Dose rate to non-human biota (NHB)

BEN JAESCHKE, PhD. CONSULTANT

A dose rate assessment for operational nuclear facilities in Sweden

- Protection principles
- How we calculate dose rate to NHB
- How we include all kinds of biota
- What is possible with the data we have?
- What is lacking?
- How can we fill these gaps?

What do we protect?

Principles of protection

- Ecosystem function
- Biodiversity
- Resilience

Principles of protection

Population

(Å

DOSE RATE TO NHB | 5

Individual

How do we calculate dose rate?

Dose rate assessment - ERICA tool

😝 ERICA 1.2 - New Project 2 - Assessment Det)etails	– 🗆 X							
<u>File Assessment Database Help</u>									
🗅 New 🔄 Open 🔚 Save 🛛 🖓 Help									
⊕-@ *New Project 1 ⊕-@ <mark>*New Project 2</mark>	Assessment Details > Stakeholder Involvement Please provide the following basic information.								
	Assessment name Select start point								
	New Assessment O Tier 1								
	Author								
	O Tier 3								
	Purpose of the assessment								
		Back Next Help							

FREDERICA – Effects database

Activity Concentration - Rules Selection > Results

These are your results for Tier 2. Click on the tabs to see the assessment details To finish click -Record decision- tab and provide a justification.

Risk Background Effects Tables Plots Rules Record decision

This tab contains summarise radiobiological effects data to provide guidance on the types of effects that may be seen at given dose rates.

Organism

Mollusc - bivalve 🗸

Effects

Dose rate range [µGy h-1]	Dose rate [µGy h-1]	Species	Endpoint	
0-50	16.7	Oyster	RC	No statistically significant effect on the frequency of abnormal larvae regardless of the rearing temperature (20, 24 and 28 of
50-100				No data in FREDERICA for effects observed at this dose rate range
100-200	125.0	Oyster	RC	Moderate increase in the frequency of abnormal larvae (2-fold increase), at all rearing temperature (20, 24 and 28 °C). Irradi
200-400	270.0	Snail	RC	Minor but significant increase in number of eggs per capsule (1.36-fold); Major decrease of number of capsules per snail (509
400-600				No data in FREDERICA for effects observed at this dose rate range
600-1000	900.0	Clam	MB	No statistical effect on growth (weight) of juveniles (Marine clam Mercenaria mercenaria)
1000-5000				No data in FREDERICA for effects observed at this dose rate range
5000-10000	10000.0	Snail	MB	No statistically significant effect on size (length) of snails 1 or 4 months post irradiation (Aquatic snail Physa heterostropha)
	10000.0	Clam	MT	No statistically significant effect on survival of juveniles (HNEDR) (Marine Clams Mercenaria mercenaria)
	10000.0	Snail	MT	No statistically significant effect on the survival of adult snails (Aquatic snail Physa heterostropha)
	10000.0	Snail	RC	No statistically significant on the number of capsules per snail, average number of eggs per capsules, number of eggs per si
	10000.0	Snail	RC	Significant decrease of percentage of egg hatched (no value given). Artificial incubation of roe (Pond snail Limnaea stagnalis
> 10000	250000.0	Snail	MB	Minor transitory decrease on size of snails 1 month post irradiation (13% reduction). At 4 months after irradiation no differe
	365000.0	Clam	MB	Minor decrease in growth of juveniles (18% reduction) (Marine Clams Mercenaria mercenaria)
	160000-370000	Scallop	MB	No statistically significant effect on growth
	100000.0	Snail	MT	Minor decrease of adult survival (15% reduction) (Aquatic snail Physa heterostropha)
	195833.0	Snail	MT	Severe decrease of survival (100% mortality in 1 day) (Pond snail Limnaea stagnalis)
	370000.0	Clam	MT	No statistically significant effects on survival of juvenile clams (HNEDR) (Marine Clams Mercenaria mercenaria)
	370000.0	Clam	MT	Severe decrease of juveniles survival (90% reduction) (Marine Clams Mercenaria mercenaria)
	160000-370000	Scallop	MT	No statistically significant effect on survival
	17017 0	Snail	RC	No statistically significant effect on embryo survival or % of abnormal embryo (Dood snail I ymnaea stannalis I)

Are <u>all</u> biota protected?

Different types of animals and plants

LICHEN

SEAWEED

CRAB

FISH

EARTHWORM

Radiosensitivity

E. COLI : 9.5×10⁻¹⁶ KILOGRAMS

BLUE WHALE : 1.4×10⁵ KILOGRAMS

Vast difference in size

And shapes...

Complex inside

Location

Life history

Short-lived

Few offspring

Long-lived

Many offspring

Å

Some organisms just aren't as you would expect...

We need to simplify

Reference organisms

	Ecosystem	
Marine	Freshwater	Terrestrial
Benthic fish	Amphibian	Amphibian
Bird	Benthic fish	Annelid
Crustacean	Bird	Arthropod - detritivorous
Macroalgae	Crustacean	Bird
Mammal	Insect larvae	Flying insects
Mollusc - bivalve	Mammal	Grasses & Herbs
Pelagic fish	Mollusc - bivalve	Lichen & Bryophytes
Phytoplankton	Mollusc - gastropod	Mammal - large
Polychaete worm	Pelagic fish	Mammal - small-burrowing
Reptile	Phytoplankton	Mollusc - gastropod
Sea anemones & True coral	Reptile	Reptile
Vascular plant	Vascular plant	Shrub
Zooplankton	Zooplankton	Tree

Simplified geometry

Simplified occupancy

Simplified occupancy

Simplification: radiosensitivity

What data <u>do</u> we have?

Environmental sampling

Activity concentration in:

- Biota
- Sediment / soil
- Water / seawater

Environmental sampling

Anläggning	Studsvik	Nuklid	Konce	ntration
Period	Våren		Bg/kg	std. dev., %
År	2016		1.0	
Provslag	Blåstång	Be-7	2,54E1	13
Provdel	Homogenat	K-40	7.61E2	3
Station	30	Cr-51	<2.2E1	-
Provtagningsdatum	2016-05-09	Mn-54	<1.8E0	
Analysdatum	2016-06-05	Co-58	<2.0E0	
Mättid	60000s	Fe-59	<5.3E0	
Resultatenhet	Torrvikt, kg	Co-60	4,03E1	2
Provbehandling	Askat	Zn-65	<4,7E0	
		Nb-95	<2,3E0	
Provdata		Ag-110m	<2,5E0	
Våtvikt, kg	5,91E-1	Sn-113	<2,1E0	
Torrvikt, kg	1,16E-1	Cs-134	<1,7E0	
Analysmängd, kg	7,31E-2	Cs-137	2,20E1	4
Askvikt, kg	2,77E-2	Eu-152	<2,6E0	

Organisms measured

	Ecosystem	
Marine	Freshwater	Terrestrial
Benthic fish	Amphibian	Amphibian
Bird	Benthic fish	Annelid
Crustacean	Bird	Arthropod - detritivorous
Macroalgae	Crustacean	Bird
Mammal	Insect larvae	Flying insects
Mollusc - bivalve	Mammal	Grasses & Herbs
Pelagic fish	Mollusc - bivalve	Lichen & Bryophytes
Phytoplankton	Mollusc - gastropod	Mammal - large
Polychaete worm	Pelagic fish	Mammal - small-burrowing
Reptile	Phytoplankton	Mollusc - gastropod
Sea anemones & True coral	Reptile	Reptile
Vascular plant	Vascular plant	Shrub
Zooplankton	Zooplankton	Tree

Environmental media measured

Seawater

Terrestrial - No soil

Freshwater

- No water
- No sediment

DOSE RATE TO NHB | 31

Marine sediment

Dose assessment possible

Solution?

Organisms measured

	Ecosystem									
Marine	Freshwater	Terrestrial								
Benthic fish	Amphibian	Amphibian								
Bird	Benthic fish	Annelid								
Crustacean	Bird	Arthropod - detritivorous								
Macroalgae	Crustacean	Bird								
Mammal	Insect larvae	Flying insects								
Mollusc - bivalve	Mammal	Grasses & Herbs								
Pelagic fish	Mollusc - bivalve	Lichen & Bryophytes								
Phytoplankton	Mollusc - gastropod	Mammal - large								
Polychaete worm	Pelagic fish	Mammal - small-burrowing								
Reptile	Phytoplankton	Mollusc - gastropod								
Sea anemones & True coral	Reptile	Reptile								
Vascular plant	Vascular plant	Shrub								
Zooplankton	Zooplankton	Tree								

More sampling...

Modelling approach

The ERICA tool parameter database

幕 ERICA 1.2 - New Project 1 - Tier 2 - Assessme	ent Context						_						
<u>File Assessment Database Help</u>													
🗅 New 🔄 Open 🔚 Save 🖓 Help													
	Parar	🗘 Parameters 😔 Radionuclides 🖙 Organisms											
	Paremeters				Info			*					
	Press any le	tter to start searchin	ng. Use up/dov	wn arrow key for navigation and ESC	Name:		ID:						
	to stop sear	rching			Concentration Ratio (CR)		Parameter.Radioecology.Freshwater.CF.CF						
		Dose Conv	ersion Coefficie	ent of internal low beta radiation	Unit:		Dependence:						
	(croion cocincie		Bq kg-1(f.w.) per Bq L-1		Nuclide, Organism						
		 Occupancy 	factor		Documentation:		Author:						
	ф 🕒 в	Radioecology				Info							
		Freshwater			Comment:								
		Concentrat	tion Ratio (CR)										
		🗄 🕒 ка		•									
		Distribution	Coefficient (K	(d)									
	₽	Aarine .			~								
	<			>									
	Nuclide	Organism	Value	PDI	:		Commen	t 📭					
	Zn	Pelagic fish	7.83E3 k	ognormal(7834.377118453878,5826	.901400024728,0.0,Infinity)	WTD 2013 Fish CR		^					
	Zr	Pelagic fish	9.32E2	ognormal(931.7599005867983,1945	.8622209902899,0.0,Infinity)	WTD 2013 Fish CR							
	Ac	Phytoplankton											
	Ag	Phytoplankton	6.70E2	ognormal(670.0,430.0,0.0,Infinity)		Assumes Vascular plant Cu CR fro							
	AI	Phytoplankton											
	Am	Phytoplankton	1.35E3 k	ognormal(1347.6013636363637,257	9.55243939772,0.0,Infinity)	Assumes Vascular Plant Am CR							
	As	Phytoplankton											
	Ba	Phytoplankton	5.02E1 e	exponential(50.159999999999989,0.0	I,Infinity)	WTD 2013 Phytoplankton CR							
	Be	Phytoplankton											
	Bi	Phytoplankton											
	Br	Phytoplankton											
	С	Phytoplankton	4.00E3 e	exponential(4000.0,0.0,Infinity)		WTD 2013 Phytoplankton CR							
	Ca	Phytoplankton	2.41E2	ognormal(241.25,345.97792369486	5,0.0,Infinity)	WTD 2013 Phytoplankton CR							
	Cd	Phytoplankton	1.83E3 k	ognormal(1827.439205955335,1151	.2190664388622,0.0,Infinity)	WTD 2013 Phytoplankton CR							
	Ce	Phytoplankton	8.77E3 k	ognormal(8774.285714285714,7816	.637341448757,0.0,Infinity)	WTD 2013 Phytoplankton CR							
	Cf	Phytoplankton	5.90E3 k	ognormal(5900.0,4800.0,0.0,Infinity)	From Hosseini et al. 2008 Pu phyt	oplankton						
	Cl	Phytoplankton	2.58E2	ognormal(258.4948572201921,197.	01947407410617,0.0,Infinity)	Assumes Vascular plant Cl CR							
	Cm	Phytoplankton	5.90E3 k	ognormal(5900.0,4800.0,0.0,Infinity)	From Hosseini et al. 2008 Pu phyt	oplankton						
					ОК								

Seawater (Ringhals)

Sediment (Ringhals)

Bladderwrack (Ringhals)

Nuklid	Koncentrat	tion (Bq/kg)	sd (%)	Nuklid	Koncentratio	on (Bq/kg)	sd (%)	Nuklid	Koncentrat	ion (Bq/kg)	sd (%)
	Uppmätt	Det.gräns			Uppmätt	Det.gräns			Uppmätt	Det.gräns	
Be-7		< 5,81E-01		Be-7	4,15E+00	: 3,84E+00	30,1	Be-7	3,69E+01	< 1,38E+00	1,9
Na-22		< 5,86E-02		Na-22		: 3,69E-01		Na-22		< 2.32E-01	
Cr-51		< 4,28E-01		Cr-51		: 2,09E+00		Cr-51		< 1,26E+00	
Mn-54		< 8,13E-02		Mn-54		: 3,09E-01		Mn-54	1,04E+00	< 2,19E-01	8,2
Fe-59		< 8,09E-02		Fe-59		: 1,07E+00		Fe-59		< 4,69E-01	
Co-57		< 4,09E-02		Co-57		1,83E-01		Co-57		< 1.18E-01	
Co-58		< 3,33E-02		Co-58		2,76E-01		Co-58	1,44E+00	< 2.08E-01	5.8
Co-60		< 8,39E-02		Co-60		5,29E-01		Co-60	1.78E+00	< 2.70E-01	6.8
Zn-65		< 7,21E-02		Zn-65		: 7,99E-01		Zn-65		< 3,70E-01	- / -
Zr-95		< 1,02E-01		Zr-95		: 4,77E-01		Zr-95		< 2,11E-01	
Nb-95		< 7,03E-02		Nb-95		4,13E-01		Nb-95		< 1,89E-01	
Ag-110m		< 2,33E-01		Ag-110m		: 1,22E+00		Ag-110m	1,65E+00	< 5,71E-01	11,4
Sn-113		< 4,36E-02		Sn-113		5,81E-01		Sn-113		< 1,70E-01	
Sb-124		< 1,76E-01		Sb-124		: 5,58E-01		Sb-124		< 3.01E-01	
Sb-125		< 1,55E-01		Sb-125		: 1,33E+00		Sb-125		< 4,03E-01	
Ru-103		< 4,60E-02		Ru-103		: 2,41E-01		Ru-103		< 1,17E-01	
Ru-106		< 5,09E-01		Ru-106		: 3,35E+00		Ru-106		< 1,31E+00	
Rh-105		< 1,27E+00		Rh-105		: 2,01E+02		Rh-105		< 2,77E+01	
Te-129m		< 1,36E+00		Te-129m		1,67E+01		Te-129m		< 4,35E+00	
Cs-134		< 8,66E-02		Cs-134		: 5,99E-01		Cs-134		< 2.47E-01	
Cs-136		< 8,56E-02		Cs-136		: 9,61E-01		Cs-136		< 3,16E-01	
Cs-137		< 8,99E-02		Cs-137	8,66E-01	: 5,05E-01	20,2	Cs-137	1,61E+00	< 1,90E-01	4,5
Ba-140		< 1,29E-01		Ba-140		: 2,27E+00		Ba-140		< 8,41E-01	
La-140		< 7,48E-02		La-140		: 4,06E-01		La-140		< 1,72E-01	
Ce-141		< 6,90E-02		Ce-141		: 4,91E-01		Ce-141		< 1,96E-01	
Ce-144		< 3,36E-01		Ce-144		: 1,63E+00		Ce-144		< 9,24E-01	
K-40	8,25E+00	< 1,54E+00	8,5	K-40	5,76E+02	: 7,67E+00	1,2	K-40	5,80E+02	< 2,89E+00	,6
TI-208		< 8,81E-02		TI-208	1,81E+00	: 6,07E-01	14,6	TI-208	4,67E-01	< 1,97E-01	15,9
Pb-212		< 1,35E-01		Pb-212	5,83E+00	7,67E-01	5,9	Pb-212	1,55E+00	< 2,57E-01	6,3
Pb-214		< 1,73E-01		Pb-214	9,04E+00	: 1,17E+00	5,8	Pb-214	1,73E+00	< 3.56E-01	8,0
Bi-214		< 1,78E-01		Bi-214	8,47E+00	: 1,19E+00	6,6	Bi-214	1,40E+00	< 4.09E-01	11,9
Ra-226		< 1,62E+00		Ra-226		: 1,17E+01		Ra-226	4,12E+00	< 3.75E+00	27,9
Ac-228		< 2,90E-01		Ac-228	6,80E+00	: 2,11E+00	14,5	Ac-228	7,00E+00	< 8,82E-01	5,6
U-235		< 9,38E-02		U-235		: 6,58E-01		U-235	4,94E-01	< 2,14E-01	15,6
I-131		< 3,53E-02		I-131		: 4,21E-01		I-131		< 2,16E-01	- 15
H-3	4,66E+00	< 4,18E+00	27,7					-			

Seawater (Ringhals)

Sediment (Ringhals)

Bladderwrack (Ringhals)

Nuklid	Koncentra	tion (Bq/kg)	sd (%)	Nuklid	Koncentra	tion (Bq/kg)	sd (%)	Nuklid	Koncentra	tion (Bq/kg)	sd (%)
	Uppmätt	Det gräns	1		Uppmätt	Det.gräns			Uppmätt	Det.gräns	
Be-7		< 5,81E-01		Be-7	4,15E+00	< 3,84E+00	30,1	Be-7	3,69E+01	< 1,38E+00	1,9
Na-22		< 5,86E-02		Na-22		< 3,69E-01		Na-22		< 2,32E-01	
Cr-51		< 4,28E-01		Cr-51		< 2,09E+00		Cr-51		< 1,26E+00	
Mn-54		< 8,13E-02		Mn-54		< 3,09E-01		Mn-54	1,04E+00	< 2,19E-01	8,2
Fe-59		< 8,09E-02		Fe-59		< 1,07E+00		Fe-59		< 4,69E-01	
Co-57		< 4,09E-02		Co-57		< 1,83E-01		Co-57		< 1,18E-01	
Co-58		< 3,33E-02		Co-58		< 2,76E-01		Co-58	1,44E+00	< 2,08E-01	
Co-60		< 8,39E-02		Co-60		< 5,29E-01		Co-60	1,78E+00	< 2,70E-01	
Zn-65		< 7,21E-02		Zn-65		< 7,99E-01		Zn-65		< 3,70E-01	
Zr-95		< 1,02E-01		Zr-95		< 4,77E-01		Zr-95		< 2,11E-01	
Nb-95		< 7,03E-02		Nb-95		< 4,13E-01		Nb-95		< 1,89E-01	
Ag-110m		< 2,33E-01		Ag-110m		< 1,22E+00		Ag-110m	1.65E+00	< 5.71E-01	11.4
Sn-113		< 4,36E-02		Sn-113		< 5,81E-01		Sn-113		< 1.70E-01	
Sb-124		< 1,76E-01		Sb-124		< 5,58E-01		Sb-124		< 3.01E-01	
Sb-125		< 1,55E-01		Sb-125		< 1,33E+00		Sb-125		< 4.03E-01	
Ru-103		< 4,60E-02		Ru-103		< 2.41E-01		Ru-103		< 1.17E-01	
Ru-106		< 5,09E-01		Ru-106		< 3.35E+00		Ru-106		< 1.31E+00	
Rh-105		< 1,27E+00		Bb-105		< 2.01E+02		Bb-105		< 2.77F±01	
Te-129m		< 1,36E+00		Te-129m		< 1.67E+01		Te-129m		< 4.35E+00	
Cs-134		< 8,66E-02		Cs-134		< 5.99E-01		Ce-134		< 2.47E-01	
Cs-136		< 8,56E-02		Cs-136		< 9.61E-01		Ce-136		< 3.16E-01	
Cs-137		< 8,99E-02		Cs-137	8.66E-01	< 5.05E-01		Cs-137	1.61E+00	< 1.90E-01	4.5
Ba-140		< 1,29E-01		Ba-140				Ra-140		< 8.41E-01	
La-140		< 7,48E-02		La-140		< 4.06E-01		La-140		< 1.72E-01	
Ce-141		< 6,90E-02		Ce-141		< 4.91E-01		Ce-141		< 1.96E-01	
Ce-144		< 3,36E-01		Ce-144		< 1.63E+00		Co.144		< 9.24E-01	
K-40	8,25E+00	< 1,54E+00	8,5	K-40		< 7.67E+00	1.2	K-40		< 2.89E±00	
TI-208		< 8,81E-02		TI-208	1.81E+00	< 6.07E-01	14.6	TL-208	4.67E-01	< 1.97E-01	15.0
Pb-212		< 1,35E-01		Pb-212	5.83E+00	< 7.67E-01	5.9	Pb-212	1.55E+00	< 2.57E-01	
Pb-214		< 1,73E-01		Pb-214		< 1.17E+00	5.8	PD-212	1,350+00	< 2,57 E-01	
Bi-214		< 1,78E-01		Pi-214	8.47E+00	< 1.19E+00	6.6	PD-214	1,73E+00	< 3,30E-01	11.0
Ra-226		< 1,62E+00		Di-214	0,112100	< 1.17E+00		DI-214	1,400+00	< 4,09E-01	07.0
Ac-228		< 2,90E-01		Ac-228	6.80E+00	< 2.11E+00	14.5	Ma-220	4,12E+00	< 3,73E+00	21,9
U-235		< 9,38E-02		11.025	0,000400	< 6.58E-01	14,0	AC-228	7,00E+00	< 0,02E-01	15.0
I-131		< 3,53E-02		U=200		< 4.21E-01		U-235	4,940-01	< 2,14E-01	
H-3	4,66E+00	< 4,18E+00	27.7	1-101		< 4,210-VI		1-101		< 2,100-01	

	Internal Dose-rate (µGy/h)												
Radioisotope	Benthic fish	Bird	Crustacean	Macroalgae	Mammal	Mollusc - bivalve	Pelagic fish	Phytoplankton	Polychaete worm	Reptile	Sea anemones & True coral	Vascular plant	Zooplankton
H-3	3.4E-5	3.4E-5	3.4E-5	3.4E-5	3.4E-5	3.4E-5	3.4E-5	3.4E-5	3.4E-5	3.4E-5	3.4E-5	3.4E-5	3.4E-5
Be-7	5.0E-2	6.2E-2	6.3E-1	5.0E-3	2.4E-1	4.8E-2	5.9E-2	7.2E-3	1.7E-2	2.4E-1	9.6E-3	2.0E-2	8.4E-3
Na-22	4.2E-1	4.1E-1	4.5E+0	8.9E-2	1.1E+0	7.1E-1	4.5E-1	1.8E+0	3.2E-1	1.1E+0	2.4E-1	2.7E-1	6.0E-1
K-40	1.5E+1	1.2E+1	1.4E+2	4.1E+0	1.3E+1	3.5E+1	1.5E+1	3.9E+1	1.6E+1	1.3E+1	1.3E+1	1.3E+1	2.6E+1
Cr-51	7.7E-4	8.6E-3	4.1E-4	2.0E-2	1.6E-2	6.8E-3	7.9E-4	1.5E-2	6.6E-3	1.5E-2	6.4E-3	2.0E-2	3.1E-3
Mn-54	1.0E-2	2.7E-2	2.4E-1	1.4E-2	9.7E-2	2.3E-2	1.2E-2	2.2E-3	4.8E-3	9.7E-2	1.3E-5	6.2E-2	1.9E-3
Fe-59	3.2E-1	3.1E-1	3.5E+0	7.3E-2	8.4E-1	5.7E-1	3.5E-1	1.9E+0	2.6E-1	8.3E-1	2.0E-1	2.2E-1	5.3E-1
Co-57	7.6E-3	8.0E-4	5.3E-3	2.1E-3	1.5E-3	6.4E-3	7.8E-3	3.4E-3	1.0E-2	1.5E-3	7.3E-4	4.2E-4	5.7E-3
Co-58	1.3E-2	1.7E-3	1.1E-2	2.2E-3	5.6E-3	7.8E-3	1.5E-2	1.9E-3	1.0E-2	5.4E-3	6.7E-4	4.9E-4	4.0E-3
Co-60	7.6E-2	1.0E-2	6.2E-2	1.3E-2	3.3E-2	4.4E-2	8.4E-2	1.2E-2	5.7E-2	3.2E-2	3.7E-3	2.7E-3	2.3E-2
Zn-65	6.8E-2	9.8E-2	1.0E+0	2.7E-3	3.3E-1	1.2E-1	7.7E-2	7.0E-3	3.3E-2	3.3E-1	2.8E-2	3.2E-3	8.1E-2
Zr-95	8.7E-4	1.1E-3	6.0E-4	1.3E-2	2.6E-3	2.8E-2	9.6E-4	1.7E-1	2.6E-2	2.6E-3	9.7E-4	9.3E-3	1.4E-1
Nb-95	1.4E-4	5.5E-3	5.6E-4	1.3E-3	1.7E-2	2.6E-3	1.5E-4	1.8E-3	2.3E-3	1.6E-2	2.1E-3	1.5E-3	3.9E-2
Ru-103	1.3E-4	8.5E-3	4.8E-4	4.2E-3	1.7E-2	5.8E-3	1.3E-4	1.8E-2	5.7E-3	1.7E-2	9.6E-5	4.4E-3	9.4E-2
Ru-106	1.1E-2	6.5E-1	4.0E-2	3.1E-1	7.3E-1	5.4E-1	1.2E-2	2.0E-1	5.0E-1	7.3E-1	7.1E-3	4.2E-1	3.1E+0
Rh-105	3.9E+0	3.0E+0	3.6E+1	1.2E+0	3.7E+0	9.0E+0	3.9E+0	3.4E+1	4.5E+0	3.7E+0	3.6E+0	3.4E+0	1.0E+1
Ag-110m	4.6E-1	1.3E+0	1.9E+0	7.8E-2	4.6E+0	8.6E-1	5.4E-1	4.9E-1	5.4E-1	4.5E+0	2.2E-3	1.0E-1	6.7E-2
Sn-113	1.5E-1	1.3E-1	1.5E+0	4.2E-2	2.0E-1	3.3E-1	1.6E-1	8.0E-1	1.6E-1	2.0E-1	1.2E-1	1.2E-1	3.2E-1
Sb-124	3.1E-2	5.1E-1	1.7E-2	7.8E-3	1.1E+0	1.9E-2	3.3E-2	1.0E-2	1.7E-1	1.1E+0	3.2E-3	9.5E-3	3.0E-2
Sb-125	8.3E-3	1.3E-1	4.5E-3	2.4E-3	2.6E-1	5.3E-3	8.6E-3	7.6E-3	4.9E-2	2.6E-1	9.4E-4	2.6E-3	1.2E-2
Te-129m	3.4E-1	4.1E+0	5.0E-1	1.7E-1	4.4E+0	6.9E-1	3.4E-1	1.9E+0	2.0E+0	4.4E+0	4.3E-3	2.0E-1	3.1E-1
I-131	4.1E-5	4.3E-2	1.9E-4	1.6E-2	7.5E-2	3.7E-2	4.1E-5	2.1E-3	3.4E-2	7.5E-2	3.4E-2	1.0E-4	1.1E-2
Cs-134	1.2E-3	9.1E-3	9.2E-4	9.3E-4	1.1E-2	5.2E-4	1.4E-3	3.7E-5	1.7E-3	2.4E-2	2.0E-3	1.1E-4	9.5E-4
Cs-136	1.3E-3	1.0E-2	1.0E-3	9.1E-4	1.4E-2	5.2E-4	1.4E-3	4.7E-5	1.7E-3	3.0E-2	1.9E-3	1.0E-4	9.0E-4
Cs-137	1.3E-3	8.2E-3	8.6E-4	1.2E-3	6.5E-3	6.7E-4	1.4E-3	5.1E-5	2.3E-3	1.4E-2	2.9E-3	1.3E-4	1.4E-3
Ba-140	2.1E-3	1.6E-2	4.6E-3	1.9E-3	2.9E-2	1.1E-2	2.2E-3	4.0E-3	3.2E-5	2.9E-2	6.2E-3	2.2E-4	3.2E-3
La-140	3.4E-1	4.0E-1	1.9E-1	2.3E-1	8.2E-1	2.7E-1	3.6E-1	5.1E-2	2.5E-1	8.1E-1	2.4E-1	2.7E-1	1.5E-1
Ce-141	2.7E-3	1.7E-2	7.0E-4	1.4E-2	2.0E-2	1.5E-2	2.7E-3	5.4E-2	1.5E-2	2.0E-2	8.9E-4	1.1E-3	3.8E-2
Ce-144	8.8E-2	5.3E-1	2.4E-2	3.4E-1	5.6E-1	4.7E-1	9.3E-2	J.0L-1	4.3E-1	5.6E-1	2.2E-2	3.4E-2	5.0E-1
TI-208	1.3E+0	1.2E+0	1.4E+1	3.0E-1	2.7E+0	2.6E+0	.4E+0	2.8E+0	1.2E+	2.7E+0	8.9E-1	9.8E-1	1.7E+0
Pb-212	2.2E+2	1.3E+2	1.4E+2	6.8E+0	1.3E+2	4.3E+1	2.2E+2	3.2E+3	2.7E+2	1.3E+2	2.2E+2	6.8E+0	1.1E+2
Pb-214	9.9E+2	5.7E+2	6.3E+2	3.0E+1	5.8E+2	1.9E+2	9.9E+2	1.4E+4	1.2E+3	5.8E+2	9.9E+2	3.0E+1	5.1E+2
Bi-214	2.6E+2	2.0E+2	2.4E+3	8.8E+1	2.0E+2	6.4E+2	2.6E+2	3.8E+3	3.2E+2	2.0E+2	2.6E+2	2.4E+2	7.9E+2
Ra-226	3.1E+1	3.8E+1	2.0E+1	2.0E+1	3.7E+1	1.4E+1	3, 511	2.6E+2	3.1.11	3.7E+1	3.1E+1	2.0E+1	1.8E+1
Ac-228	3.1E+0	2.6E+0	3.0E+1	8.1E-1	4.2E+0	6.6E+0	3.2E+0	1.0111	3.1E+0	4.2E+0	2.5E+0	2.5E+0	5.7E+0
U-235	2.1E-2	2.1E-2	8.7E-3	2.0E-1	2.1E-2	7.7E-2	2.1E-2	5.2E-1	2.4E+0	2.1E-2	2.4E+0	5.7E-1	9.0E-3

Alternatives

Transport modelling of radioactive releases

Predict activity concentrations in water, sediment and soil, based on the release term

These can be used to more accurately determine ACs in all biota

e.g. PREDO – PREdiction of DOses from normal releases of radionuclides to the environment

REstricted Maximum Likelihood (REML) approach (in development)

Thank you

