those obtained in case the detectors
used in the summation are situated at two different axial levels. This corresponds to the fac-
torisation method as it was employed in [7]. The resulting ACF for this case is

2 2 2
ACFwappr(ri,r) = AL@;(r;) ACFsx(T) + ASACF5 (1, T) + 59)
2 2 , S
+&7@0(r)) ACFsp(T) + €. CCFy5 (ry, 1", 1) +€,CCFy (1)

Here, the summation extends over all 72 detectors corresponding to the Ringhals measure-
ments. The primes are used to distinguish between the lower and upper axial position. Thus
r; andr;” are the two detector positions within the same detector string.

Equation (59) contains the same terms as (58), but in addition it also contains the
cross-correlations of the local noise between detectors in the same string, c.f. the last two
terms of the equation. These additional cross-correlation terms influence the determination
of a DR from (59) in a different and more important way than the preceding ones. The dif-
ference is that the cross correlatioB€ Fy (1, ry', T) have a peak at a vghi@ where
T, is the transport time of the void fluctuations between the two axial levels. In addition,
since this transport time may vary substantially between the different radial positions,
CCFg, (1) may show a much broader peak than the individual CCFs. The weight of the
second last term in (59) is also larger than that of the last term in (58).

It is thus seen that there is a significant difference regarding whether detectors
from one level only or detectors from two (or more) levels are used. Reasonably good
results can be obtained for the global and regional decay ratios if detectors from one level
are used. If detectors from at least two levels are used in the flux decomposition procedure,
then reconstruction of the in-phase and out-of-phase components is practically not possible.
This is why the attempt made in [7] was not successful. Not only become the ACFs of the
global and out-of-phase components “distorted” by the presence of the cross-correlation of
the local term, but this latter term also distorts the phase relationships of the factorised sig-
nals &% (r;, t) , such that the out-of-phase quality of the signal is perturbed.
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Because of these difficulties, the method of subtraction is both simpler and more
effective. It is also possible to explain why it worked better in [7] than the factorisation
method. The reason is that in the subtraction method detectors from the same axial level
were used, whereas in the factorisation method, from both axial elevations. However, it is
also seen that the problems of factorisation can be avoid if only detectors from one axial
level are used. This so-called partial factorisation technique was suggested to use and tested
in some detail in this work.

3.4 Application of the partial factorisation method

The patrtial factorisation method has been used to obtain the global and regional
signal components in the Ringhals measurements in the two operating points lying closest
to the point where the limit cycle oscillations occurred. The global component is obtained
directly as a result of the partial factorisation procedure through (52). However, determina-
tion of the regional mode is more difficult. This is because it is not given directly as an inte-
gral parameter such as the global component rather it is contained in all the calculated
space-dependent componed¢(r;, t) . Moreover, in many of these signals the mode has
a relatively low amplitude (weight).

Thus it is necessary to devise some averaging technique, similar to (52), to deter-
mine a reliable DR for the regional mode. Therefore, we suggest here a phase delay-cor-
rected averaging of the signaldW¥(r;,t) . The phase difference between each signal
oW(r;, t) and areference signdW¥(r,,t) is determined at the resonance frequency and
it is denoted byd,; . The out-of-phase behaviour of the signals is not perfect and deviations
occur, but by using the procedure below such deviations are corrected for in the final result.
In formulae, we have

SR_(t) = ‘ w(ri’t)mc 60
a(t) = _Zlm 0S(d;) (60)

where the static fluxgy(r;) is used as a weight function of the relative importance of the
space-dependent signals. By using the above equation, the amplitude of the out-of-phase
component is strongly amplified, while a strong reduction in amplitude is obtained for the
local noise component and for the termd&¥  , which is due to the approximation of the
integral with sums.

Having obtained the two signa® addR,, , they can now be used to obtain a
DR for the global and regional components, respectively. An analysis of the performance of
the method was made, and for details we refer again to Ref. [9]. Regarding the actual deter-
mination of the DRs from the signals, three different methods were used similarly to [7]
(see [7] for details). The different methods yield somewhat different results for the DRs, but
the DRs for the different axial levels are consistent within the same measurement. The
resulting DRs for the global component in both cases D and H were approximately 0.8. The
regional components showed somewhat higher DRs of around 0.85. The obtained global
DRs are also consistent with those reported in previous publications ([7] and [8]). The
regional DRs are also relatively consistent, although somewhat lower, compared to the

results for the regional DRs obtained by the subtraction method in [7], and further they are
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also somewhat higher than the results of the subtraction method obtained in [8]. This shows
that the partial factorisation method and the subsequent amplification of the regional com-
ponent leads to reasonable, consistent results that are comparable to previous methods.

Stability monitoring is not the only possible application of the factorisation method
and it may sometimes be useful to separate different noise components and not only at the
frequency of a resonance. For example, in void transport measurements axial cross-correla-
tion between detectors in the same string is used and the local component is the interesting
one. Elimination of the global component will improve the linear dependence of the phase,
as is demonstrated below in Fig. 8. This possibility has not been investigated before.
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Fig. 8. Coherence (upper figure) and phase (lower figure) for the orig-
inal and space-dependent signals in measurement D LPRM 20.

Fig. 8 shows the coherence and phase between LPRMs 20:2-20:4, i.e. LPRMs at
axial levels 2 and 4 in string No. 20, respectively, in measurement D. The coherence of the
raw (original) signals shows the usual broad-band character with some periodic dips, as a
result of the interplay of the global and local components. Notice that in this case the global
component is not equal to the global oscillation mode, which is present only at 0.5 Hz in the
coherence of the original signal in Fig. 8, but rather it arises from a global component of
white low-pass filtered background noise. Between 0 and 0.5 Hz, the magnitude of the
coherence of the space-dependent component is much smaller than that of the original sig-
nal. This is because the global (reactivity) term is eliminated, only the local component
remains in the space-dependent signal at these frequencies. At higher frequencies, on the
other hand, the original and space-dependent signals have very similar coherence, showing
that at these frequencies the global component has already diminished in the original signal.
As was mentioned previously, the upward transport of void fluctuations leads to a linear
phasep as a function of frequenty (see Fig. 8). The slope of the ghase yields the trans-
port time 1, , sincep = 2nft, . It is seen in Fig. 8 that the linear phase behaviour is
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improved considerably at low frequencies by using the coherence between the space-
dependent signals instead of the original signals. The effect of both the broad-band and the
resonant global components is eliminated. This figure also illustrates the usefulness of the
factorisation technique in areas other than determining stability properties. It has to be
added that the component separation in this case cannot be achieved by the subtraction
method, for quite obvious reasons. The factorisation technique is also applied in some fur-
ther examples shown in [9].

3.5 Conclusions

It has been shown that with the partial factorisation procedure, i.e. using detectors
lying in one radial plane (one axial elevation) only, the global and space-dependent compo-
nents can be properly separated. A simple phenomenological model was introduced and by
taking into account the approximate steps performed in the factorisation method, the suc-
cess and failure of the present and previous versions of the method could be explained.
Regarding BWR oscillations, the decay ratios of the global and the regional modes can be
determined. A simple but somewhat improved method was elaborated for determining the
amplitude dR(t) of the regional (out-of-phase) oscillations from the space-dependent sig-
nals. Finally, we have shown an example of the application of the method also in measure-
ments of the void transport time via correlations of detector signals.
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Section 4

Investigation of the possibility of using the current and the
flux gradient in core monitoring and diagnostics

4.1 Introduction

Generally, the neutron fluxp(r, Q) is angularly dependent. However, in practice
it is the scalar (angularly integrated) flug(r)  that is used in both calculations and meas-
urements. The angular dependence of the flux, or just the lowest order angular moment, the
neutron current, or its diffusion theory approximation, the flux gradient, is not utilized. The
reasons are relatively obvious; it is not easy to measure anything else than the scalar flux,
and in calculations, such as criticality, burnup etc. it is still sufficient to use the scalar flux.

However, the situation is different in core monitoring and diagnostic problems. An
anomaly is most often represented with a spatial discontinuity, such as a control or fuel rod
surface or tip, around which the angular neutron flux is rather anisotropic. As a conse-
guence, the neutron current, or the flux gradient, are expected to behave in a much more
space dependent manner than the scalar flux in the vicinity of such objects of diagnostic
interest. This is beneficial from the diagnostical point of view, since the spatial localisation
of such perturbations or objects is always dependent on the space dependence of the flux or
the noise. Even if the space dependence of the current is not stronger than that of the scalar
flux, it represents additional information that is not available in the scalar flux, and thus can
help in a diagnostic task.

Since, with current technology, the possibilities to construct angularly sensitive
detectors or gradient detectors is much better than earlier, this possibility is quite promising.
Thus we suggested to investigate the possible enhancements in core monitoring and diag-
nostics with the utilisation of the current or flux gradient, in both static and dynamic cases
(noise diagnostic with current/gradient). A theoretical analysis of this possibility was per-
formed and will be described here. A few selected model problems were investigated quan-
titatively. Through these model cases examples of possible applications are described.

4.2 General

Here we collect some definitions and formulae that will be used in the following.
To facilitate the simplicity of description, one-group theory will be used throughout. All
formulae can easily be generalized to many-group theory without any difficulty other than
complications in the notations.

The neutron current, a vector quantity, is defined as the first angular moment of the
angular flux:

J(r) = Ig [p(r, Q)dQ (61)

With the scalar flux and the current, a two-term series expansion of the angular flux w.r.t.
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angular moments is given as
1
o(r, Q) U —[o(r) + 3 [L2 LO(r)] (62)

In general, to calculate the current as defined by (61) requires the solution of the transport
equation. In this paper one problem will be treated in which the true current is calculated,
and this will be performed by Monte-Carlo methods.

Diffusion theory is an approximation to transport theory in which it is assumed that
the angular flux is close to isotropic. In this approximation, the neutron current is given sim-
ply as the gradient of the scalar flux,

J(r) = -D(r) e(r) (63)

In this approximation it is sufficient to solve the diffusion equation, which is much simpler
than to solve the transport equation. Also, regarding measurement techniques, it is easier to
construct a gradient detector than a current detector. The disadvantage of using the gradient
is that close to strong inhomogeneities, such as control rods, reactor boundary etc., diffusion
theory is rather inexact, and the gradient can be a quite bad approximation to the true cur-
rent. Used with care, however, the gradient can be a very useful complement to the scalar
flux.

In the dynamic case, a time-dependent neutron flux need to be used in the above
definitions to obtain the time-dependent current and gradient. In the following we will only
consider the fluctuations in the current in the diffusion theory approximation, i.e. the gradi-
ent noise. For simplicity we will call it a “current noise”. By the usual way of defining noise
as deviations from the expected value, we write

o(r, Q,t) = @p(r, Q) +3¢(r, Q, 1) (64)

for the angular flux, where@(r, Q,t) is the angular noise. Likewise, the scalar and cur-
rent noise are defined through

o(r, 1) = @o(r) +00(r, 1) (65)

and

I(r,t) = Jo(r) +8(r, t) (66)

Then, in the diffusion theory approximation, one obtains the time- or frequency dependent
Fick’s law for the current noise, expressed as the gradient of the scalar noise:

0J(r,t) = —D [11dg(r, t) (67)

The value of the above expression is emphasized when using together with the usual expres-
sion of the scalar noise in the frequency domain, i.e.
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3o(r, w) = J'G(r, r', w) 05(r', w)dr' (68)

Combining with (67) gives

3J(r, w) = —DJ'DrG(r, r', w) 05(r', w)dr' (69)

Eqn (69) expresses the fact that the current noise can be calculated through the gradient of
the same transfer function as the one used for calculating the scalar noise. In all cases where
there is an analytical formula available, this calculation can be performed in a straightfor-
ward way. Some examples will be given below.

In the examples below, we assume that one has access to a detector that can meas-
ure both the current and the scalar flux (abbreviated as a C/F detector). In other words, we
assume that both the scalar flux and the current (gradient) are available in one single spatial
point. We give some examples below how this information can be used in various localisa-
tion tasks. More details and examples can be found in Ref. 10.

4.3 Examples of application: static cases

Localisation of a point source

As the first application, it will be illustrated how a static point source in a purely
moderating medium can be located in principle by a measurement in one single point.
Again, as in the whole of this Section, one-group theory is used and we only deal with ther-
mal sources and fluxes/currents.

Assuming a source at positiog , i.e.
Q(r) = QB(r-ry) , (70)
solution of the diffusion equation gives the scalar flux as

_\I‘—I‘O\

(71)

wherelL is the diffusion lengthL = (D/%,)

Finding the source position, by measuring the scalar flux only requires at least 4
traditional detectors at different spatial positions. However, since the neutron current has
three vector components in 3 dimensions, the scalar flux and the current, as measured in just
one point, is sufficient to locate the position of a source of unknown strength.

From (71) one obtains that

— _n~nl"To 1 0
1) = =D () = D= G + =) (72)
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Eqn (72) shows that the vectar(r) points into the directiosr . This means that draw-
ing a line fromr in the direction of-J(r) , the unknown source positign  will lie on this
line. In other words, measuring the current in one point alone shows the direction where the
source is located. Although such a simple relationship is only due to the simplicity of the
situation, namely a homogeneous infinite system, the directional selectivity of the measured
current is always present, although in a somewhat more indirect way.

The remaining parameter, the dista¢cer0| , can be determined by using the scalar
flux and J(r) together. From (72) one obtains
(3] N S S 73)

o(r) ~ T r—rg|0

Thus from J(r) andg(r) the distande—ry| can be obtained by inverting (73), see also
Fig. 9. The Figure also shows that| 'rf—r0| is much larger than the diffusion leibgth , the
ratio|J,|/ @ becomes insensitive fo—ry , which thus cannot be determined. Pointing out
the direction

Ir=ry
from (72) does however not suffer from this fact.

9] 4

¢

Fig. 9. Dependence of the current to flux ratio on the distance from the source.

The above illustrates the fact that the spatial range within which source localisation
and other diagnostics can be performedbyg current + flux (C/F) detector is more limited
than it would be if the same task is to be performed with, say, three or four flux detectors,
placed at suitable distances from each other and the source. However, in some cases there
may be only one detector position available in a localisation task close enough to the source.
One such example is treated below. Then, use of the current and the flux together is the only
chance to perform the diagnostics.

Diagnostics of control rods and control rod pins

The second application concerns the diagnostics of either whole control rod rods or
individual control pins. Regarding complete control rods, some attention was paid recently
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to the possibility of determining the axial position of a control rod from the axial flux shape

in the vicinity of the rod (Ref. [11]). In the above reference, the information in the distortion

of the axial flux profile was used, in combination with a neural network technique, to deter-
mine the rod elevation. Due to the strong perturbation that a black absorber represents in a
core, it can be expected that the distortion in the axial dependence of the current vector,
becomes much more characteristic than that of the scalar flux. In this case, we refer to the
exact (transport theory definition) of the current, and not its diffusion approximation (flux
gradient), since in such cases diffusion theory does not give adequate results.
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Fig. 10. The axial dependence of the flux and the current close to a partially inserted control rod in &
3-D cylindrical reactor, calculated by Monte Carlo (from Ref 12). a) scalar flux; b) absolute value of
the current; c) radial component of the current. The numbers in the boxes represent radial distanc
from the rod.
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Fig. 10. demonstrates that there is much more explicit information available on the
rod position in the current than in the scalar flux. In all three diagrams in the Figure the rod
is inserted to the middle of the reactor (y = 0). Figs. 10b and 10c show that in these cases
one could make a quite good quantitative guess of the rod position from the measured data,
whereas the same estimate would be more uncertain from the flux data. The calculations
shown here were made by a Monte Carlo code in a 3-D cylindrical reactor, in order to
obtain the true current (Ref. [12]).

In the static control rod diagnostic case, the use of the current can be extended from
axial dependence to the radial dependence as well. This is the case when the radial (azi-
muthal) position of the control rod is also an unknown. Such is the case if static failures of a
single control rod pin (finger) are to be diagnosed in a Westinghouse-type PWR. Fig. 11
serves for an illustration. Assume that one single control rod pin, or some section thereof,
breaks down and falls to a lower position. The flux and the current will be influenced by
this change and thus there is in principle a possibility to both detect such an event and iden-
tify the failed pin. However, due to the weakness of such a perturbation, the flux and current
distortion can most likely not be detected outside the fuel assembly in question, not even in
a neighbouring assembly position. Thus the only possibility is to use a current/flux detector
within the assembly. If a complete mapping of the axial dependence of the scalar flux and
the current vector is performed by a movable detector, then there is a chance that both the
axial and the radial position of such a failed control rod finger can be determined. We do
not have any simulated data to support this statement at present, but the problem can be
studied via Monte-Carlo simulation and this is planned in future work.
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OO00@OOOOOOOOO@OOC I Failed control pin
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ole] lole] oo leole! looNlele)
OOOOOOOOO0OOOOOOOD
OOOOOOOOOOOOOOOO0D
ole] Jole]! loel lele] leole] o,
OO0OOOOOO0OOOOOOOD
OOOOOO0OOOOOOOOO0O
ole] Jole] Jole] Jele] lele] o,
OOOOOOOOOOOOOOOO0D
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sloloele] lole] Jeole] leeloee;
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O Fuel rod
@ Instrument tube (detector position)

@ Absorber pin

Fig. 11. Horizontal cross section of a PWR fuel assembly, containing a control
rod and an instrument tube for a movable detector
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4.4 Applications in dynamical cases

Here we only discuss the possibility of using the current or gradient noise, together
with the scalar noise, to locate a vibrating control rod or control rod pin. Another example,
the case of localisation of a point source of oscillating strength in an infinite, non-multiply-
ing medium, is described in Ref. [10].

The task of locating the position of a vibrating control rod from the neutron noise was
treated in earlier applications by using three neutron detectors at the same axial elevation
but at different radial positions (triangulation). Due to axial homogeneity, this is a 2-D
problem, and the task is to determine the rod position on the 2-D horizontal cross-section of
the reactor. The static rod is described by the absorption cross-section
52 = yB(r-r ) (74)

a
wherey stands for the rod strength anp is the static rod position. The vibrating rod is
represented by
200 = Y IB(r =1, —g(1) (75)

a

where g(t) is a 2-D displacement vector describing the stochastic rod trajectory during
vibration. Thus the perturbation represented by the rod vibrations are given as

55(r 1) = yO8(r —r y—£() ~8(r —r )] (76)

As described in the previous works, with the above perturbation, the induced neutron noise
can be written as

3o(r, ) = %{pr(r,rp, ) BB (W) + Gy (1,1, ©) (B (@)} (77)
Here,

pr(r,rp, w)zg%{ G(r, r', w) Lp(r)} (78)

rs=r,
and similarly for Gyp(r, Mo W) .

Since the vibration components, (w) arztg(w) are also unknown, one needs
at least 3 neutron detectors at positionsr,, apd . Then, the neutron noise measured at
these positions is expressed by 3 equations of the type (77). Two of them can be used to
eliminatee, anohy in the third, and thus to create an identity called the “localisation equa-
tion”. This latter is a transcendental equation which contains the unknown rod position as
its root. Alternatively, neural network methods can be used to train a network to identify the
rod position from 3 neutron noise signals and using the direct expressions for the noise in
the form of (77).

In this 2-D problem, the current and the current noise are 2-D vectors. Hence,
together with the scalar noise, one current/flux (C/F) noise measurement serves 3 independ-
ent quantities just as in the case of 3 neutron noise detectors. In formulae, one C/F detector
yields the measurement of the following 3 quantities:
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S(r, ) = [—\g{exp(r,rp, ) B (0) + Gy (1,1, ©) (B (@)} (79)

0J, (r, w) = —y{ GXXp(r, My W) CEy(w) + nyp(r, My w) CE (W)} (80)
0Jy(r, ) = —y{ Gy, (1,1, W) [Ey(w) + Gyy (1, 1, W) [Ey(w)} (81)
Here,
2
o = 3ax, Ol T 9Ty (82)
etc.
Eqgns (79) - (81) contain the same amount of independent informatiar) o , and

M and can be used to construct a localisation procedure as was the caségitiw)
measured at three different positions. With a C/F noise detector at one single point, the
diagnostics of a vibrating rod, in particular its localisation, is possible. This may be espe-
cially useful in case of the failure of a single control rod pin, as it was discussed in the static
case, see also Fig. 11. The neutron noise induced by the vibration of one single control pin
is not likely to be determined outside the assembly in which the pin is located, because at
such distances the amplitude of the noise induced by the vibrations will be smaller than the
background noise or noise from other sources. Thus it is essential to perform the diagnostics
by using one single measurement position, close to the perturbation. The use of a C/F detec-
tor is again a promising possibility to achieve this.

4.5 Conclusions

It is planned that the feasibility of the use of the current will be investigated exper-
imentally in further work. Regarding possible hardware development, both fibre-based
scintillation detectors as well as SPN detectors can be developed into current or gradient
detectors. In order to achieve applicability in practice, a number of problems need to be
investigated and solved, both experimentally and conceptually. However, the potential of
the method is quite promising, which justifies further work in this field.

-32-



Plans for the continuation

In Stage 5 we plan to include the following parts in the current R&D program:

» Continued investigation of the possibilities of using the flux gradient for diagnostics:
study of a detector and Monte-Carlo calculations. A new type of thin neutron detector,
based on an optical fibre whose tip consists of a lithium or thorium loaded scintillator,
has been developed in Japan. This detector has a spatial resolution of ~1 mm. We have
received this new technology and also made some preliminary tests. In order to evaluate
the properties of this new detector, we plan to perform some measurements with a neu-
tron source. We also plan to make comparisons between the measurement results and
Monte-Carlo calculations using the code MCNP.

« Comparative investigation of the problem of localization of vibrating control-rods using
ordinary noise and “current” noise. In Stage 4, we described how a vibrating absorber
can be localized using measurements of the neutron noise and fluctuations of the flux
gradient (“current noise”). A quantitative investigation of this method is proposed using
simulated (calculated) noise signals.

» Calculation of the transfer function in a 2-region system using 2-group theory. The trans-
fer function has hitherto only been calculated in 2-D bare systems using 1-group diffu-
sion theory. Two-group theory is necessary to describe reflected systems as well as the so
called local component of the neutron noise, which exists 1-2 diffusion lengths from the
source. In Stage 5, we plan to derive and calculate the complex transfer function for a 2-
D cylindrical, reflected reactor. The local instability event in Forsmark 1, where the dis-
turbance is located close to the reflector, confirmed the need for such a transfer function.

» Development of the theory of zero reactor noise with the purpose of using it to reactivity
measurements. Fluctuations in the number of detector pulses during start-up, i.e. for a
subcritical core with a source, have been used to measure reactivity for many decades. In
these methods, either the relative variance (Feynman-alpha method) or the correlations
(Rossi-alpha) are measured as functions of time. By comparison with theoretical expres-
sions for the same quantities, the reactivity can be determined by curve fitting. The
development we suggest here concerns the use of “multiple” start-up sources, such as a
Cf-252 source, instead of the traditional Am-Be or Pu-Be source. The difference is that
the traditional sources emit only one neutron at a time, and have thus Poisson statistics.
Multiple sources emit several correlated neutrons, and this fact enhances the effectivity
of the method. However, the theoretical formulas used so far in the evaluation are all
based on Poisson sources. We propose to elaborate the theory of Feynman-alpha and
Rossi-alpha measurements for multiple sources and to derive the Feynman-alpha and
Rossi-alpha formulae for such cases. In the first stage, similarly to all traditional work in
the literature, space-independent stochastic theory will be used. However, at a later stage
also space-dependent effects will be investigated through Monte-Carlo simulations.
Space-dependent effects have relevance in the interpretation of some events (deviations
between measured and true reactivity) that have occurred during start-up at operating
reactors.
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