TEM observation and grain boundary analysis of non-sensitized stainless steels (First report)

Mitsuhiro Kodama Nippon Nuclear Fuel Development Co., Ltd. Research Department

Scope

To study if the material with higher N content contains a large amount of nitrides containing Cr which would deplete the matrix and/or the grain boundaries.

TEM samples

Chemical compositions

Materials	С	Si	Mn	Р	S	Cr	Ni	Мо	Ν
316NG-L	0.19	0.54	0.82	0.03	0.006	17.6	11.2	2.06	0.05
316NG-H	0.18	0.4	1.1	0.17	0.001	17.2	12.4	2.58	0.17

Austenite stability (=Ni-eq/Cr-eq)

Materials	Austenite stability		
316NG-L	0.667		
315NG-H	0.912		

Priority

Matoriale	Cold work			
Materials	0%	33%		
316NG-L	2	1		
315NG-H	2	1		

SCC susceptibility (CBB tests) 316NG-H(33%) > 316NG-L(33%)

Test conditions

Instrument : FEG-TEM (Hitachi HF-2000) with EDS (ultra-thin window X-ray detector) Acc. Voltage : 200kV Probe diameter: about 1nm Acquire time : 100 sec (detector live time) Analysis point : 3 points on G.B. 1 point on 1, 2, 3, 4, 5, 10, 20, 50 nm from G.B. Quantification : Cliff-Lorimer method

TEM result (316NG-H/33% cold work)

Bright field image

Dark field image

Diffraction pattern

Very small precipitate is observed in 316NG-H.

TEM result (316NG-L/33% cold work)

Bright field image

No precipitate is observed in 316NG-L.

Cr compositional profiles across grain boundary

Mo compositional profiles across grain boundary

Ni compositional profiles across grain boundary

Si compositional profiles across grain boundary

Mn compositional profiles across grain boundary

TEM images of analysis grain boundary

316NG-L (33%)

316NG-H (33%)

There is no precipitate at grain boundary.

Summary (First report)

- •Very small precipitate is observed in316NG-H. (The precipitate is not identified.)
- •No precipitate is observed in 316NG-L.
- •Remarkable grain boundary segregation is not observed.
- •There is not obvious difference between 316NG-H and 316NG-L in grain boundary segregation.

