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Summary 
This report gives an account of the work performed by the Department of Nuclear 
Engineering, Chalmers University of Technology, in the frame of a research contract 
with the Swedish Radiation Safety Authority (SSM), contract No. SSM 2010/2134. The 
present report is based on work performed by Imre Pázsit, Tran Hoai Nam, Victor Dykin 
and Anders Jonsson, with Imre Pázsit being the project leader. 
 
This report describes the results obtained during Stage 17 of a long-term research and 
development program concerning the development of diagnostics and monitoring 
methods for nuclear reactors. The long-term goals are elaborated in more detail in e.g. 
the Final Reports of Stages 1 and 2 (SKI Report 95:14 and 96:50, Pázsit et al. 1995, 
1996). Results up to Stage 16 were reported in (Pázsit et al. 1995, 1996, 1997, 1998, 
1999, 2000, 2001, 2003a, 2003b; Demazière et al, 2004; Sunde et al, 2006: Pázsit et al. 
2008, 2009, 2010). 
 
The program executed in Stage 17 consists of three parts as follows: 
 
• Development of the noise simulator, CoreSim, to effectively model the noise 

induced by vibrating fuel assemblies, for the calculation of ex-core detector noise; 
• Extension of the traditional Rossi-alpha method to two energy groups; 
• Study of the dynamics of liquid fuel systems: extension of the model to two energy 

groups. 
 
The work performed in each part is summarized below. 
 
1. Development of the noise simulator, CoreSim, to effectively model the noise 
induced by vibrating fuel assemblies, for the calculation of ex-core detector noise 
 
In the research project run in collaboration with Ringhals, we found that the amplitude 
of the peak in the ex-core neutron APSDs, corresponding to the beam mode vibrations 
of the core barrel, increases during the cycle, but returns to the initial value after 
refuelling, at the beginning of the next cycle. The reason for this behaviour is not 
understood. One guess, expressed by experts in the field, is that the scaling factor 
between core barrel displacement and the normalised neutron noise changes with the 
change of the boron content and flux redistribution in the core due to burn-up. We have 
investigated whether such a statement could be confirmed by the use of the noise 
simulator, developed at the Department (Demazière 2004, 2011). However, we did not 
find any increase of the normalised noise with constant vibration amplitude during the 
cycle when the noise induced by the vibrations of the core barrel was calculated (Pázsit 
et al., 2008). 
 
In some recent work (Pázsit et al., 2008, 2010) we have arrived at the conclusion that 
the 8 Hz peak in the ex-core spectra, corresponding to the beam mode, consists of two 
peaks close to each other in frequency. The two peaks have different origins and 
different time evolution during the cycle. The peak closer to 7 Hz is induced by the core 
barrel vibrations, and its amplitude does not change significantly during the cycle. The 
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peak close to 8 Hz is due to the individual fuel assembly vibrations, and its amplitude 
increases monotonically during the cycle.  
 
The fact that vibrations of individual fuel assemblies can contribute to the ex-core noise 
has been suggested already by Sweeney et al (1985). These authors also claim that the 
ex-core noise induced by such vibrations increases during the cycle due to the change of 
boron concentration and burn-up effects.  
 
The purpose of the work in this Section is to investigate the possibility to confirm the 
validity of this statement with the use of the noise simulator. To this end the treatment of 
the vibrating control or fuel rod has to be improved compared to the default application. 
Instead of solving the noise equations with the actual noise source included, CORE SIM 
will be used to calculate the Green’s function, and the noise will be derived by a 
numerical integration of the Green’s function with the noise source representation. This 
way vibrations with a smaller amplitude can be treated than in the previous cases. In 
this Stage this methodology will be tested in a one-dimensional model for one single 
core configuration. The extension to 2-D and to the case of increasing burn-up will be 
performed in later work.  
 
2. Extension of the traditional Rossi-alpha method to two energy groups 
  
The traditional methods using higher moments of the detector counts, notably the 
Feynman- (variance to mean) and Rossi-alpha (temporal correlations) methods, are 
based on an energy-independent, or one-group, theory.  The corresponding Feynman- 
and Rossi-alpha formulae were thus derived in a one-group theory setting. This energy-
independent approach was experimentally justified since the methods appear to work 
well in a wide range of cases in thermal, water moderated systems, with a long thermal 
neutron lifetime and the dominance of the thermal flux.  
 
However, there have been an increasing number of indications that in certain situations 
the traditional description may not work satisfactorily, in particular in fast systems and 
in reflected cores. From the experimental point of view, in several measurements it was 
found that the temporal behaviour of the Feynman- or Rossi-alpha measurements could 
not be fitted by one single exponential, rather two, or sometimes even more, exponential 
terms and corresponding exponentials were needed.  
 
The simplest way of accounting for spectral effects and describing multi-alpha modes is 
to extend the theory of the Feynman- and Rossi-alpha methods to two energy groups, 
still in the same space-independent model as in the traditional works. With this 
extension, if one disregards the delayed neutrons, the temporal behaviour will be 
determined by two exponentials, and the whole theory still remains manageable fully 
analytically.  
 
In this Stage therefore we will elaborate the theory of neutron fluctuations, more 
concretely that of the Rossi-alpha formula, in a two group approach with the master 
equation technique. Preliminary results were already obtained (Pál and Pázsit, 2011). 
Here we give the basics of the theory of the two-group version of the Rossi-alpha 
formula, with the first results. The calculations for the Rossi-alpha formula show that 
the temporal dependence of the detection rate of fast neutrons at time t τ+ , following 
a triggering detection at time t  indeed has a form of the sum of two exponentials. The 
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explicit form of the two-group Rossi-alpha formula is given and some possible further 
applications of the method are discussed. 
 
3. Study of the dynamics of liquid fuel systems: extension of the model to two 
energy groups 
 
In the previous reports, Stages 14-15 and 16, a simple one-dimensional one energy 
group model with propagating fuel properties was set up and studied as a model of a 
molten salt reactor. The solution of the static eigenvalue equation was given first by 
expansions into eigenfunctions of a corresponding traditional reactor, i.e. an reactor 
with fuel velocity 0u = .  The noise was then calculated in Stage 16 by using a semi-
analytical technique, where part of the flux was given as an exact solution of part of the 
problem, and the remainder was given as a series expansion. Doing so, several new 
features compared to the simpler approach presented in Stage 14 appeared, most notably 
a series of peaks in the frequency dependence. Further, the general behaviour of the 
reactor was found to be more point-kinetic than a corresponding traditional reactor. 
Finally, the noise from a propagating perturbation was calculated and was found to 
display some interesting features. The new findings were summarized in a recent 
journal publication (Pázsit and Jonsson, 2011). 
 
To further improve on these results, for Stage 17, two-group theory was used. The 
techniques used for the one-group theory proved still to be useful to obtain solutions for 
the Green’s functions and the neutron noise. The new effects that are possible to study 
in a two-group approach are the presence and the significance of the local component, 
and the spectral effects (energy dependence) of the static flux and the neutron noise. In 
particular, in a two-group treatment it is possible to study the significance of the  
different fuel types and spectra on the induced neutron noise and its kinetic properties. 
Hence in this Stage, calculations were performed on three different systems: a thorium-
fuelled thermal MSR, a thermal uranium reactor (based on data from Ringhals 1), and a 
fast high-conversion reactor. The results from these three systems were quantitatively 
compared.  A more detailed description of the results are given in a new publication 
(Jonsson and Pázsit, 2011). 
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Sammanfattning 
Denna rapport redovisar det arbete som utförts inom ramen för ett forskningskontrakt 
mellan Avdelningen för Nukleär Teknik, Chalmers tekniska högskola, och 
Strålsäkerhetsmyndigheten (SSM), kontrakt Nr. SSM 2010/2134. Rapporten är baserad 
på arbetsinsatser av Imre Pázsit, Tran Hoai Nam, Victor Dykin och Anders Jonsson, 
med Imre Pázsit som projektledare. 
 
Rapporten beskriver de resultat som erhållits i etapp 17 av ett långsiktigt forsknings- 
och utvecklingsprogram angående utveckling av diagnostik och övervakningsmetoder 
för kärnkraftsreaktorer. De långsiktiga målen har utarbetats noggrannare i 
slutrapporterna för etapp 1 och 2 (SKI Rapport 95:14 och 96:50, Pázsit et al. 1995, 
1996). Uppnådda resultat till och med etapp 16 har redovisats i referenserna (Pázsit et al, 
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003a, 2003a; Demazière et al, 2004; Sunde 
et al, 2006; och Pázsit et al, 2008, 2009, 2010).  
 
Det utförda forskningsarbetet i etapp 17 består av de tre följande delarna: 
 
• Vidareutveckling av brussimulatorn CoreSim, för att effektivt kunna modellera 

bruset från vibrerande styrstavar och bränslepatroner i beräkningar av detektorbrus 
utanför härden; 

• Utvidgning till två energigrupper av den vanliga Rossi-alpha-metoden; 
• Studie av dynamiken hos system med flytande bränsle: utvidgning till två 

energigrupper av modellen. 
 
Det utförda arbetet i varje del summeras nedan.  
 
1. Vidareutveckling av brussimulatorn CoreSim, för att effektivt kunna modellera 
bruset från vibrerande styrstavar och bränslepatroner i beräkningar av 
detektorbrus utanför härden 
 
I vårt forskningssamarbete med Ringhals fann vi att amplitudtoppen hos APSD-
neutrondetektorerna utanför härden, som svarar mot reaktortankens ”beam mode”-
vibrationer, ökar under cykeln, men återgår till ursprungsvärdet i början av nästa cykel 
efter bränslebyte. Orsaken till detta beteende är inte känd. En gissning, som framförts av 
experter inom området, är att skalfaktorn mellan reaktortankens förflyttning och det 
normaliserade neutronbruset ändras med förändring av borinnehållet och 
flödesförändring i härden på grund av utbränning. Vi har undersökt huruvida ett sådant 
påstående kan bekräftas genom att använda den brussimulator som utvecklats på 
institutionen (Demazière 2004, 2011). När vi beräknade bruset, som inducerats av 
reaktortankens vibrationer, kunde vi emellertid inte finna någon ökning av det 
normaliserade brus, som har konstant vibrationsamplitud, under cykeln (Pázsit et al., 
2008). 
 
I några nyare arbeten (Pázsit et al., 2008, 2010) har vi kommit till slutsatsen att toppen 
på 8 Hz i spektret utanför härden, som svarar mot ”beam mode”, består av två toppar , 
som ligger nära varandra i frekvens. De två topparna har olika ursprung och olika 
tidsutveckling under cykeln. Toppen närmare 7 Hz induceras av reaktortankvibrationer 
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och dess amplitud ändras inte signifikant under cykeln. Toppen nära 8 Hz beror på 
vibrationer i individuella bränsleknippen och dess amplitud ökar monotont under cykeln. 
 
Det faktum att vibrationer i individuella bränsleknippen kan bidra till brus utanför 
härden föreslogs redan av Sweeney et al (1985). Dessa författare hävdar också att det av 
sådana vibrationer inducerade bruset utanför härden ökar under cykeln på grund av 
ändringen i borkoncentration och utbränningseffekter. 
 
Målsättningen med detta avsnitt är att undersöka möjligheten att bekräfta giltigheten hos 
detta påstående med hjälp av brussimulatorn. För detta ändamål måste behandlingen av 
vibrerande kontroll- eller bränslestavar förbättras jämfört med standardapplikationen. 
Istället för att lösa brusekvationerna med det aktuella bruset inkluderat, så ska CORE 
SIM användas för att lösa Greens funktion. Bruset erhålls sedan genom en numerisk 
integration av Greens funktion med bruskällerepresentation. På detta sätt kan 
vibrationer med mindre amplitud behandlas än i tidigare fall. I denna etapp ska denna 
metod testas på en endimensionell modell av en enstaka härdkonfiguration. Utveckling 
till två dimensioner och till fallet med ökande utbränning ska utföras i senare arbeten. 
 
2. Utvidgning till två energigrupper av den vanliga Rossi-alpha-metoden  
 
De traditionella metoderna använder högre moment av detektorsignalerna, i synnerhet 
Feynman- (varians till medelvärde) och Rossi-alphametoderna (tidskorrelationer), och 
är baserade på en energioberoende teori eller engruppsteori. Motsvarande Feynman- och 
Rossi-alphaformler härleddes alltså för engruppsteori. Denna energioberoende taktik 
motiverades experimentellt eftersom metoderna verkar fungera bra i ett stort antal fall 
för termiska, vattenmodererade system där man har lång termisk neutronlivslängd och 
dominans av termiskt flöde. 
 
Det har emellertid framkommit ett ökande antal indikationer att i vissa situationer 
fungerar inte den traditionella beskrivningen tillfredsställande, speciellt inte i snabba 
system eller för härdar med reflektor. Från experiment fann man att vid åtskilliga 
mätningar kunde tidsbeteendet hos Feynman- eller Rossi-alphamätningarna inte 
anpassas till en enda exponentialfunktion, snarare behövdes två och ibland fler 
exponentialtermer och motsvarande exponentialfunktioner. 
 
Det enklaste sättet att ta hand om spektraleffekter och att beskriva flera alphamoder är 
att utveckla teorierna för Feynman- och Rossi-alphametoderna till två energigrupper 
men fortfarande använda samma rumsoberoende modell som i de traditionella arbetena. 
Med denna utvidgning bestäms temperaturbeteendet av två exponentialfunktioner och 
hela teorin blir fortfarande fullt analytiskt hanterbar, om man bortser från de fördröjda 
neutronerna.  
 
I denna etapp utarbetar vi därför i detalj teorin för neutronfluktuationer, mer konkret 
Rossi-alphaformeln, genom masterekvationsteknik för två grupper. Preliminära resultat 
hade redan tidigare uppnåtts (Pál and Pázsit, 2011). Här ger vi grunderna för 
tvågruppsteorin för Rossi-alphaformeln med de första resultaten. Beräkningarna med 
Rossi-alphaformeln visar att temperaturberoendet hos detekteringshastigheten för 
snabba neutroner vid tiden t τ+ , som följer en triggningssignal vid tiden t verkligen har 
formen av summan av två exponentialfunktioner. Den explicita formen av Rossi-
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alphaformlen för två grupper ges och några möjliga ytterligare applikationer av metoden 
diskuteras. 
 
3. Studie av dynamiken hos system med flytande bränsle: utvidgning till två 
energigrupper av modellen  
 
I de tidigare rapporterna, etapp 14-15 och 16, ställdes en enkel endimensionell modell 
för en energigrupp och rörligt bränsle upp och studerades som modell för en 
saltsmältereaktor. Lösningen till den statiska egenvärdesekvationen gavs först i 
utvecklingar av egenfunktioner till en motsvarande traditionell reaktor, dvs. en reaktor 
med bränslehastighet 0u = . Bruset beräknades sedan i etapp 16 genom att använda en 
halvanalytisk teknik, där en del av flödet gavs som en exakt lösning till en del av 
problemet, och resten gavs som en serieutveckling. Genom detta förfarande upptäcktes 
flera nya egenheter jämfört med det enklare förfarandet från etapp 14, varav det 
märkligaste var en serie toppar hos frekvensberoendet. Vidare befanns reaktorns 
allmänna beteende vara mer punktkinetiskt än en motsvarande traditionell reaktor. 
Slutligen beräknades bruset från en rörlig störning och detta befanns ha några 
intressanta karaktäristika. De nya resultaten summerades nyligen i en 
tidskriftspublikation (Pázsit and Jonsson, 2011).  
 
För att ytterligare förbättra dessa resultat för etapp 17 användes tvågruppsteori. Den 
teknik, som använts för engruppsteorin, visade sig fortfarande användbar för att erhålla 
lösningar till Greens funktion och neutronbruset. De nya effekter som är möjliga att 
studera med tvågruppsmetoden är närvaron och signifikansen av den lokala 
komponenten samt spektraleffekter (energiberoende) hos det statiska flödet och 
neutronbruset. I synnerhet är det möjligt att studera betydelsen av olika bränsletyper och 
spektra hos det inducerade neutronbruset och dess kinetiska egenskaper med en 
tvågruppsmodell. Följaktligen gjordes beräkningar på tre olika system i denna etapp: en 
termisk MSR med toriumbränsle, en termisk uranreaktor (baserat på data från Ringhals 
1) samt en snabb ”high-conversion”-reaktor. Resultaten från dessa tre system jämfördes 
kvantitativt. En mer detaljerad beskrivning av resultaten skall presenteras i en ny 
publikation (Jonsson and Pázsit, 2011). 
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1 Development of the noise simulator, CoreSim, to 
effectively model the noise induced by vibrating fuel 
assemblies, for the calculation of ex-core detector noise 
1.1 Introduction 
Calculation of the noise in a power reactor in a realistic model, accounting for 
inhomogeneous core composition, burnup effects etc., is necessary in many applications. 
To this order a numerical tool, the so-called noise simulator, was developed in Chalmers 
which can take input for the material and geometry composition of real reactor cores 
and calculate the induced noise (Demazière 2004, 2011). This tool has been used in a 
number of applications (Demazière and Pázsit, 2008).  
 
One particular application concerns the calculation of the ex-core neutron noise induced 
by core-barrel vibrations. In the research project done in collaboration with Ringhals, 
we found that the amplitude of the peak in the ex-core neutron APSDs, corresponding to 
the beam mode vibrations of the core barrel, increases during the cycle, but returns to 
the initial value after refuelling, at the beginning of the next cycle. The reason for this 
behaviour is not understood. One guess, expressed by experts is that the scaling factor 
between core barrel displacement and the normalised neutron noise changes with the 
change of the boron content and flux redistribution in the core due to burn-up. We have 
investigated whether such a statement could be confirmed by the use of the noise 
simulator (Pázsit et al., 2008). However, we did not find any increase of the normalised 
noise with constant vibration amplitude during the cycle. 
 
In some recent work (Pázsit et al., 2008, 2010). we have arrived at the conclusion that 
the 8 Hz peak in the ex-core spectra, corresponding to the beam mode, consists of two 
peaks close to each other in frequency. The two peaks have different origins and 
different time evolution during the cycle. The peak closer to 7 Hz is induced by the core 
barrel vibrations, and its amplitude does not change significantly during the cycle. The 
peak close to 8 Hz is due to the individual fuel assembly vibrations, and its amplitude 
increases monotonically during the cycle.  
 
The fact that vibrations of individual fuel assemblies can contribute to the ex-core noise 
has been suggested already by Sweeney et al (1985). These authors also claim that the 
ex-core noise induced by such vibrations increases during the cycle due to the change of 
boron concentration and burn-up effects. The purpose of the work in this Section is to 
investigate the possibility to confirm the validity of this statement with the use of the 
noise simulator. 
 
The work in this Stage will be confined to a feasibility study of using the noise 
simulator. Namely, in our work so far, there has been a restriction in modelling vibrating 
structures. In the work the so-called direct equations were used, by having the 
perturbation (fluctuations in the cross sections) as the inhomogeneous part of the 
equation. In defining the fluctuations of the cross sections, there was only possible to 
change these in one node at a time. In other words, any vibration could only be defined 
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with a spatial resolution not smaller than the node size. Even when trying to calculate 
the direct Green’s function, the inhomogeneous part in the equation could not be 
defined as a Dirac delta function, rather as a step-function over one node. 
 
There are two possibilities to circumvent this problem. The most effective, which will 
be used in future work, is to turn to the dynamic adjoint. In the adjoint equations the 
inhomogeneous part of the equation is defined by the detector cross sections (both in 
energy and space) and the variables of the solution are the perturbation co-ordinates. 
Hence the calculation of the noise induced by a vibrating localised component requires 
only getting an estimate of the dynamic adjoint, the static flux, and their spatial 
derivatives at the position of the vibrating component.  
 
The other possibility is to use the direct equations, but use a mesh that is finer than the 
node size, and calculate the derivative of the Green’s function by moving the 
inhomogeneous part of the equation with one mesh. Such a method can be applied in 
one dimensions, where using a finer mesh does not lead to excessive memory problems 
and running times. Actually, there is an alternative possibility which avoids the need of 
taking the derivative of the flux and the Green’s function. This alternative is related to 
the modelling of the vibrating component, i.e. a control rod of a fuel assembly: instead 
of considering it as a spatial Dirac-delta function, it can be described as having a finite 
width, and executing vibrations with much smaller amplitude than the assembly width. 
In 1-D this approach leads to the representation of the assembly vibrations as two Dirac-
delta absorbers of variable strength, separated with the width of the absorber, and with 
strength oscillating in opposite phase. This model, also called in the literature as the 

/dε  model, is described and discussed in Pázsit (1988) and Pázsit and Karlsson (1997). 
Both approaches (the Dirac-delta and the /dε  model of the rod) will be used in the 
current Stage.  

1.2 Calculation of the neutron noise at an ex-core position 
The neutron noise calculation code developed at Chalmers University is for 

simulating the neutron noise distribution induced by spatially distributed or localized 
sources in the frequency domain by solving the following equation in a 2-group model: 
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f eff

eff
dyn

rem a

i

k i

i

ν ωβ
ω

ω λ
ω

ω
υ

⎡ ⎤⎛ ⎞∑ ⎟⎜⎢ ⎥⎟⎜−∑ − ⎟⎢ ⎥⎜ ⎟⎜ + ⎟⎜⎢ ⎥⎝ ⎠∑ = ⎢ ⎥⎛ ⎞⎢ ⎥⎟⎜ ⎟⎜⎢ ⎥∑ − ∑ + ⎟⎜ ⎟⎢ ⎥⎟⎜⎝ ⎠⎣ ⎦

 (3) 
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 1,0

1,0

(r)
(r)

(r)rem

φ
φ

φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

 (4) 

 1,0

2,0

(r) 0
(r)

0 (r)a

φ
φ

φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 

 1,0 2,0
(r) 1 (r) 1

(r, )

0 0

eff eff

f

i i

i i

ωβ ωβ
φ φ

φ ω ω λ ω λ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜− − − −⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟⎜ ⎜= + +⎟ ⎟⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6) 

 ,1,0
1 ,1,0 ,0

1

(r)
(r, ) (r) (r) 1f eff

a rem
eff

ii
k i

ν ωβω
ω

υ ω λ

⎛ ⎞∑ ⎟⎜ ⎟⎜∑ = ∑ + ∑ − − ⎟⎜ ⎟⎜ + ⎟⎜⎝ ⎠
 (7) 

The equation can be solved in matrix form by discretisation using a finite difference 
method as follows: 

 dynM Sφ×∂ = ∂  (8) 

where φ∂  is the neutron noise vector of the fast and thermal groups and S∂  represents 
the noise source vector over the core. 
 
The noise source consists of the perturbation of the cross-sections as a result of 
technological processes in the core, such as core barrel vibrations, fuel assembly 
vibrations and so on. A vibrating assembly can be modeled as being a 1-D structure that 
vibrates perpendicular to a horizontal 2-D plane and which always remains parallel to 
itself. Consequently, the problem can be correctly treated in this 2-D plane by assuming 
that the noise source is described as: 

 { }(r, ) (r r ( )) (r r )
p p

XS t tδ γ δ δ= − − − −ε  (9) 

where γ is the so-called Galanin constant, describing the strength of a localized 
absorber, or the fuel assembly, and r

p
is its equilibrium position around which it vibrates 

according to the displacement function ( )tε . For example, if the neutron noise is 
induced by a vibration of a control rod (neutron absorber) located at r

p
, i.e. a 

perturbation of the fast and/or thermal absorption cross-section, the first order of Taylor 
expansion, the (r, )

a
δ ω∑ is rewritten as: 

 (r, ) ( ) (r r )
a p

δ ω γ ω δ∑ = −ε  (10) 

The neutron noise can also be calculated through the Green’s function given in the 
following equation: 

 (r, ) (r, r , ) (r r )
p a p

L Gω ω δ= ∑ −  (11) 

where,  

 (r, ) . (r) (r, )dynL Dω ω= ∇ ∇+∑  (12) 
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Then, the neutron noise induced by the vibrating noise source is calculated as:  

 (r, ) ( ) (r, r , ) (r )
pr p p
Gδφ ω γ ω ω φ⎡ ⎤= ∇ ⎢ ⎥⎣ ⎦ε  (13) 

For each noise source, the space-dependence of neutron noise can be determined 
through solving equation (11). The Green’s function has a potential use to simulate 
neutron noise induced by any kind of noise source or vibration without solving a 
specific equation with the noise source as the inhomogeneous part of the equations. The 
application of Green’s function in 2-D and 3-D models with a large number of meshes 
to calculate the neutron noise is more complicated since it is difficult to calculate of the 
derivative of the Green function with respect to r

p
, i.e. the position of the noise source.  

This work shows how numerical calculations can be made to determine the ex-core 
noise induced by in-core noise sources such as a vibrating assembly in a 1-D model 
using the Green’s function. 

1.3 Results of the calculated case in 1-D 
Calculations of ex-core neutron noise induced by in-core noise source or vibrating 
assembly were performed for a sample homogeneous reflected core in a 2-group 1-D 
model. The spatial vectors r  and r

p
 which refer to the induced noise and noise source 

positions in the above equations are denoted here by x  and 
p
x , respectively in the 1-D 

model. First, the static diffusion equations are solved for the neutron fluxes and the 
multiplication factor which later are used for determining the space-dependent noise. 
Figure 1 shows the space-dependent neutron fluxes in the fast and thermal groups of the 
investigated case. The spatial derivatives of the fluxes are presented in Figs 2 and 3. The 
figures show the discontinuity of the derivative of the flux at the core-reflector interface, 
representing the continuity of the current.  
 
The calculation of the noise induced by vibrating materials, such as control rods or fuel 
assemblies, requires the calculation of the derivative of the Green’s function with 
respect to the noise source coordinate 

p
x , as shown by the right hand side of Eq. (13). 

Since the solution of the direct equation for the Green’s function with CoreSim is not an 
analytical function of ,

p
x  an approximate numerical method is required. The fuel 

assembly vibration is modelled by shifting materials for a very fine mesh of about 3 mm 
at a specified assembly location. It means that here we have perturbations in all 
absorption, fission and removal cross-sections. Therefore, in the 2-group version of Eq.  
(13) there are three terms, corresponding to the three cross-section perturbations as seen 
on the r.h.s. of Eq. (1). Figures 4, 5 and 6 show an example of the magnitude and phase 
of the spatial derivatives of the Green’s function components corresponding to the 
absorption cross-section change. The ex-core detector position is specified at -188 cm, 
i.e. in the reflector. This is the closest how the signal of an ex-vessel detector can be 
simulated in a model with vacuum boundary conditions, assuming the vanishing the 
flux at the extrapolation length. It is seen that the derivative of the Green’s function w.r.t. 
the perturbation position is discontinuous at the detector position, but in practice only 

p
x positions in the core that are of interest. 
 
Figure 7 shows example results of the Green’s function itself, which is equivalent to the 
space-dependent noise induced by an absorber of variable strength, for two different 
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noise source positions. The magnitude and phase of the space-dependent noise induced 
by an assembly vibration is shown in Figs 8 and 9. The noise calculations are performed 
at the frequency of 8 Hz. 
 
 

  
Fig. 1 Spatial distribution of the static neutron fluxes in the fast and thermal groups. 

   

Fig. 2 Spatial derivative of the static fast flux. 
 

SSM 2011:29



14 (47) 

  
Fig. 3 Spatial derivative of the static thermal flux. 

 

 
Fig. 4 Magnitude of the spatial derivative of the Green’s function w.r.t. the perturbation 
position 

p
x in the fast group at an ex-core detector position (x = -188 cm). 
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Fig. 5 Magnitude of the spatial derivative of the Green’s function w.r.t. the perturbation 
position 

p
x in the thermal group at an ex-core detector position (x = -188 cm). 

 

 
Fig. 6 Phase of the spatial derivative of the Green’s function w.r.t. the perturbation 
position 

p
x

 
in the fast and thermal groups at an ex-core detector position. 
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Fig. 7 Space-dependent thermal noise induced by an absorber of variable strength at two 
different in-core positions. 
 
The amplitude  and the phase of the fast and the thermal noise, induced by the vibration 
of a vibrating assembly, is shown in Figs 8 and 9, respectively, for a given equilibrium 
position of the assembly, as a function of the detector position in the core. In these 
calculations, the /dε  model was used, such that two absorbers of variable strength 
with opposite phase, positioned at 43.3 and 64.7 cm, respectively, were used. This is 
only for illustration and in order to show similarity with analytical results obtained 
earlier for vibrating absorbers in 1-group theory (Pázsit 1977, 1978).  The equilibrium 
position of the assembly (around which it performs the small amplitude vibrations) lies 
in the right half of the core (left from the core centre). Correspondingly, the amplitude 
of the noise is discontinuous at the rod position, and the amplitude is significantly 
smaller on the right hand side of the rod than on the left hand side. It is also interesting 
to observe that the noise amplitude is much larger in the fast group than in the thermal 
group. For a vibrating control rod, which corresponds to a thermal absorber, the 
amplitude of the noise would have been larger in the thermal group.  
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Fig. 8 Magnitude of the space-dependent thermal and fast noise induced by a vibrating 
assembly.  

 
  

Fig. 9 Phase of the noises induced by a vibrating assembly. 
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1.4 Conclusions 
The above calculations show that it is possible to calculate the effect of the 

vibrating fuel assembly by modelling the vibrations with a fine spatial resolution. The 1-
D model has the potential to calculate the derivatives of the Green’s function with fine 
meshes without a memory problem, and therefore can be used to calculate simulate 
assembly vibrations. In the continuation of the work both the fine mesh and the adjoint 
method in 1-D and 2-D models will be used to simulate fuel assembly vibration.  

In the 2-D model, if all meshes are as fine as realistic vibration strengths, the total 
number of meshes becomes very large which may cause memory overload problem. 
However, it is not needed to divide all fine meshes except the meshes around the edges 
of a vibrating assembly where the vibration is modelled by shifting materials by one 
mesh. In order to simulate the vibration of assembly at a flexible strength, CoreSim is 
continuously improved to be able to handle non-uniform mesh sizes with a flexible 
mesh size for the edges of vibrating assembly so that any vibration strength could be 
simulated. This improvement will be continued in the next stage, and used to calculate 
the change of the amplitude of the ex-core noise during the fuel cycle.  
 

SSM 2011:29



19 (47) 

2 Extension of the traditional Rossi-alpha method to 
two energy groups 
2.1 Abstract 
The traditional methods using higher moments of the detector counts, notably the 
Feynman- (variance to mean) and Rossi-alpha (temporal correlations) methods, are 
based on an energy-independent, or one-group, theory.  The corresponding Feynman- 
and Rossi-alpha formulae were thus derived in a one-group theory setting. This energy-
independent approach was experimentally justified since the methods appear to work 
well in a wide range of cases. The physical reason for this sufficiency is that until 
recently, the applications were mostly made in small thermal systems. In such systems, 
the thermal neutrons dominate in the system due to the fact that their lifetime is several 
orders of magnitude larger than the slowing down time, i.e. the lifetime of the fast 
neutrons. The influence of any possibly existing spectral effects is further diminished in 
small weakly reflected systems, where point kinetic behaviour dominates, and the 
spatial shape of the thermal and fast neutrons is identical. The result is that, if the 
delayed neutrons are disregarded, the temporal statistics of the detector counts is 
determined by one single parameter, the lifetime of the prompt neutron chain, and hence 
the Feynman- and Rossi-alpha formulae contain one single exponential.  
 
However, there have been an increasing number of indications that in certain situations 
the traditional description may not work satisfactorily. From the experimental point of 
view, in several measurements it was found that the temporal behaviour of the 
Feynman- or Rossi-alpha measurements could not be fitted by one single exponential, 
rather two, or sometimes even more, exponential terms and corresponding exponentials 
were needed. The reasons for such behaviour can be manifold. One such case is that of 
fast reactor cores, including the Accelerator Driven Systems (ADS). In fast reactor cores, 
and in particular in those with a hard neutron spectrum, the dominance of the thermal 
neutrons is diminished, and the applicability of a one-group treatment far not obvious. 
Another case is that of the reflected systems, when the detector is placed close to, or in 
the reflector. Simply expressed, the die-away time of fast and thermal neutrons is rather 
different in the multiplying core and in the non-multiplying reflector, and this manifests 
itself in the fact that in such measurements, even with thermal cores, again two or more 
exponentials were found in the Rossi-alpha measurements.  
 
The energy and spatial effects can be described by a full space-energy-dependent 
approach, such as in the original Pál-Bell equations, or in the later works of Munoz-
Cobo et al (Pázsit and Pál, 2008). In such an approach, the existence of multiple alpha 
modes arises naturally by seeking the solution of the time-dependent problem with an 
expansion w.r.t. the eigenfunctions of the static equations. The problem is that this 
approach is rather non-transparent, and requires an assumption of the system 
configuration and the calculation of the corresponding eigenfunctions.  
 
A far more pragmatic approach is to extend the theory of the Feynman- and Rossi-alpha 
methods to two energy groups, still in the same space-independent model as in the 
traditional works. With this extension, if one still disregards the delayed neutrons, the 
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temporal behaviour will be determined by two exponentials, and the whole theory still 
remains manageable fully analytically.  
 
The usefulness of a two-group description for interpreting neutron die-away 
measurements in pulsed experiments has been known for quite some time in nuclear 
safeguards, at the deterministic level. The corresponding method is called the 
differential die-away analysis (DDAA). This technique is usually applied for the 
detection of special nuclear materials (i.e. fissile material) embedded in a hydrogenous 
surroundings, carried in transportable cargoes (Kunz, Caldell and Atencuo, 1982; Croft, 
Mc Elroy, Bourva and Villani, 2003; Jordan, 2006; Jordan and Gozani, 2007; Jordan, 
Gozani and Vujic, 2008). The essence is that a pulse of fast neutrons is injected into a 
large hydrogenous medium which contains a given quantity of fissile material. The 
initial fast neutrons decay quickly, by slowing down during a relatively short time and 
becoming  thermal, as well as they leak out and get absorbed. This behaviour gives rise 
to a fast decaying exponential. One part of the slowed down, thermal neutrons causes 
fissions while the rest leaks out of gets absorbed. These thermal fissions give rise to the 
appearance of further fast neutrons, whose die-away time will be determined by the die-
away of the thermal neutrons (since they constitute the source of these neutrons). Due to 
the relatively long lifetime of the thermal neutrons, a second, slowly decaying 
exponential will also be present in the die-away of the fast neutrons. By using a detector 
which counts only the neutrons above the cadmium cut-off, one obtains a definite 
indication about the presence of fissile material in the medium. Namely, without the 
presence of fissile material, there would only be one (fast) exponential. If fissile 
material is present, the die-away (the number of counts vs. time) curve can be 
approximated by a sum of two exponentially decreasing functions. 
 
The motivation for the present work came from a recent suggestion to extend the 
traditional DDAA method, which is a deterministic method whose application requires 
the use of a pulsed neutron generator, to the stochastic case. It was suggested that 
similarly to the case of reactivity measurement methods, where pulsed measurements 
can be replaced by the measurement of temporal correlations (Rossi-alpha method) with 
a stationary random source, the DDAA method can also be converted into a type of 
Rossi-alpha measurement of fast neutrons, where the pulsed source can be replaced by 
the inherent source of neutrons (spontaneous fissions) in the sample (Menlove et al, 
2009). The method was called the differential die-away self-interrogation (DDSI) 
technique. In Menlove et al (2009), it was assumed that the dependence of the temporal 
correlations of the detector counts of fast neutrons at two different time points has the 
same dependence on the time lag τ  as that of the detector counts at time t  in the 
traditional DDAA method with an interrogating pulse emitted at t=0 . However, in the 
above work, the DDSI formula was not derived from first principles, only its form was 
assumed by analogy to the deterministic case. Such an empirical formula can identify 
the exponents, but not the corresponding coefficients, since they depend on the second 
moments of the number of neutrons per fission, which is not present in the deterministic 
DDAA formula, which only contains first moment quantities. 
 
Obviously, the DDSI formula is equivalent to the two-group version of the Rossi-alpha 
formula. For the reasons described in above, a two-group version of the Feynman- and 
Rossi-alpha formulae would be useful also for reactivity measurements in fast reflected 
cores. We have therefore decided to elaborate the theory of neutron fluctuations, more 
concretely that of the Feynman- and Rossi-alpha formulae, in a two group approach 
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with the master equation technique. Preliminary results were already obtained (Pál and 
Pázsit, 2011). Here we give the basics of the theory of the two-group version of the 
Rossi-alpha formula, with the first results. The calculations for the Rossi-alpha formula 
show that the temporal dependence of the detection rate of fast neutrons at time t τ+ , 
following a triggering detection at time t  indeed has a form of the sum of two 
exponentials, just as in the traditional DDAA method, but the coefficients of the two 
terms are different. The correct form of the two-group Rossi-alpha formula is given and 
some possible further applications of the method are discussed. 

2.2 A simple stochastic model 
Assume that two types of neutrons can be found in the medium. One of them with 
energy above a well defined cut-off is denoted as group # 1, indicated by subscript “1” 
(fast neutrons), while the other one with energy not larger than the cutoff, by group # 2, 
indicated by subscript “2” (thermal neutrons). Let 

1
( )tn  and 

2
( )tn  be the random 

numbers of the fast and the thermal neutrons, respectively, in a medium at time instant 
0t ≥ , provided that at time moment t=0  there was either one fast or one thermal 

neutron in the medium. 
  
The statistical treatment of neutron counts is based on using master equations for the 
probability distributions of the neutrons in the system, and on the moments of the 
detector counts. The method can be illustrated by first developing the one-time (“one-
point”) distributions for the probabilities of finding a given number of fast and thermal 
neutrons in the system, when the process was started by one single neutron. Thus we 
define the probabilities 

 { }1 1 2 2 1 2
( ) , ( ) | ( , , | ), 1,2,

j j
t n t n S p n n t S j= = = =n nP   (14) 

where  

 { } { }1 1 2 2 1 2
(0) 1, (0) 0 and (0) 0, (0) 1S S= = = = = =n n n n , (15) 

that 
1

n  fast and 
2

n  thermal neutrons can be found in the medium at the time instant 
0t ≥ , provided that at the time instant t=0  there was only either one fast neutron or 

one thermal neutron in the medium. Here, 
1

S  stands for a starting fast neutron, whereas 

2
S  stands for a thermal source neutron. 
 
In order to derive the master equations, one needs the intensities of the various 
processes the neutrons can undergo. Hence we define the total reaction intensity 

 
1 1a R

λ λ λ= +  

of the fast neutrons, where 
1a

λ  and 
R

λ  are the intensities of the absorption and 
thermalization (“removal”) of fast neutrons, respectively. In reactor physics terminology, 
these are given as 

1 1 1a a
vλ = Σ , where 

1
v  stands for the velocity of the fast neutrons, and 

1a
Σ  is the macroscopic absorption cross section of the fast neutrons. Similar expressions 
exist for the other intensities. The intensities of the thermal neutron processes are 
defined as 
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2 2 2a f

λ λ λ= +  

Here, 
2a

λ  is the intensity of the capture of thermal neutrons, while 
2 f

λ  is the intensity of 

the fission caused by thermal neutrons. Further, ( )
i
f k  will denote the probability that 

exactly k  fast neutrons are produced in an induced thermal fission event. Fast fissions 
will be neglected in the present treatment. 
 
It is worth noting that since we are going to use the backward equations, which operate 
on the source co-ordinates only, it would be possible to write down equations which 
only describe the evolution of the probability distribution of the fast neutrons, 
irrespective of the number of thermal neutrons in the system. We will use this property 
of the backward equation when determining the two-time (“two-point”) distributions of 
the detected neutrons in the fast group (the “fast Rossi-alpha formula”). 

2.2.1 Backward Kolmogorov equations 
From obvious considerations, the integral form of the backward Kolmogorov equations 
determining the probabilities 

1 2 1
( , , | )p n n t S  and 

1 2 2
( , , | )p n n t S , respectively, can be 

written down as 

 
1 2 1

( , , | )p n n t S =  

 1 1 1

1 2 1 2

( ) ( )

,1 ,0 1 ,0 ,0 1 2 20 0
( , , | ) ,

t tt t t t t

n n a n n R
e e dt e p n n t S dt

λ λ λδ δ λ δ δ λ
′ ′− − − − −′ ′ ′+ +∫ ∫  (16) 

  
and 

 2 2

1 2 1 2

( )

1 2 2 ,0 ,1 2 ,0 ,00
( , , | )

tt t t

n n a n n
p n n t S e e dt

λ λδ δ λ δ δ
′− − − ′= + +∫  

 2

1 1 1 2

( )

2 10
10

( ) ( , , | ) ,
k k

kt t t

f i u u n v v n j j
jk

e f k p u v t S dt
λλ

∞
′− −

+ + = + + =
==

′ ′∑ ∑∑ ∏∫  (17) 

Introducing the generating functions 

 1 2

1 2

1 2 1 2 1 2
0 0

( , , | ) ( , , | ) , 1,2,n n

j j
n n

g z z t S p n n t S z z j
∞ ∞

= =

= =∑∑  (18) 

from (16) and (17) one obtains for these the equations 

 
1 2 1

( , , | )g z z t S =  

 1 1 1( ) ( )

1 1 1 2 20 0
( , , | )

t tt t t t t

a R
e z e dt e g z z t S dt

λ λ λλ λ
′ ′− − − − −′ ′ ′+ +∫ ∫  (19) 

and 

 
1 2 2

( , , | )g z z t S =  

 2 2 2( ) ( )

2 2 2 1 2 10 0
( , , | ) ,

t tt t t t t

a f
e z e dt e q g z z t S dt

λ λ λλ λ
′ ′− − − − − ⎡ ⎤′ ′ ′+ + ⎢ ⎥⎣ ⎦∫ ∫  (20) 
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respectively, where the generating function q(z) of the fission number multiplicity was 
introduced as 

 
0

( ) ( ) .k
i

k

q z f k z
∞

=

= ∑  (21) 

From these equations the various moments of the fast and thermal neutrons in the 
system can be derived. At first we will restrict the calculations only to the first moment. 
For the expectation of the number of fast neutrons in the system, when the process was 
started by one fast neutron, the results are analogous to the traditional DDAA 
measurement. 

2.2.2 Calculation of the expectation of the number of fast neutrons. 
 
Introduce the notations 

 
1 2

1 2 1
1 1

1 1

( , , | )
( | )

z z

g z z t S
n t S

z
= =

⎡ ⎤∂⎢ ⎥= ⎢ ⎥∂⎢ ⎥⎣ ⎦
 (22) 

and 

 
1 2

1 2 2
1 2

1 1

( , , | )
( | ) ,

z z

g z z t S
n t S

z
= =

⎡ ⎤∂⎢ ⎥= ⎢ ⎥∂⎢ ⎥⎣ ⎦
 (23) 

  
for the expectations of the fast neutrons in the system at time t  when the process was 
started by one fast and one thermal neutron injected at time t=0 , respectively. From 
equations (19) and (20) one obtains that 

 1 1 ( )

1 1 1 20
( | ) ( | ) ,

tt t t

R
n t S e e n t S dt

λ λλ
′− − − ′ ′= + ∫  (24) 

with  

 2 ( )

1 2 2 1 1 10
( | ) ( | ) ,

t t t

f
n t S q e n t S dt

λλ
′− − ′= ∫  (25) 

and  

 
1 1

1

( )
i

z

dq z
q

dz
ν

=

⎡ ⎤
⎢ ⎥= ≡⎢ ⎥
⎣ ⎦

 (26) 

where the subscript i  stands for “induced”. For the Laplace transforms of 
1 1
( | )n t S  and 

1 2
( | )n t S  one obtains 

 2
1 1

1 2 1 2

( | )
( )( )

R f

LT s
s S

s
n

s q

λ
λ λ λ λ

+
=

+ + −
 (27) 

and  

 1 2

1 2
1 2 1 2

( | ) .
( )( )

f

R f

LT
q

n s S
s s q

λ

λ λ λ λ
=

+ + −
 (28) 
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The two roots of the denominator are given by  

 ( ) ( )21 1 1 2 1 2 1 2

1 1
4

2 2 eff
s ω λ λ λ λ λ λ ν= − = − + + − +  (29) 

and 

 ( ) ( )22 2 1 2 1 2 1 2

1 1
4 ,

2 2 eff
s ω λ λ λ λ λ λ ν= − = − + − − +  (30) 

where 

 2

1
1 2

.R f

eff i

λ λ
ν ν

λ λ
=  (31) 

It is important to note that 

 
2

0ω >  

and 

 
1 2

.ω ω<  

If 1
eff
ν = , then 

1
0ω = , i.e. the system is critical. 

By using expressions (29) and (30) and performing the inverse Laplace transform, one 
obtains for the expectation of the number of fast neutrons, induced by one starting fast 
neutron, the result 

 2 12 2 2 1
1 1

2 1 2 1

( | ) .
t t

n t S e e
ω ωω λ λ ω

ω ω ω ω
− −− −

= +
− −

 (32) 

Similarly, the expectation of the number of fast neutrons, induced by one starting 
thermal neutron, is given by 

 ( )1 22
1 2 1

2 1

( | ) .
t tfn t S q e e

ω ωλ

ω ω
− −= −

−
 (33) 
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Fig. 10 Expectation of the mean number of fast neutrons versus time. 

 
As the results show, the time dependence of the expectation of the number of fast 
neutrons is described by the sum of two exponentials. Fig. 10 shows this expectation for 
the case when the process was started by one fast neutron. Since the expectation of the 
count rate of the fast neutrons is proportional to the mean number of fast neutrons at a 
given time in the medium, the curve in Fig. 10 can be regarded as being analogous to 
the time dependence of the mean count rate scaled to unity at the time moment t=0 .  
 
For completeness, although it will not be needed in the continuation, we list here the 
expectations of the number of thermal neutrons in the system, generated either one fast 
or one thermal initial neutron. With obvious notations, these are given as 

 ( )1 2

2 1
2 1

( | )
t tRn t S e e

ω ωλ
ω ω

− −= −
−

 (34) 

and  

 2 12 1 1 1
2 2

2 1 2 1

( | ) .
t t

n t S e e
ω ωω λ λ ω

ω ω ω ω
− −− −

= +
− −

 (35) 

2.3 Time correlation neutron counting with triggering on the 
spontaneous fission events - the Rossi-alpha formula in two 
groups 

We turn now to the derivation of the Rossi-alpha formula in two energy groups. In this 
method the inherent source neutrons in the sample arising from the spontaneous fissions 
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Fig. 11  Arrangement of the mutually non-overlapping time intervals 
2

t t u τ′ = − −  

are used for triggering the time correlation counting of the fast neutrons produced by the 
induced fissions in the sample. 
  
From now on, we will only consider the fast neutrons in the system. Compared to the 
previous Section, the following extensions need to be made. Instead of one starting 
neutron, the neutron population in the sample will be induced by a stationary compound 
Poisson source, represented by the spontaneous fission source in the sample. This 
source will have an intensity 

0
s  and number distribution of spontaneous fission 

neutrons ( )
s
f k . We will consider a detector, and characterise the detector with the 

intensity of the detection of a fast neutron, 
d

λ . For obvious reasons, with the inclusion 
of a detector, we have to re-define the total reaction intensity of fast neutrons as   

 
1 1a R d

λ λ λ λ= + +  

Further, instead of one time instant, we will consider a two-time distribution, around t'  
and t , and seek the quantities 

1
( , )t u t′ ′−N  and 

2
( , )t u t−N , which are the numbers of 

detected neutrons in the time intervals 
1

( '- ,  ')t u t  and 
2

( - ,  )t u t , respectively, where 

2
t t u τ′ = − − . It is assumed that at a hypothetical time instant t=0  there are no free 
neutron in the assay sample, hence in the above, obviously t > 0 . Here, τ  is the time 
interval which separates the counting intervals 

2
u  and 

1
u . The indices “1” and “2” here 

refer to the first and second time instant, and not the energy group of the neutrons. Fig. 
11 illustrates the time axis which helps to follow the further considerations. 
 
 

Define the probability 

 { } ( )
1 1 2 2 1 2 1 2 1 2

( , ) , ( , ) | 0, 0 ( , , , , , )Dt u t n t u t n P n n t u uτ′ ′− = − = = = =N N n nP

 (36) 

that the numbers of the detected fast neutrons in the time intervals 
1

( '- ,  ')t u t  and 

2
( - ,  )t u t  are 

1
n  and 

2
n , respectively, provided that at the time instant 0t =  there was 

no free neutron in the system. By using the same methodology as in Pázsit and Pál 
(2008) on p. 59, one can obtain for the logarithm of the generating function 
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 1

2

2

1

( ) ( )
1 2 1 2 1 2 1 2 1 2

0 0

( , , , , , ) ( , , , , , ) n nD D

n n

z z t u u P n n t u u z zτ τ
∞ ∞

= =

= ∑∑G  (37) 

the following expression:  

 { }( )
1 2 1 2 0 1 2 1 2 10

ln ( , , , , , ) ( , , , , , | ) 1 ,
t

D z z t u u s r g z z v u u S dvτ τ⎡ ⎤= −⎢ ⎥⎣ ⎦∫G  (38) 

where 
0

s  is the intensity of the spontaneous fission events, and 

 
0

( ) ( ) k
s

k

r z f k z
∞

=

= ∑  (39) 

is the generating function of the probability ( )
s
f k  that the number of fast neutrons in a 

spontaneous fission event is exactly k . 
 
The key part of (39) is the generating function 

 1

1 2

2

1 2 1 2 1 1 2 1 2 1 1 2
0 0

( , , , , , | ) ( , , , , , | ) ,n n

n n

g z z t u u S p n n t u u S z zτ τ
∞ ∞

= =

= ∑∑  (40) 

where 
1 2 1 2 1

( , , , , , | )p n n t u u Sτ  is the probability that the numbers of the detected fast 
neutrons in the time intervals 

1
( '- ,  ')t u t  and 

2
( - ,  )t u t  are 

1
n  and 

2
n , respectively, 

provided that at the time instant 0t =  there was one fast neutron in the system. 
Obviously, the next step is to write down the two-group backward Kolmogorov 
equations. One obtains that 
  

 1 1

1 2 1 2

( )

1 2 1 2 1 ,0 ,0 1 ,0 ,00
( , , , , , | )

tt t v

n n a n n
p n n t u u S e e dvλ λτ δ δ λ δ δ− − −= + +∫  

 1 ( )

1 2 1 20
( , , , , , )

t t v

d
e A n n v u u dvλλ τ− − +∫  

 1 ( )

1 2 1 2 20
( , , , , , | ) ,

t t v

R
e p n n v u u S dvλλ τ− −∫  (41) 

where 

 
1 2 1 2

( , , , , , )A n n v u uτ =  

 
1 2 1 22 1 ,0 ,0 2 2 1 ,1 ,0

( ) ( ) ( )
n n n n

v u u v u u u vτ δ δ τ τ δ δΔ − − − +Δ − − Δ + + − +  

 
1 2 1 22 2 ,0 ,0 2 ,0 ,1

( ) ( ) ( ) ( ) ,
n n n n

v u u v v u vτ δ δ δ δΔ − Δ + − +Δ Δ −  (42) 

and 
1 2 1 2 2

( , , , , , | )p n n t u u Sτ  is the probability that the numbers of the detected fast 

neutrons in the time intervals 
1

( '- ,  ')t u t  and 
2

( - ,  )t u t  are 
1
n  and 

2
n , respectively, 

provided that at the time instant 0t =  there was one thermal neutron in the system. It 
can be shown that the probability 

1 2 1 2 2
( , , , , , | )p n n t u u Sτ  satisfies the following integral 

equation: 
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 2 2

1 2 1 2

( )

1 2 1 2 2 ,0 ,0 2 ,0 ,00
( , , , , , | )

tt t v

n n a n n
p n n t u u S e e dvλ λτ δ δ λ δ δ− − −= + +∫  

 2 ( ) ( )
2 1 2 1 2 10

0

( ) ( , , , , , | ) ,
t t v k

f i
k

e f k b n n v u u S dvλλ τ
∞

− −

=
∑∫  (43) 

where 

 ( )
1 2 1 2 1

( , , , , , | )kb n n v u u Sτ =  

 
11 1 1 21 2 2 1 2 1 2 1

1

( , , , , , | ).
k k

k

n n n n n n j j
j

p n n v u u Sτ+ + = + + =
=

∑ ∑ ∏  (44) 

Introducing the generating function  

 1 2

1 21 2 1 2 2 0 0 1 2 1 2 2 1 2
( , , , , , | ) ( , , , , , | ) ,n n

n n
g z z t u u S p n n t u u S z zτ τ∞ ∞

= =
=∑ ∑  (45) 

and taking into account (40), one can obtain the following generating function 
equations: 

 
1 2 1 2 1

( , , , , , | )g z z t u u Sτ =  

 1 1 1( ) ( )

1 1 2 1 20 0
( , , , , , )

t tt t v t v

a d
e e dv e B z z v u u dvλ λ λλ λ τ− − − − −+ + +∫ ∫  

 1 ( )

1 2 1 2 20
( , , , , , | ) ,

t t v

R
e g z z v u u S dvλλ τ− −∫  (46) 

and 

 
1 2 1 2 2

( , , , , , | )g z z t u u Sτ =  

 2 2 2( ) ( )

2 2 1 2 1 2 10 0
( , , , , , | ) ,

t tt t v t v

a f
e e dv e q g z z v u u S dvλ λ λλ λ τ− − − − − ⎡ ⎤+ + ⎢ ⎥⎣ ⎦∫ ∫  (47) 

where 

 
1 2 1 2

( , , , , , )B z z v u uτ =  

 
2 1 2 1 2 2

1 ( ) ( ) (1 ) ( ) ( ) (1 ).v u u v u z v u v zτ τ⎡ ⎤ ⎡ ⎤+ Δ − − − −Δ − − − + Δ − −Δ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (48) 

By using the procedure described in Pázsit and Pál (2008) pp. 85-86, one can prove the 
statement that the generating function ( )

1 2 1 2
( , , , , , )D z z t u uτG  is asymptotically stationary, 

i.e. the limit 

 ( ) ( )
1 2 1 2 1 2 1 2

lim ( , , , , , ) ( , , , , )D D
stt

z z t u u z z u uτ τ
→∞

=G G  (49) 

exists. In order to derive the stationary probability that a fast neutron detection takes 
places in the time interval 

2
d duτ = , provided that a spontaneous fission neutron was 

detected exactly τ  time earlier, one needs the stationary covariance function of the 
detected fast neutrons  
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Fig. 12 Dependence of the intensity ( )
F
P τ  on the time τ  at given values of the model 
parameters. 

 

1 2

2 ( )
( ) 1 2 1 2

1 2
1 2 1

ln ( , , , , )
( , , )

D
D st
st

z z

z z u u
u u

z z

τ
τ

= =

⎡ ⎤∂⎢ ⎥= ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦
R

G
 (50) 

and the stationary expectation of the detected fast neutrons, ( )
1

( )D
st
M u . The fast neutron 

Rossi-alpha formula is defined by considering the expression ( ) ( )
F
P d o dτ τ τ+  of 

detecting a fast neutron in the time interval dτ  provided that a spontaneous fission 
neutron was detected exactly τ  time earlier. With the help of the above quantities, this 
can be expressed by 

 
( )

1
( )

1

( , , )
( ) ( ) .

( )

D
st

F D
st

du d
P d o d

M du

τ τ
τ τ τ+ =

R
 (51) 

 
 
 
Determination of ( )

F
P τ  requires the evaluation of (50) as well as determination of 

( )
1

( )D
st
M u  and using a first term series expansion for infinitesimal values of 

1
du  and 

2
du dτ= . The calculation is straightforward, but very extensive. The details of the 
calculations are not given here, they can be found in Pál and Pázsit (2011). Here we 
only give the final result, which has the form  
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 2 2
2

1 2 1

1
( )

2
R f s

F d i
s

P d
λ λ ν

τ τ λ ν
ω ω ν

⎛ ⎞⎟⎜ ⎟⎜= + ×⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
 

 
( )
1 2

2 1 1 2 1 1 1 2 2 2

2 2
2 2 1

( )( ) ( )( )
.

e e
d

ω τ ω τω λ ω λ ω ω λ ω λ ω
τ

λ ω ω

− −− + − − +

−
 (52) 

Here, 
1 1s
r ν=  is the mean number of fast neutrons originating from a single 

spontaneous fission, while 
2 2s
r ν=  is the second factorial moment of the same number. 

The dependence of ( )
F
P τ  on τ  is shown in Fig. 12 with selected values of model 

parameters. 

2.4 Discussion and conclusions 
Eq. (52) shows that the two-group Rossi-alpha formula consists indeed of two 
exponentials with the same exponents as the conventional DDAA formula. Hence in this 
respect the conjecture of Menlove et al (2009) is correct. However, from such an 
empirical extension of the one-point expectations to the two-point joint conditional 
probability, there is no possibility to give the correct coefficients of the exponents. 
Partly, this is because being a second moment expression, the DDSI formula contains 
the second factorial moments of the number of neutrons generated in both spontaneous 
and induced (thermal) fission. These factors do not appear in the DDAA formula, which 
corresponds to a completely different physical situation. Application of the DDSI 
method in cases when not only the exponents, but also the coefficients of the two terms 
are of interest, has therefore be based on the correct formula (52).  
 
In this paper only the “fast neutron Rossi-alpha” formula, corresponding to the DDSI 
method as suggested in Menlove et al (2009), was calculated. It is based on the 
detection intensity of fast neutrons at time τ , provided that a fast neutron was detected 
at time t=0 . However, the present treatment opens up the possibility of calculating 
“thermal” and “mixed” Rossi-alpha expressions as well, based on the detection intensity 
of either fast or thermal neutrons at time τ , provided that one fast or one thermal 
neutron was detected at time t=0 . Although the time dependence will be determined in 
all cases by the same to exponents, the relative weight of these terms will be different in 
the different expressions, making it possible to determine more parameters of the 
system. Another piece of further work will be the calculation of the two-group version 
of the Feynman-alpha formula. 
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3 Study of the dynamics of liquid fuel systems: 
extension of the model to two energy groups 
3.1 Introduction 
In the previous reports, Stages 14-15 and 16, a simple one-dimensional one energy 
group model with propagating fuel properties was set up and studied as a model of a 
molten salt reactor. The solution of the static eigenvalue equation was given first by 
expansions into eigenfunctions of a corresponding traditional reactor, i.e. an MSR with 
fuel velocity 0u = .  The noise was then calculated in Stage 16 by using a semi-
analytical technique, where part of the flux was given as an exact solution of part of the 
problem, and the remainder was given as a series expansion. Doing so, several new 
features compared to the simpler approach presented in Stage 14 appeared, most notably 
a series of peaks in the frequency dependence. Further, the general behaviour of the 
reactor was found to be more point-kinetic than a corresponding traditional reactor. 
Finally, the noise from a propagating perturbation was calculated and was found to 
display some interesting features. The new findings were summarized in a recent 
journal publication (Pázsit and Jonsson, 2011). 
 
To further improve on these results, for Stage 17, two-group theory was used. The 
techniques used for the one-group theory proved to still be useful to obtain solutions for 
the Green’s functions and the neutron noise. The new effects that are possible to study 
in a two-group approach are the presence and the significance of the local component, 
and the spectral effects (energy dependence) of the static flux and the neutron noise. In 
particular, in a two-group treatment it is possible to study the significance of the  
different fuel types and spectra on the induced neutron noise and its kinetic properties. 
Hence in this Stage, calculations were performed on three different systems: a thorium-
fuelled thermal MSR, a thermal uranium reactor (based on data from Ringhals 1), and a 
fast high-conversion reactor. The results from these three systems were quantitatively 
compared.  A more detailed description of the results will be given in a forthcoming 
publication (Jonsson and Pázsit, 2011). 

3.2 Two-group equations 

The two-group equations for a liquid fuel-reactor read as 

( )21
1 1 1 1 1 2 2

1

( , )1
( , ) (1 ) ( , ) ( , ) ( , ) ( , )

f a R f

d z t
D z t z t z t z t C z t

v dz

φ
φ ν β φ ν φ λ= ∇ + Σ − −Σ −Σ + Σ +

 (53) 

 ( )22
2 2 1 2 2 2

2

( , )1
( , ) ( , ) ( , ) ( , )

R f a

d z t
D z t z t z t z t

v dz

φ
φ φ φ= ∇ +Σ − Σ +Σ  (54) 

 
1 1 2 2

( , ) ( , )
( , ) ( , ) ( , )

f f

dC z t dC z t
u z t z t C z t

dt dz
βν φ βν φ λ+ = Σ + Σ −  (55) 
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In the continuation, fast fission will be neglected (i.e. 
1

0
f

νΣ = ), and the usual 

shorthand notation 
1 1a R

Σ = Σ +Σ  will be used. Thus, the equations in matrix form can 
be written as 

 

2
1 1 1

2
0 0 2 2 2

0

(1 ) ( )

( ) ( ) 0 ( ) 0

( )
0

f

R a

f

D x

x x D x

C x
u
x

ν β λ φ
φ φ

βν λ

⎛ ⎞⎟⎜ ⎟ ⎡ ⎤⎜ ⎟∇ −Σ Σ −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟= Σ ∇ −Σ =⎜ ⎟ ⎢ ⎥⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ∂ ⎢ ⎥⎟⎜ ⎟ ⎣ ⎦Σ − −⎜ ⎟⎜⎝ ⎠∂

M  (56) 

with the boundary conditions 

 
0 0

( ) 0 ( ) ., ) ( L

i
a C a C a e λτφ −± = − =  (57) 

The equation system (56) is not a self-adjoint set of equations, and such a set needs to 
be constructed in order to obtain the adjoint flux. This can be made in a way analogous 
to that in the one-group theory, leading to 

 

2
1 1†

2
0 2 2

.

0

( ) (1 )

0

R

f f

D

x D

u
x

ν β βν

λ λ

⎛ ⎞⎟⎜ ⎟⎜ ⎟∇ −Σ Σ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= Σ − ∇ −Σ Σ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ∂ ⎟⎜ ⎟−⎜ ⎟⎜⎝ ⎠∂

M  (58) 

with boundary conditions 

 † † †
0 0

( ) 0 ( ) ( ) .L
i
a C a C a eλτφ ± = − =  (59) 

The proof of Eqs (58) and (59) constituting the adjoint of (56) and (57) can be 
performed in the same way as in one-group theory.  
 
The equations for the noise will also follow the pattern form one-group theory, with λ  
replaced by iλ ω+  almost everywhere, and 

j
Σ  by ( ) /

j j j
i vω ωΣ = Σ + . By 

eliminating the equation for the delayed neutron precursors via quadrature, one obtains 

 
2

1 1 1 1 2
( ) ( ) ( )

2 2 1( )

( , ) ( ) ( , ) (1 ) ( , )

1
( , ) ( , ) ( , )

1
( )

f
x i i x i x

a x
fu u u

i a a

D x x x

e e x dx e x dx S x
u e

λ ω λ ω λ ω

λ ω τ

δφ ω ω δφ ω ν β δφ ω
λβν

δφ ω δφ ω ω
′ ′+ + +

−

+ − −

∇ −Σ + Σ −
Σ

′ ′ ′ ′+ + =
− ∫ ∫

 (60) 

 2
2 2 2 2 1 2

( , ) ( ) ( , ) ( , ) ( , ).
R

D x x x S xδφ ω ω δφ ω δφ ω ω∇ −Σ +Σ =  (61) 

 

3.3 The Green’s function 
As in one-group theory, it is instructive to consider two distinct cases: systems with 
infinite fuel velocity, which are analytically solvable, and systems with finite fuel 
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velocity, where semi-analytical methods are needed. The equations for the Green’s 
function matrix for infinite fuel velocity are 

 

12
11 121 1

2 21 22
2 2

( , , ) ( , , )( ) (1 )
( , , ) ( , , )

( )

( ) 0

0 ( )

a
f

p pf a

p p
R

p

p

G x x G x xD dx
T i G x x G x x

D

x x

x x

βν λ ω ωω ν β
λ ω ω ω
ω

δ
δ

−

⎛ ⎞Σ ⎟⎜ ⎛ ⎞⎟⎜ ∇ −Σ Σ − + ⎟⎜⎟⎜ ⎟⎟⎜⎜ ⎟+ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎜ ⎟⎝ ⎠Σ ∇ −Σ⎜ ⎟⎜⎝ ⎠
⎛ ⎞− ⎟⎜ ⎟⎜= ⎟⎜ ⎟−⎜ ⎟⎜⎝ ⎠

∫
(62) 

The Green’s functions can be divided into two parts as 

 ,( , ) ( , ) ( , ), ,
p i p h p

G x x G x x G x xω ω ω= +  (63) 

where, as in one-group theory, the homogeneous solution satisfies the full equation with 
a zero r.h.s., whereas the inhomogeneous part satisfies the equation without the integral 
part, but with the non-zero r.h.s. The solution is straightforward and yields 

 ( )11 2
2 2

( , , ) ( ) ( , , )
i p i p
G x x D G x xω ω ω= ∇ −Σ  (64) 

 12( , , ) (1 ) ( , , )
i p f i p
G x x G x xω ν β ω= − Σ −  (65) 

 21( , , ) ( , , )
i p R i p
G x x G x xω ω= −Σ  (66) 

 ( )22 2
1 1

( , , ) ( ) ( , , ).
i p i p
G x x D G x xω ω ω= ∇ −Σ  (67) 

where 

 

2 2
1 2

sin ( )sin ( ) sinh ( )sinh ( )
1 sin2 sinh2( , , )

sin ( )sin ( ) sinh ( )sinh ( )( )
sin2 sinh2

i p

a x a x a x a x
x x

a aG x x
a x a x a x a xD D x x

a a

μ μ ν ν
μ μ ν νω

μ μ ν νν μ
μ μ ν ν

⎧ ′ ′⎪ − + − +⎪ ′− <⎪⎪⎪= ⎨ ′ ′⎪ + − + −+ ⎪ ′− >⎪⎪⎪⎩
 (68) 

and ( )μ μ ω=  and ( )ν ν ω=  are the roots of 

 ( )( )2 2
1 1 2 2

( ) ( ) (1 ) 0
f R

D Dμ ω μ ω ν β+Σ +Σ − Σ − Σ =  (69) 

 ( )( )2 2
1 1 2 2

( ) ( ) (1 ) 0
f R

D Dν ω ν ω ν β−Σ −Σ − Σ − Σ =  (70) 

chosen so that they are real and positive for 0ω = . The expressions for 
h
G are 

 
1

2

( , , ) 1 1
(cos( ) cos( )) (cosh( ) cosh( )).

( , , )

j
h p j j
j
h p

G x x
A x a B x a
c cG x x μ ν

ω
μ μ ν ν

ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (71) 

where 

 
2 2

2 2 2 2

 ( ) , ( ) ,
( ) ( )

R Rc c c c
D Dμ μ ν νω ω

ω μ ω ν

Σ Σ
= = = =

Σ + Σ −
 (72) 
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2

2

cos( )
.

cosh( )
j j

c a
B A

c a
μ

ν

μ μ

ν ν
=  (73) 

The jA  are determined by substituting the expressions for the Green’s functions back 
into the full equation and solving it.  
 
Results of this calculation are shown in Figures (13 - 15). There are visible differences 
in the amplitudes between the different components of the Green’s matrix, 
corresponding to different energies of the source and the noise, with little differences for 
the thorium-fuelled reactor and large differences for the fast reactor, with the BWR 
being somewhere in between. This is similar to the difference in the static flux: the two 
components of the  flux are the most similar for the thorium reactor and differ the most 
from each other for the fast reactor. 

 

Fig. 13: Frequency dependence of the Green's function in a Thorium MSR, infinite 
velocity. 0

p
x x= =  
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Fig. 14: Frequency dependence of the Green's function in a BWR-analogue, infinite 
velocity. 0

p
x x= =  

 

Fig. 15: Frequency dependence of the Green's function in a fast  MSR, infinite velocity. 
0

p
x x= =  

3.4 Propagating perturbation 
Next the noise induced by a perturbation propagating through the core with infinite 
velocity 

p
u will be considered. In a BWR, where such perturbations would normally be 

considered, they would be in the moderator and thus modelled as a perturbation to 
R

Σ . 
In a reactor with liquid fuel, where the coolant/fuel will not boil, it is reasonable to 
instead model the perturbation as fluctuations in the absorption cross section 

2a
Σ . The 

fact that it is propagating is then expressed as 
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( )

2 2
( , ) ( , )p

i x a

u

a a
x e a

ω

δ ω δ ω
− +

Σ = Σ −  (74) 

Correspondingly, the noise is given by 

 ( , ) ( , , ) ( , )
a

a
x G x x S x dxδφ ω ω ω

−
′ ′ ′= ∫  (75) 

where 

   

 
2 2

0
( , ) .

( ) ( , )
a

S x
x x

ω
φ δ ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥Σ⎢ ⎥⎣ ⎦

 (76) 

 

Fig. 16: Frequency dependence of noise, perturbation velocity / 2
p
u H=  s-1, infinite 

fuel velocity. Thorium loaded core. 
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Fig. 17: Frequency dependence of noise, perturbation velocity / 2
p
u H=  s-1, infinite 

fuel velocity. BWR. 

 

Fig. 18: Frequency dependence of noise, perturbation velocity / 2
p
u H=  s-1, infinite 

fuel velocity. Fast reactor. 
 
The results are shown in Figs 16-18. It is seen that the sink structure from the one-group 
theory is preserved. It is more pronounced in the fast noise, but is present in all groups 
(albeit very small when compared to the average value of the noise in the thorium 
reactor). An interesting feature in both the BWR-analogue and the fast reactor is the 
behavior at low frequencies, where secondary, smaller and less broad peaks appear. This 
seems to be the result of the addition of terms from the local component to the point-
kinetic behavior. 
 
The reason for the spatial oscillations of the induced noise was discussed in the previous 
report. The main effect is the different spatial dependence of the phase of the point 
kinetic and the space dependent components. The former follows that of the reactivity, 
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the latter that of the perturbation. They both change linearly in space, but with different 
slopes, which in addition also depends on the position of the detector for the space 
dependent part. The result is a sequence of constructive and destructive interference 
between the two terms, whose spatial frequency (wave number) depends on the 
frequency considered, and the actual shape also being dependent on the point of 
observation (detector position). 

3.5 Space dependence of the noise induced by propagating 
perturbations 

Results of the calculations of the space dependence of the noise are shown for the three 
reactors considered in Figs 19-21. In each figure, there are four sub-figures, showing the 
space-dependence of the noise at four different frequencies, namely 1, 7, 10 and 20 
rad/s. The significance of the frequency is two-fold. Partly, starting from low 
frequencies to higher ones, the response of the reactor changes from pure point kinetic 
to more and more space-dependent. Partly, with the increase of the frequency, the space-
dependence of the perturbation, and hence that of the space-dependent part of the noise, 
becomes a faster and faster oscillating function.  
 
The result of these two effects is seen in the Figures below, and they show considerable 
resemblance to the calculations in 1-group theory. At the lowest frequency the response 
is point kinetic, and the ratio between the amplitudes of the fast and thermal  noise 
follows that of the static flux in the corresponding systems. With the increase of the 
frequency, the amplitude of the space dependent part of the noise increases and gets 
comparable with that of the point kinetic component. The difference between the phases 
of the two components leads to the spatial oscillation of the noise amplitude, which is 
the result of the constructive and destructive interference  between the two components. 
The spatial oscillation becomes faster with increasing frequencies.  
 
A peculiar feature is the axial asymmetry of the amplitude of the noise in the thorium 
reactor when the interference effect is already present, as seen in Fig. 19 b-d, i.e. at 
frequencies 7 rad/s and higher. This is a somewhat surprising phenomenon, since the 
amplitude of the noise source is completely symmetric around the mid-point (mid-
height) of the core. The reason for this counter-intuitive behaviour, which is only 
observed in the thorium system, will be given in a subsequent communication. 
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Fig. 19: Space dependence of the neutron noise, Thorium reactor. ω =1, 7,10 and 20 
rad/s. 

 

Fig. 20: Space dependence of the neutron noise, BWR. ω =1, 7,10 and 20 rad/s. 
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Fig. 21: Space dependence of the neutron noise, fast reactor. ω =1, 7,10 and 20 rad/s. 

3.6 Finite velocity 
Also for finite velocities, there are large similarities between one-and two-group theory: 
the equations are not solvable exactly, and again, the static flux will be approximated by 
a truncated Fourier series while the (adjoint) Green's functions are divided into two 
parts: 

h
G , which will be solved analytically, and 

i
G , which will be approximated by 

another truncated Fourier series. We thus have 

 
,

1

( ) sin
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where /
n
B n Hπ=  and 1,2i =  the energy group index. The coordinates were 

changed to z x a= +  for practical purposes. 
 
The calculations in themselves offer no particular new insights, but a few things should 
be mentioned about the numerics. The first thing is that there is no need to decrease the 
number of terms as compared to the one-group treatment. While the matrices involved 
are twice as large as in one-group theory, they are also very sparse, which decreases 
computation costs significantly. Second, it should be noted that while the adjoint 
equation normally offers a way to decrease the number of terms needed to calculate the 
noise, there were some numerical difficulties which gave erroneous results for very low 
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velocities. These were avoided by using the forward Green’s functions. On the other 
hand, the velocities were so low that a traditional reactor would be a reasonable 
approximation, and a realistic liquid fuel reactor would operate at higher velocities, so 
this problem is not very severe. 
 
The frequency dependence shows tendencies similar to the one-group and infinite 
velocity results; the same peaks appear at frequencies corresponding to the recirculation 
time 

C L
τ τ+ as in the former. Only the results for the thorium reactor will be shown for 

brevity in Figs 22 and 23. 

 

Fig. 22: Velocity dependence of 
2

Ψ . $z=z'=H/2$. Thorium core 
 

 

Fig. 23: Adjoint Green's functions, finite velocity / 2z z H′= = . 50u =  cm/s. 
Thorium core 

 
The space dependence is somewhat more interesting, as seen in Figs 24-27. While it 
shows the general trend of more point-kinetic-like behavior at higher velocities, due to 
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stronger coupling from the longer neutron chains due to the fewer delayed neutrons, and 
the movement of the delayed neutron precursors, which was already present in the one-
group theory, it also shows some interesting behaviour with regard to the local 
component. First, it should be noted that the local component is always very small in the 
thorium reactor, but for all three types, it will become even smaller as the velocity 
increases. While the global component will increase in amplitude as velocity increases 
and the effective value of β  decreases, the local component will retain its amplitude and 
thus be of less relative importance. Still, as the calculations of the noise from a 
propagating perturbation showed, the local component will even so continue to play an 
important part of the behavior of the reactor. 

 

Fig. 24: 
1

Ψ , Thorium, / 2z H′ = , 10ω =  rad/s 

 

Fig. 25: 
2

Ψ , Thorium, / 2z H′ = , 10ω =  rad/s 
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Fig. 26: 
1

Ψ , BWR, / 2z H′ = , 10ω =  rad/s 
 

 

Fig. 27: 
1

Ψ , BWR, / 2z H′ = , 10ω =  rad/s 

3.7 Conclusions 
Some new aspects of the kinetic behaviour and the neutron noise induced by 
propagating perturbations in reactors with liquid fuel were explored. The conceptual 
case of infinite fuel recirculation velocity proved to be just as useful as in the one-group 
case, namely it lead to compact analytical solutions for both the static flux and the 
Greens function or the dynamic adjoint functions. The methodology was also possible 
to extend to the case of finite fuel velocities. Three different systems with different fuel 
compositions and corresponding spectral properties were considered, and substantial 
differences in the relative weight of the local component were noted. Since in fast 
systems, neither the noise source, nor the detected noise can be reduced only to the 
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thermal group, the full 4 x 4 Green’s function matrix, or the 4 x 4 dynamic adjoint 
matrix had to be considered; hence the advantage of the dynamic adjoint, usually 
utilized in thermal systems, could not be made use of. Some interesting new features of 
the noise induced by propagating perturbations, such as its axial asymmetry, were also 
found. The analysis and explanation of this interesting phenomenon will be given in a 
forthcoming publication. 
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