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SSM perspective

Background

One of the tasks of SSM is to inspect the Swedish nuclear power indus-
try and make sure that the nuclear power plants operate well within
safety margins and, hence, they demand that uncertainties be taken into
account in calculations made for safety analysis. SSM requires that these
uncertainty estimates be made by either making conservative estimates,
i.e., looking at worst reasonable case scenarios, or by making realistic
calculations combined with analysis of uncertainty, often known as Best
Estimate Plus Uncertainty.

There are several methods for quantifying the uncertainty in a calcu-
lated result, and a class of such methods is sampling methods, such as
Monte Carlo methods.

A relatively new approach for propagating uncertainty through calcu-
lations is Deterministic Sampling (DS), which is a sampling method
intended to use as few samples as possible by choosing the samples
deterministically, rather than randomizing them, and hence save time in
when the computations are heavy. This approach has been used at SSM.

In some particular cases, DS runs into a problem. In the ensemble used
in DS each sample has an associated weight, and when some of the
weights are negative, the method can fail. This is a problem which has
occurred at SSM when DS has been used.

Finding the ensemble for DS with only positive weights is not trivial,
but for the method to be useful, this is desired. This motivates why SSM
wants to increase the competence in the field of deterministic sampling
and uncertainty quantification.

Objective

The aim of this project is to find a reliable method for determining an
ensemble for Deterministic Sampling with only positive weights. This
report is intended to work as a presentation of the project, as well as to
work as a beginner’s guide to DS.

Results

In the report several methods for generating DS ensembles are pre-
sented, which can encode up to four moments and represent any kind of
probability distribution, and encode correlations between parameters.
This can be used with many parameters, and the number of samples
needed scale linearly with the number of parameters, at best.

DS seems to have potential for uncertainty quantification at SSM, in the
nuclear power industry and with heavy calculations done in other field.

Project information
Contact person SSM: Peter Hedberg (KR)
Reference: SSM2015-5407
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Abstract

Knowing the uncertainty of a calculated result is always important, but es-
pecially so when performing calculations for safety analysis. A traditional
way of propagating the uncertainty of input parameters is Monte Carlo
(MC) methods. A quicker alternative to MC, especially useful when com-
putations are heavy, is Deterministic Sampling (DS).

DS works by hand-picking a small set of samples, rather than randomizing
a large set as in MC methods. The samples and its corresponding weights
are chosen to represent the uncertainty one wants to propagate by encoding
the first few statistical moments of the parameters’ distributions.

Finding a suitable ensemble for DS in not easy, however. Given a large
enough set of samples, one can always calculate weights to encode the first
couple of moments, but there is good reason to want an ensemble with only
positive weights. How to choose the ensemble for DS so that all weights are
positive is the problem investigated in this project.

Several methods for generating such ensembles have been derived, and an
algorithm for calculating weights while forcing them to be positive has been
found. The methods and generated ensembles have been tested for use in
uncertainty propagation in many different cases and the ensemble sizes have
been compared.

In general, encoding two or four moments in an ensemble seems to be enough
to get a good result for the propagated mean value and standard deviation.
Regarding size, the most favorable case is when the parameters are inde-
pendent and have symmetrical distributions.

In short, DS can work as a quicker alternative to MC methods in uncertainty
propagation as well as in other applications.
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1. Background

Before a nuclear power plant is put in use, or its performance is changed
in any way, thorough security assessments have to be made with determin-
istic methods. Any models and calculations being used for safety analysis
and for assessing limits in its construction performance need to be verified
and validated as well as take uncertainties into account. Those are dicta-
tions from the Swedish Radiation Safety Authority (SRSA) about safety at
Swedish nuclear power plants[9].

One of the tasks of the SRSA is to inspect the Swedish nuclear power
industry and make sure that the nuclear power plants operate well within
safety margins and, hence, they demand that uncertainties be taken into
account in calculations made for security analysis. The SRSA recommends
that these uncertainty estimates be made by either making conservative
estimates, i.e., looking at worst reasonable case scenarios, or by making
realistic calculations combined with analysis of uncertainty[9], often known
as Best Estimate Plus Uncertainty.

This report is specifically concerned with the Best Estimate Plus Uncer-
tainty approach. In such an approach a calculation is made to the best
estimate of the value of used model’s input parameters, which gives a re-
sult. The question is then what the uncertainty of the result is. Often
one has some idea of the uncertainty of the measured input parameters, so
the question becomes how these uncertainties affect the uncertainty of the
calculated result. This is the problem of uncertainty propagation.

Today, there are several methods of propagating uncertainties through func-
tions; a big class of these methods is sampling methods, of which Random
Sampling and Latin-Hypercube Sampling are two examples[12]. Those men-
tioned are both called Monte Carlo methods, meaning they are based on
calculating many randomized samples of the function and analyzing the
statistics from these samples.

Random Sampling is a traditional way of propagating uncertainty, but in
some cases using such methods is not an option. One such case, which occurs
in the modeling of a nuclear reactor, is Computational Fluid Dynamics
(CFD) where a single simulation can take several hours. Since Random
Sampling can require up to thousands of simulations, depending on what
the distribution looks like, those are not useful here due to unreasonably
high time cost.

A counterpart to the Monte Carlo methods is Deterministic Sampling, a
concept which was introduced in 2013[1] but has its roots in the Unscented
Transform from 1995(3], in which a smaller set of samples is determined to fit
the statistical distribution of the input parameters. If such an ensemble can
be determined, the required number of simulations needed for uncertainty
propagation can be decreased significantly.

Propagating error with deterministic sampling is, in short, similar to Monte
Carlo methods, but instead, of randomizing thousands of samples and eval-
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uating the function at each of these, one uses a small well-chosen ensemble
with much fewer samples.

The ensemble used in Deterministic Sampling consists of a small set of
samples, called sigma-points, which have a weight attached to them. This
weighted set of points should represent the distribution of the parameters
as well as possible, which means they should have the same average value,
the same variance, the same covariance and preferably the same higher
order moments as well. Once such an ensemble is determined the process is
the same as with Random Sampling i.e. the function is evaluated at each
sigma-point and the mean value and variance of the result is calculated.
Deterministic Sampling has been used for uncertainty propagation in CFD
simulations at the SRSA with success, but in some cases, it has shown to
give unrealistic values for higher statistical moments, such as even moments
which are negative, which is prohibited. This problem seems to arise when
the function evaluated is not monotonous, if the ensemble has negative
weights. When determining an ensemble with previously used methods,
some of the weights have often been negative, which has caused problems.

1.1. Scope

The aim of this project is to find a reliable method for determining an
ensemble for Deterministic Sampling with only positive weights.

The main focus is to create ensembles encoding up to four moments which
is the number of moments. Some of the methods presented can be used to
encode even higher order moments, but usually, in Deterministic Sampling,
no greater than two or four moments are used.
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2. Theory

2.1. Statistical concepts

This section consists of a short primer on some concepts from the field of
statistics and probability theory which is used throughout this report. The
reader well versed in those fields can skip to the next section.

Probability Distribution Function (PDF)

A PDF is a function f(X) which shows the probability distribution of a
continuous random variable X. The probability that X will be within an
interval [a,b] is calculated as

b
P(X €la,b) = [ F(X)dx (2.1)
Expectation value (X)

The expectation value is a way of measuring the average value of a random
variable, meaning if we sample the random variable enough times, this value
will be the average of the samples. For a continuous random variable, it is
calculated as

(X) = / Xf(X)dX (2.2a)

and for a discrete random variable which can take only certain values, X €

{x1,x2...x,} as

(X) = % 2)@13()( —x). (2.2b)

Variance <52X>

The variance of a random variable measures how much the variable is ex-
pected to differ from its expectation value. The variance is calculated as
the average of the square deviation from the expectation value. With 6X
defined as X — (X) and 82X as (6X)? this becomes simply a matter of taking
the average of 82X with equation (2.2a). For a continuous random variable
is calculated as

var(X) = (82X) = / (X — (X)) F(X)dX = / 82X £(X)dX (2.3a)
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and for a discrete random variable X € {x,x;...x,} one has to calculate it
with the discrete expressions for the expectation value from equation (2.2b)
which becomes
1 ¢ 9
var(X) = - Y (xi— (X))*P(X = x;). (2.3b)
i=1

Note that this is the variance calculated when the probability distribution
is completely known. The variance from a set of samples X = {x;,x2...xy},
called Sample Variance, is calculated as the average square of the samples
deviation from the Sample Mean, (x; — (i>smp)2, since the true mean is not
known. This variance would be slightly too small since the sample mean
will lie closer to the measured samples than the probability distribution’s
true mean and to compensate for this one divides by N — 1 instead of N in
Sample Variance. The expression becomes

1 N
var(X)smp = —— Z(x,- — (X>)2. (2.3¢)
N-135
If the number of samples is large enough, though, dividing by N — 1 does not
make much different from dividing by N. Hence, the Population Variance
is defined as

1N
var(X)pop = — Y (xi — (X))2. (2.3d)

In this report, the Population Variance is the expression for the variance
which will be used when calculating the variance for any set of samples.
Closely related to the variance is the Standard Deviation o = /(62X ). This
is the actual expectation of how much the random variable deviates from
its expectation value, as the variance is the square of this value.

Covariance (8X;6X;)

Assume we have a set of random variables X = {X;,X,...X,}. Sometimes
random variables are not independent but vary together. This is calculated
as the average product of the two random variables deviation from their
mean value.

(6X;:6X;) = /5Xl~5Xjf(X1,X2,...X,,)Xmng...an (2.4)
Rn

The covariance between the entire set of random variables can be described
by the covariance matrix as

(82X1)  (6X16X2) ... (86X16X,)
2
cov(X) — (5X2:5X1> (8 :X2> <5X2:5X,,> 25)
(6X,6X1) (6X,6X) ... (8%X,)
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where we note the diagonal is just the variance of each random variable.
We can also note that the covariance matrix is symmetric since <5X,-5X j> =

(6X;6X;).

The moments of a random distribution

The moments of a probability distribution is an important feature, which
can be seen as a class of expectation values[6]. For a random variable X
with PDF f(X) and every integer n the raw moment is

(X" = / X" f(X)dX. (2.6)

Note that the first raw moment is the expectation value. The nth cen-
tral moment is the moment centred around the expectation value and is
calculated as

(6X) = (X (1)) = [ (X~ () FO0)x. (27)

We can now note that the first central moment is always be zero and the sec-
ond central moment is the variance. The third and fourth central moments
are related to what is known as skewness and kurtosis.

If the random variable is discrete, we have to use the discrete expression for
the expectation value from equation (2.2b).

When calculating the central moment of a set of samples X = {x1,%2...xn}
one uses the following expression

=

1
N &

1

(8"%) =~ ¥ (i — (X)), (2.8)

which is the expression which will be used throughout the rest of this report
when calculating the moments of an ensemble.

In this report, when moments are mentioned from now on, it refers to the
central moments, except for the first moment which indicates the expecta-
tion value.

Mixed moments

In the same way, as the moments are related to the variance, the mixed
moments are linked to the covariance. If there are n random variables
{X1,Xz...X,}, the mixed moment of order m is

(2.9)

n?

(8X;, 86X, ...6X, ) = / 85X, 6X,, ... 85X, f(X)dX; dX,, ...dX;
Rn

where iy,i5...1, can be any index of the variables, even all the same. The
second order mixed moment is the covariance (or variance if the indexes
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are the same) and higher order mixed moments describe higher orders of
interdependence between random variables.

Independent variables have covariance zero. Higher order mixed moments
are not necessarily zero for independent variables, however. For example
one of the fourth order mixed moments for two random variables X; and X»
is

(8°X16%X2) = / (X1 — (X1))* (X2 — (X2))? f (X1, X2)dX1dXs, (2.10)
R2
which is not zero in general, even for independent variables, since the quan-
tity being integrated is positive or zero.
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2.2. Input-parameter uncertainty and the propagation of
such

All measured values have some level of uncertainty associated with them.
It can come from the finite resolution of the instrument, such a ruler not
giving an accurate measurement smaller than the millimeter scale or the
digital thermometer only showing one decimal. It can come from the skill
of the operator, such as the problem of pressing the button on a stopwatch
at the exact right time. It can be a systematic uncertainty, such as the
instrument having some error in its calibration. It can even come from the
item being measured whose properties are not stable, such as measuring
room temperature which will change during the day. In short, when making
any kinds measurements, there is always an uncertainty to take into account.
If we do not know anything about the uncertainty of a measurement, the
measurement is practically worthless.

As an example, assume we have built a steam-boiler, and we want to mea-
sure the pressure in it to be sure it is not too high. We put a sensor in it
and read its value. The pressure in the steam boiler will not be constant,
but is expected to vary slightly during the day. From time to time we take a
look at the sensor note the value. After a few days, we have gathered some
measurements which have all given slightly different results. The different
measurements are shown in a blob plot in Figure 2.1. The average value of
the measurements is marked by the dotted line.

. "0 o000
I L I
9.7 9.8 9.9 10
kPa

Figure 2.1: A example blob plot showing the distribution of measured val-
ues. The average value is marked by a dotted line.
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If someone were to ask what the pressure in the boiler is, we could answer
with the mean value, around 9.89 kPa, and believe that this is a decent
approximation. However, if there were known safety issues with running
the boiler with a pressure higher than 10 kPa, we should probably not feel
safe in knowing our boiler runs at pressure 9.89 kPa without taking the
value’s uncertainty into account.

The question of how far from the mean value the actual value is expected
to be can be answered with the standard deviation, which represents the
average deviation from the mean value. This can be calculated by taking
the square root of the sample variance from equation (2.3c), and in this
example, we would maybe get a standard deviation of ¢ ~ 0.07 kPa. If
the measurements are distributed with a Gaussian distribution, which is
the most common distribution, it means that based on those measurements
there is a probability of 68% that the a measurement lies within one standard
deviation or one sigma. The likelihood that the a measurement lies within
two sigmas is 95% and that it lies within three sigmas 99.7%.

In this example though we only care about the pressure not being too high,
so we just need to look at the one-sided probability. The probability of the
value not being greater than one sigma from the mean value is around 84%
and that it is bellow two sigma around 98%

This means that in the example with the steam boiler we could say that
with 84% confidence the pressure will be bellow 9.96 kPa, which is below
the safety limit, but we cannot promise 98% confidence since two sigmas
above the mean would be 10.03 kPa which is too large.

2.2.1.  Uncertainty propagation

Let’s now assume a harder problem. Suppose we have the same steam
boiler but instead of knowing a safety limit on the pressure, we now that
the walls of the boiler can only take a maximum amount of stress to run
safely. We can calculate the stress S on the boiler’s walls by knowing the
boiler’s pressure p along with its dimensions, i.e. radius r and wall thickness
t, all of which can be measured, but will have some uncertainty.

The question is now what the uncertainty in S(p,rt) is and what is the
probability that this stress will not be too high, which will depend on the
uncertainty of the parameters p, r and ¢. This is the problem of uncertainty
propagation.

In general uncertainty propagation includes some function f(q1,q2,...qx)
depending on a number of measured parameters. These parameters have
some probability distribution which describes our uncertainty in what their
actual value is. Uncertainty propagation is the problem of using the input
parameters distribution to find out what the uncertainty in f is. Figure 2.2
illustrates this for two parameters.
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//s§1=:> f =/ (q1,q2)
2 =

Figure 2.2: Uncertainty propagation through a function of two parameters.
The input parameters have some distribution and the distribution of the
function will depend on those.

N—

In some simple cases this can be calculated analytically, but often one needs
to use numerical methods. There are many numerical methods for uncer-
tainty propagation, a class of such methods commonly used is Monte Carlo-
methods. One of the most straightforward Monte Carlo methods is the
Random Sampling.

2.3. Random Sampling for uncertainty propagation

Propagating uncertainty with Random Sampling is a very simple brute-
force approach. Assume we have a model f(g) which takes a parameter
g as input. Assuming the statistical distribution of g is known Random
Sampling works by randomizing a large set of samples § = {¢(!),¢® ...¢™")}
from the known (or assumed) distribution of g. The function values f(g®)
are calculated at each point, and the mean value and variance are calculated
from the result. If this is done with enough samples, the output values will
give an accurate picture of the statistical distribution the model gives based
on the distribution of the input parameters.

The problem with RS is, as mentioned in the introduction that it requires
many samples. Often this is not an issue, but in some cases where the
computational load is heavy, for example in CFD where a single simulation
can take hours, or even days|2], the Monte Carlo approach is not an option.
This high time-cost is a problem intended to be fixed by Deterministic
Sampling.

2.4. Deterministic Sampling

Uncertainty propagation is a problem which can be solved by Monte Carlo
methods, but as noted, there can be a problem with high computational
time-cost. However, what if we could perform Monte Carlo with just a
few samples? Random Sampling works by randomizing a large number of
samples which, due to probability, will give a good result if there are enough
of them. If we could instead pick a small set of points, which represents the
input parameters distribution well, this could give a good result when used
to propagate uncertainty.
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Deterministic Sampling (DS) as a concept was introduced by Hessling in
2013[1] but has its origin in the Unscented Transform from back in 1995[3].
It works similarly to Random Sampling, but instead of randomizing thou-
sands of points it determines a small ensemble of weighted points which can
operate as a quicker alternative to Monte Carlo. An illustration of this is
shown in Figure 2.3.

1;6

173 176

1/6

Figure 2.3: An illustration of how a set of samples, randomized from a
probability distribution, can be approximated by a small deterministically
chosen weighted ensemble.

This section will begin with a mathematical motivation intended to show
why the idea of DS makes sense. The DS as a method will be described
in more detail before describing how such an ensemble can be determined,
and why a weighted ensemble is used rather than keeping all weights equal.
It also intends to show why determining an ensemble with only positive
weights is not trivial but a goal worth striving for.

2.4.1. Motivation

Assume uncertainty propagation through a function f(g) is being performed
by Random Sampling with N samples § = {g"),¢® ...¢"™)}. The mean and
variance, which one is usually looking for, is

@) = LY (g (2.11a)
and
1 & . 2
(8°7(@) =5 ¥ |1@") - (r@))] (2.11b)
i=1

Expressing everything in the deviation from yu = (3), i.e. ¢) = 8¢+ and
by performing a Taylor expansion around (g§) one gets
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F(g?) = (i +549) i &Ly = (2.12)

=0 dqf
o df 1o d*f
= 7+ 347 5 )+ 580 S 5w+

Let’s insert this expression for f(¢)) into equation (2.11a) and hence find
a new expression for the propagated mean value. We get

=%Z i dqf )]

i=1|j=

which can be rewritten as

(f(2) =

HMS

1 L& o] df
— = Jg| =L

One can now notice that the sum inside the bracket is the expression for
the moment of order j. Hence an expression for the propagated mean value
is

> 1, df
(f(@) =}, (8'q) — (). (2.13a)
IIC
The same thing can be done for the propagated variance by inserting equa-
tion (2.12) into (2.11b). The derivation becomes a bit more complicated
but the propagated variance expressed in the moments becomes

oo

<52f(67)>=;i 11 (8710) ~(83) (0] j; 3;{ (2.13b)

The important thing to notice here is that what matters for the calculated
mean and variance of the output is not the number of points in the ensemble,
but only the statistical moments of the ensemble. This means there is not
necessarily a reason to perform thousands of simulation. If a small ensemble
fulfills enough moments, it will give a good approximation of the propagated
uncertainty.

2.4.2. Description

Deterministic Sampling is a method for propagating uncertainty through a
model using a small set of samples (called sigma-points) which represent
the statistical distribution of the model’s parameters.

Once the sigma-points are chosen the method works just like Monte-Carlo
methods, meaning the function is evaluated at each of the points and the
statistical properties of the function-values are calculated.
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For example, assume a function f(g), depending on the parameter ¢ which
has some known uncertainty with mean value (g) and variance <52q>. Also,
assume the mean value and variance of f(gq) is sought. This can be approx-
imated by selecting an ensemble of two sigma-points, both one standard
deviation away, which would be the points

g={q",q%}
g\ = (g) +1/(82) (2.14)
q® = (q) —/(52%)

Note that this ensemble has the same average value and variance as the the
parameter ¢g. Now we can approximate (f(q)) and <52 f (q)> by calculating
the mean and variance for f(§) as

and

(F(a") = (F@))* + (f(@?) = (f(@)*

(8°f(q)) =~ (8*£(9)) =

If f(g) happens to be a linear function this would be an equality, but for
non-linear functions, it is just an approximation.

This idea can be extended to functions of several parameters. A variant of
Deterministic Sampling used for propagating the uncertainty of several pa-
rameters with covariance is called the unscented Kalman filter[1]. It builds
an ensemble which encodes covariance in the following way. Assume n pa-
rameters {q1,qz...q,} with a dependence described by covariance matrix C.
An ensemble of 2n sigma-points which encode this covariance is

q(i,i) = <Q> + \/ﬁA(l7 :)7 (216)
AAT =C,

where A(i,:) refers to the ith row of A. In this ensemble each sigma-point
is now a point in n-space. Note how ensembles (2.4.2) and (2.16) are quite
similar. For several parameters \/(0%¢g) has been changed to the rows of
the matrix A, which is the matrix square root of the covariance matrix, and
would in the case n =1 revert to ensemble (2.4.2).

The ensembles mentioned here encodes the first two statistical moments.
The equations (2.13) tells us that to make a better approximation, the way
to do this is to encode more of the statistical moments into the ensemble.
In principal, this is the only thing one needs to know about deterministic
sampling. Select an ensemble which satisfies the statistical moments of the
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parameter to a sufficiently high order and evaluates the function at these
points to get the propagated uncertainties. This works for functions in
several dimensions and with interdependent variables. The entire difficulty
when solving the problem of error propagation with Deterministic Sampling
is to find the ensemble.

2.4.3. Determining the ensemble

The more statistical moments an ensemble fulfills, the more precise the
result of the uncertainty propagation will be. Hence, we shall force our set
of sigma-points to contain the correct mean value, variance, third moment
and so on.

In this section, the problems with determining an ensemble will be presented
in a general theoretical manner. A more practical example of this can be
found in Appendix E.1.

So the equations our ensemble § = {q(l),q(z) . .q(N)} should fulfil, with &%¢"

denoting (¢ — (§))¥, are

N
@ =% L "
N
@0 =3
N .
<53q> — % ‘gl 53q(1) (217)
N .
(8"g) = % ;1 §mgld)

Note that the expression used to calculate the variance, as well as higher
order moments, is the Population Variance from equation (2.3d) and not
the Sample Variance from equation (2.3c), even though we have a small
set of samples. This is because the set is chosen to encode the exact mean
value hence the correction gained from dividing by N — 1 instead of N is not
needed and would, in fact, give an incorrect value.

So if the ensemble should encode m moments, a system of m non-linear
equations need to be solved. This system has a finite set of solutions if m =N,
which seems splendid at first sight. There are two problems here, however.
One is that equation (2.17) is messy to work with since it is a system
of non-linear equations. There are algorithms which solve these equations
numerically, so this may be manageable, but the other problem is that while
the system is guaranteed to have solutions, they are not guaranteed to be
real-valued, which can be a problem.

If there are several parameters ¢q1,qs...q, we get the same set of equations
for each parameter g;. We may also care about the mixed moments, meaning
the parameters ¢;, and g;, may or may not be dependent on each other and
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we may want to encode this into our ensemble. The system now becomes
even more complicated.

( N ,
() =% X
N R
0q;,0q; =1y 561,(1)5611@
(941 54:2) Ni;l Lo (2.18)
<5qi1 5qi28%3> = %igl Sqf:)ﬁqg)ﬁqg)
\

Here there is one equation for each moment and each combination of iy,i3,i3,i4. ..

{1,2,3...n}.

So, there is a solution, but it may be hard to find, and it may not be real
valued. We may hence not always be able to find an ensemble to fulfill the
moments we want by solving (2.17). However, there is a way of making this
system of equations easier to solve, and making sure the solution is real, by
associating a weight to each sigma-point in the ensemble[2].

2.4.4. A weighted ensemble

This section describes the weighted ensemble in a general and theoretical
manner. For a clarifying example see Appendix E.2.

Instead of doing the tough job of solving the system of nonlinear equations,
with potentially complex solutions, from equation (2.17) and (2.18), we
could associate a weight w') to each sigma-point q(i). The mean value and
statistical moments are then calculated as

N
(@) = Y g (2.192)
and

N
(6"0) =Y (" - @)" (2.190)

N
(£@) =Y wir(g") (2.20a)

and

N
(8" £(@) =Y. w(r@?) — (r(@)" (2.20Db)

given that ¥ w() = I, otherwise one would have to divide by the sum. Note
that setting w) = % the non-weighted state is returned.
The equation to solve for the weighted ensemble would now be
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N
1 =YX
i;l
(@) =Y wlilgl)
i=1
(8%) = 3w (g — (g))?
i~ (2.21)
(8q) = -§1 w( (gD — (g))3

3") = L v~ (g))"

So instead of solving equation (2.17) for the values of g; one can now set g;
to any reasonable value and solve equation (2.21) for the weights w;. Now
there are m+ 1 equations for an ensemble with m encoded moments, and
need hence set N =m+ 1 for the system to have a unique solution. This
system is linear when solving for w;. Hence, it is easy to solve and will
always have a real-valued solution.

This means we can always find a weighted ensemble with any amount of
statistical moments encoded. This can be extended to several parameters,
with correlations, yet one problem remains. There is no guarantee that the
weights are positive. In fact, they may be any real number, depending on
what the sigma-points are. In some cases this is not a problem, the ensemble
still fulfills the requirements and can be used to propagate uncertainty in

\

some cases.
However, using negative weights is not a good idea. A weighted ensemble
is intended to work as a discrete approximation of a continuous probability
distribution. An ensemble with negative weights is, in principle, a poor
approximation since a probability can not be negative. Even if the first
moments of the ensemble are correct, the higher order moments can be way
off, even get unrealistic values. The propagated results from the use of such
an ensemble can also be wrong and even give prohibited values, such as
negative even moments|2]. An example of this is shown in Appendix E.2.
It is then clear that for deterministic sampling to be useful in the general
case a way of finding an ensemble with positive weights is needed.

2.5. Linear optimization with the Simplex Method

A significant tool for finding an ensemble with positive weights has shown
to be the linear optimization method known as the Simplex Method and
for this reason, the concept will be described briefly. For a more detailed
explanation see Appendix B.1.

Assume we want to maximize or minimize some quantity z which depends
linearly on some parameters,

Z=cC1X1 +C2x2+ ...+ CpXn,
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and who’s parameters are subject to some linear constraints

anxy+apx+...+agx, =b
arixi+apxs+...+amx, =by
A1 X1 +amaxs + ...+ @GunXn = by

The Simplex Method is an algorithm which will optimize the quantity z
subject to the defined constraints. It does so with two important features
which are the reason this method is useful here.

1. None of the parameters x; will get a negative value.

2. If the optimization can be done with some parameters x; equal to zero,
they will be set to zero.

It is for these two reasons the Simplex Method is used in this project, rather
than for optimization.
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3. Methodology

The problem of finding a reliable method of generating an ensemble of
sigma-points representing an arbitrary distribution is approached by a few
different strategies. Since an important part of the projects aim is to find
ensemble with positive weights, how to calculate weights of an ensemble has
here given extra thought.

For computations, the interpretive language GNU Octave, which is very
similar to MATLAB, has been used.

This chapter will begin with a description notation utilized in this report.
Ensembles and their weights are here represented by matrices and vectors,
and this representation is described in Section 3.1.

Next up, in Section 3.2, is a description of Simplex Reduction, a new method
based on the Simplex Method for Linear optimization. Simplex Reduction,
which is used for calculating ensemble weights and reducing ensemble size,
is very central to many of the other new approaches presented in this report.
Then there is a short primer on how to create an ensemble for parameters
with a Gaussian distribution in Section 3.3. This leads into the presentation
of the Block-Diagonal Gaussian ensemble in Section C.1 which can represent
any number of independent Gaussian parameters.

After this, the Shotgun Algorithm is presented in Section 3.4, which is a
new method for generating a one-dimensional ensemble for any parameter
with any statistical distribution. It uses a combination of randomization
and Simplex Reduction.

This is followed by a by a description of how to combine ensembles and build
a multidimensional ensemble with any distribution, which is presented in
Section 3.5.

Then the problem of encoding correlation into an ensemble is addressed. A
solution is shown in two cases, both for Gaussian parameters, in Section
3.6.2 and for parameters with general distributions in Section 3.6.1.

In Section 3.7.1 methods for creating an ensemble for symmetrical distri-
butions, in general, is described. The Heavy Middle ensemble, which can
represent four moments for any symmetric distribution is presented in Sec-
tion C.1.1.

Finally, in Section 3.9, there will be a short description of how the methods
have been tested for their use in uncertainty propagation with deterministic
sampling.

3.1. Notation used for representing an ensemble

This section describes how an ensemble for Deterministic Sampling will be
represented throughout this report.

Here an ensemble, meaning a set of sigma-points representing a random
variable g or a set of random variables {qi,q2,...¢,}, is denoted §. The
ensemble’s sigma-points are represented with an upper index, ie. §=
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{qW,q® .. g™,
For convenience, an ensemble is usually be represented in matrix form where
each row is a sigma-point, and each column represents the components for
each parameter. The corresponding set of weights w is represented by a
column vector. In the general case with an ensemble for n parameters with
N sigma-points is

A R
S w?
g= | = T N oY
: 3
" & aV) W v

This way of writing the ensemble turns out to be useful for two reasons.
For one, the ensemble in matrix form can be scaled, translated, skewed by
well-known mathematical operations. Those can also be used to calculate
the statistical moments of the ensemble. Secondly, this fits very well when
implementing DS in MATLAB or Octave.

In this notation the mean value of the ensemble is calculated as

@"=qw (3.2a)

and the moment of order m is calculated as

om

(8"q)" = (éT —1ixn ®qu> . (3.2b)

Here 1;xy refers to a matrix of ones with dimension 1 x N, the symbol ® is
the Kronecker product and the notation A°" is the Hadamard power m if A,
i.e. denotes that each element of A is taken to the power of m.

The mean value and moments are in this definition row vectors containing
the values for each parameter, i.e.

@=Uq) (@) - () (3.3a)
and

(6"q) = ((6"q1) (8"q2) ... (8"qu)). (3.3b)

Exemple

As an example, assume two parameters g; and ¢, with a Gaussian distri-
bution. Let them both have mean value {g;) =0 and variance <52q,~> =1.
Their third moment would then be <53q,-> =0 and their fourth moment

(8%;)=3.

One ensemble which encodes these first four moments is the five points

q~ = {(\@a \5)’ (\/:’;a _\5)’ (—\[3’ \5)’ (—\[37 _\/:’;)’ (O’O)} (3.4&)

with weights
N 1 1 1 12
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How such an ensemble can be found is described in Section 3.7.1.
This ensemble is here represented in matrix form as

11 1/12
1 -1 1/12
Gg=Vv3|-1 1 w=|1/12|. (3.5)
—1 -1 1/12
0 0 2/3

The mean value of the ensemble is, when calculated from equation (3.2a),

1/12
1/12

—areeva(p T O] =(0) e
2/3

Its variance, calculated from equation (3.2b), becomes

02
(8a)" = (4"~ 1s2q™w) W=

1/12
S O | W B
2/3

Performing the same calculation for the third and fourth moments would
also produce the correct results.

3.2. Calculating positive weights and reducing ensemble size
with Simplex Reduction

The aim of this project is to find a way to create ensembles for Deter-
ministic Sampling with positive weights. This is difficult since, for general
distributions, there is no known way of finding a mathematical expression
to calculate where the sigma-points should be to get positive weights.
What is known is that the weighted set of points need to fulfill equation
(2.21). This could be done by either letting all weights be equal and then
solving for the sigma-points ¢!, which will usually give complex solutions.
Alternatively, one could pick some reasonable sigma-points ¢! and then
solving for the weights, which will usually give negative weights.

The method called Simplex Reduction is a new approach to this problem
and can be used to find an ensemble with positive weights. It is based on
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the Simplex Method for Linear optimization, described in Section 2.5 and
Appendix B.1, hence its name and will seek positive solutions for the weights
of equation (2.21) and, if possible, give unnecessary points the weight zero.
This means that if there are more points than needed Simplex Reduction
can find a solution with positive weights and reduce the ensemble size.
This method is the central part of the Shotgun Algorithm described in
Section 3.4 and can be used to reduce the size of most other ensembles
presented in this report. It is also used to recalculate weights to encode
covariance in Gaussian ensembles, as described in Section 3.6.2.

In this section, all that will be said about Simplex Reduction is that it is
an algorithm that calculates weights to a set of sigma-points given a set
of moments that are to be encoded. If there are more sigma-points than
needed these get the weight zero and hence these can be removed to reduce
the ensemble size. A more detailed explanation of the algorithm can be
found in Appendix B.2.

Note that it is not claimed that the reduced ensemble gained is the of the
minimum size, just that it is a working set of positive weights which may
reduce ensemble size.

3.3. Creating Gaussian ensembles

An ensemble for parameters with Gaussian distributions can be found by
the general technique described in chapters 3.4, a feature of the Gaussian
distribution is that it is, in this case, easier to find a general expression for
the ensemble while the non-symmetric distributions will some element of
randomizing when searching for an ensemble.

The Gaussian ensemble presented here will turn out to be a lot quicker to
create, and be much smaller than the ensemble for general distributions and
since the Gaussian distribution is the most common its special treatment is
well motivated.

This chapter begins with a short primer on the Gaussian ensemble and then
continue to derive a general expression for a Gaussian ensemble encoding
four moments without dependence. The ensemble presented is called the
Block-Diagonal Gaussian ensemble.

3.3.1. A primer on Gaussian ensembles

Assume a random parameter g distributed by a Gaussian distribution with
mean value u and standard deviation ¢. Since a Gaussian ensemble can be
translated and scaled to have any mean value and standard deviation we
can, without loss of generality, assume than g =0 and ¢ = 1 for all Gaussian
distributions here, but any reasoning done is valid in the general case.
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Two moments

To encode two moments in an ensemble is trivial and what it looks like has
already been presented in section 2.4.2, but let’s explore more precisely how
one can derive it. Assume it was not obvious how to find it, but we wanted
a weighted ensemble encoding mean value and variance.

Our ensemble should fulfill two moments, and we want the weights to have
the sum one. This means there should be three equations fulfilled. The

ensemble is written
1) 1)
~ _ [4 e
q= <q(z)) w= (W(z)) ; (3.8)

which is four unknowns with only three equations. This problem is avoided
by realizing that since our distribution is symmetric our ensemble could be
symmetric as well. Hence we choose to look for a symmetric ensemble and
thus get the relation ¢!) = —¢® = ¢/. If so, the weights must be equal as
well, which means w(!) =w® =w/. Now there are two unknowns but the
mean value is automatically fulfilled and the three equations become

wHw =1
wq —wq =0 Automatically fulfilled (3.9)
W/(q/_0)2+wl(_ql_0)2 =1

The system is easily solved by w' = % and ¢’ = 1. So the ensemble becomes
~ 1 - 1/2
42moms — <_1> w= <1/2> . (310)

To encode four moments in a weighted ensemble one usually needs five points
to fulfill a system of five equations. Since all the odd moments are zero in
the symmetric distribution, the third moment is encoded by default, if the
ensemble is symmetric. So as long as the ensemble is symmetric and centered
around zero both the mean value and third moment is already fulfilled.
Hence, there are only three equations left not automatically fulfilled. Let’s
look for an ensemble encoding four moments in the form

Four moments

g ()
g=1| o0 w= | w® (3.11)
e ES)

i.e. one sample locked in the center and two equally weighted samples +¢(*).
This means three unknowns have to be found from the system
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W(i) + W(O) —|—W(i) =1
w(i)q(i) + w0 — w(i)q(i) =0 Automatically fulfilled

2 2

W&%%ﬂ)+w@y+wﬁw¢ﬁ) —1 (3.12)
3 3

W) <q<i>> w03 — &) (q<i>) =0 Automatically fulfilled

) <q<i>> 00t ) <q<i>)4 _3

since the fourth moment of the standard Gaussian distribution is 3.

From the three equations not already fulfilled one can solve w®) =1 /6,
w0 = 2/3 and ¢'*) = /3. So the Gaussian ensemble fulfilling four moments
is

V3 1/6
Gamoms = | 0 w=|[2/3]. (3.13)
-3 1/6

Ensembles with more than four moments are usually not needed and de-
riving them will not be explored here. They can be found, though, with
the Shotgun Algorithm described in section 3.4. The rest of section 3.3 will
explore a way to generalize the four-moment Gaussian ensemble for many
parameters while keeping all weights positive.

3.3.2. Generalize to higher dimensions - The idea

Assume n independent parameters g; all distributed with the Gaussian dis-
tribution having a standard deviation o;. Since a Gaussian distribution
always can be scaled to fulfill any other standard deviation, and translated
to any expectation value, all of the distributions are assumed, without loss
of generality, to have o, =1 and (g;) = 0. The requirements of an en-
semble § representing this distribution is then to have the same first four
moments as the parameter g, meaning, (§) = (¢) =0, <6267> = <52q> =1,
<63q> = <53q> =0 and <64q> = <54q> =3, since those are the moments of
a standard Gaussian distribution which can be calculated from equation
(2.7). For several parameters, since the parameters are assumed to be in-
dependent, the covariance and should be zero as well as most of the higher
order mixed moments.

An ensemble g, fulfilling the first four moments of such a set of parameters
can be calculated in the way described below.

The one-dimensional case as has just been shown the ensemble is

1 1/6
Gr=V3c|-1| w=/[1/6 (3.14)
0 2/3
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Since o is set to be one, it will no longer be printed in the following equa-
tions.

Ensemble (3.14) can be extended to more dimensions, but not trivially. If
we seek an ensemble working in two dimensions one could think it could
simply be set to

11 1/6
Go=V3[|-1 1] w=/|1/6 (3.15)
0 0 2/3

This is indeed a working ensemble for two parameters fulfilling the first
four moments, and the same pattern will work for more parameters by just
adding more identical columns. It can seem like this is a valid solution,
and that one could simply add more columns if one has more parameters.
This is wrong though, since the parameters are assumed to be independent,
but this ensemble clearly has some covariance, which can be verified with
equation (2.5).

So to satisfy two independent parameters with Gaussian distributions one
will have to include more sigma-points. This can be done by doing the
equivalent of ”splitting” the zero-point into the added dimension. This
form of adding a dimension is shown in Figure 3.1.

2 T
®
P R 4
' ZEEEEEPEEE R o of® . .
1 B
]
-2 L
2 1 o 1 2 -2 1 (0] 1 2

Figure 3.1: Expanding the one dimensional Gaussian ensemble into two
dimensions by ”splitting” the center sample into the added dimension.

For two dimensions a working ensemble with five sigma-points is

1 0 1/6
1 0 1/6
p=V3[ 0 1 W= 11/6 (3.16)
0 -1 1/6
0 0 1/3
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Note how each of the weight of the zero-point has been decreased while
both of the parameters will still fulfill equation (2.17) independently and
their covariance is zero, as seen from (2.5). One can see it as ”splitting”
the zero sample, i.e. taking pieces of it and creating new samples for a
new parameter. This means decreasing it’s weight and adding more points
around it. Here both of the parameters still independently have a total
weight of 2/3 at their zeros if counted.

To increase this to three parameters, the same procedure is used, meaning
the weight of the middle sample is once decreased when it is split into the
next dimension, and a working ensemble is

1 0 0 1/6
-1 0 0 1/6
. o 1 o _ _|1/6
B=V3il, ., o| ®m= 6 (3.17)
0 0 1 1/6
0 0 -1 1/6

Ensemble (3.17) is an extension in the same way as the two parameter case,
but now the zero-point has weight zero and is hence not needed. This
splitting is shown in Figure 3.2.

Figure 3.2: Expanding the two dimensional Gaussian ensemble into three
dimensions by ”splitting” the center sample into the added dimension.

One can verify all moments still are the fulfilled. The problem next is how
to advance beyond this point since the central point now has weight zero
and cannot be decreased further if all weights are supposed to be positive.
Hence adding another parameter by ”splitting” the zero sample will not
work anymore. So let’s split some other point instead.

Due to symmetry one can’t just split one point (unless middle point), but
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two points in one dimension
1
()

can be split into four points in two dimensions as
1 1
1 1 -1

<_1> =l 1| (3.18)

-1 —1

which means our three dimensional ensemble is extended to four dimensions
as

1 1 0 O
1 0 0 1 -1 0 O
-1 0 O -1 1 0 O
0o 1 0 < -1 -1 0 O
0 -1 0 O 0 1 O
0 0 1 0O 0 -1 0
0O 0 -1 0O 0 0 1

0 o0 0 -1

The reason this works is that the columns still have mean value 0, variance
1 and are orthogonal to each other, which is important since this ensures
that the ensemble doesn’t have any covariance.

By applying this transformation to the matrix, one can add another param-
eter. The weights of these points have to be halved now, though, and the
expression for the four-parameter ensemble is

1 1 0 0 1/12
1 -1 0 0 1/12
-1 1 0 0 1/12
Ga=3 01 01 (1) 8 Wy = 11/ /162 (3.19)
0 0 -1 0 1/6
0 0 0 1 1/6
0 0 0 -1 1/6

If one were to perform the calculations one could see that this ensemble still
fulfills all the moments while being free from dependence.

This should, of course, be generalized to an arbitrary number of parameters
and one way of doing this is to view the ensemble as a diagonal-block-matrix
where all columns are orthogonal. It can be described, for n > 3, on the form

Gn="3 Cp Wa= | W, (3.20)
Cc Wc
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Where the matrices Cj can be any matrix with k columns where all elements
C,El’] ) € {=1,1} and the columns have mean value zero, variance one and
are orthogonal to eliminate covariance. Ci could be any matrix fulfilling
these requirement, for example the Extended Hadamard Matrix described
in Appendix D.2. W; is the weights for each of the rows containing Cy.

In the case of 4 parameters as in equation (3.19), the parameters in (3.20)
would be

1 1

1 -1 1
G=C=|_ | c,,:cC:q:(_l) (3.21)
1 -1
1/12
o |1y12 o [1/6
Wa=Wo= |5 | Wb—WC—W1—<1/6>
1/12

This ensemble for Gaussian parameters, shown in equation (3.20), will due
to it’s block-diagonal shape be called the Block-Diagonal Gaussian ensem-
ble. The explicit formula for how to generate it in any dimension is shown
in Appendix C.1.

3.4. Creating an ensemble with the Shotgun Algorithm

Finding an ensemble for just one parameter is, for parameters with a Gaus-
sian distribution solved for up to four encoded moments. The problem is
figuring out such an ensemble for any distribution while keeping all weights
positive. For non-symmetric distributions, there is no known general ex-
pression for an ensemble with four moments. Instead, randomization has
been used to find such an ensemble.

The process of annealing, described by Hedberg and Hessling[2] has shown
to work for this. Annealing means an ensemble of five (or as many points
as needed to fulfill the moments) sigma-points is randomized, and weights
are calculated. This is repeated many times and the best ensemble, which
is the one with positive weights and most evenly distributed sigma-points,
is saved.

Here, a new way of performing the randomization of an ensemble is de-
scribed. Instead of randomizing just as many points as needed, it ran-
domizes many times more and then removes the points not needed. This
approach can be generalized to several parameters, and it has been named
the Shotgun Algorithm.

The Shotgun Algorithm for one parameter

Assuming a parameter g with a known distribution. To create an ensemble
fulfilling the m first moments, one can generate a working ensemble by
following these steps:
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1. Randomise N > m points {g("), ¢ ...¢™} from the distribution of ¢,
i.e. many more points than is expected to be required to encode the
moments wanted. For m =4, N = 100 has been used by the author.

2. Use Simplex Reduction described in Section 3.2 to get a solution where
all of the weights which can be set to zero, will be set to zero while
fulfilling w; > 0. If no solution exists for the randomized samples, steps
1-2 are repeated.

3. All of the sigma-points which have zero-weights are removed. What
remains is an ensemble with a small number of points and weights
fulfilling the desired moments.

3.5. Combining ensembles, creating a multi-parameter en-
sembles without correlation

By this point, we have a way of creating an ensemble for a parameter with
any distribution by the Shotgun Algorithm, and a way of generating a multi-
dimensional ensemble of Gaussian parameters. A method for creating an
ensemble for several parameters with an arbitrary distribution has not been
presented, however. One could as stated, use the Shotgun Algorithm in sev-
eral dimensions, which works but will have problems with higher dimensions.
The solution presented here is to first generate one-dimensional ensembles
for the individual parameters and then combine them with each other to
form a multi-dimensional ensemble. The process of combining the ensembles
is simple in principal but can cause practical problems with the ensemble
size growing too much for many parameters.

Assume one is looking for an ensemble representing the first 4 moments of n
uncorrelated parameters {g1,q2...¢g,}. Individually ensembles {Gi,§2...Gn}
can be found with the Shotgun Algorithm, or some other way. If one
wants to propagate the uncertainty through a function of all parameters
f(q1,92-..qn), an n-dimensional ensemble is needed, however. This can also
be found with the Shotgun Algorithm by randomizing points in n dimen-
sion and removing unneeded points with Simplex Reduction. This is not
needed though since n one-dimensional ensembles can be combined into an
n dimensional ensemble fulfilling their individual moments, and encoding
dependence or independence between them. In this section, the simpler
process for independent parameters is described. How to get an ensemble
with dependence is outlined in section 3.6.1.

Combining Ensembles

Two ensembles §; and §, can be combined into a higher-dimensional en-
semble by simply taking every combination (qgl),qg])) and for each such
sigma-point multiplying the individual weights together as well, getting the

corresponding weight wgl)wg ). This will give the ensemble
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1 1 1 1
0oy (o
q; q, 1 W2
0 (W) (1), (V)
- | q q5 - wypw
G= W= : (3.22)
qEZ) qgl) WEZ)ng)
Tl I e
qul) quz) Wle)WgNz)

assuming each ensemble §; has N; sigma points.

From now in, when this report mentions that two ensembles are combined,
this is what is meant. Note that there is no assumption about the dimension
of the ensembles §; and §, made. In other words the sigma-points q,(f)
could have several components, the expression for their combined ensemble
would be the same. Hence, this method can be used to combine and create
ensembles for any number of parameters.

This new ensemble will, according to Theorem A.1 fulfill the individual
moments of the distributions and according to Theorem A.2 have the mixed
moments representing independent parameters, both of which are presented
and proven in Appendix A.1. It is also easy to verify that the weights will
sum up to zero.

An example of two one-dimensional ensembles being combined into a two-
dimensional ensemble is visualized in Figure 3.3
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Figure 3.3: The initial ensembles for two parameters in blue and red. Their
combined ensemble in black.

Hence, the problem is solved, in principle. One problem with this solution,
though, is that the number of sigma-points is now N|N,, i.e. as several en-
sembles are combined the ensemble’s size grows exponentially. This growth
is a problem since one of the aims of Deterministic Sampling is to keep the
number of samples needed low.

The number of sigma points can be significantly reduced, though, by ap-
plying Simplex Reduction to the problem, as described in section 3.2, and
it turns out many of the points can be removed if one alters the weights.
The final result in the example with two dimensions is shown in Figure 3.4.
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Figure 3.4: The combined ensemble for the two-dimensional example-
ensemble after excessive weights have been removed with Simplex Reduc-
tion.

This method can in principle be used for any number independent param-
eters, although creating them can become a practical problem due to finite
computer memory.

In this report an ensemble built like this will be called a combined ensemble
and when it is mentioned that ensembles have been combined, this is what
is meant.

3.6. Covariant ensembles

By now we have working methods for creating ensembles for any distribution
and, in principle, an arbitrary number of parameters. What is yet to explore
though is how to encode covariance into an ensemble.

What would an ensemble with covariance look like? If we use Random
Sampling and sample from two covariant variables the ensemble will look
slightly ”squished”, or ”"skewed” in some direction. This difference is shown
in Figure 3.5.
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Figure 3.5: Left: RS ensemble without covariance. Right: RS Ensemble
with positive covariance.

This section’s approach for encoding covariance into a deterministic ensem-
ble works by replicating the skewing shown here. The question is of course
how to skew the ensemble in the correct way. The method described here
uses the covariance matrix to construct a new basis for the sigma-points,
and then moves all the points over to the new basis. This keeps the mean
value and variance as well as encodes the covariance. It might alter the
higher order moments though, this can be reclaimed by recalculating the
weights with Simplex Reduction as long as the ensemble has not been re-
duced beforehand. This Skewing Method will be described in Section 3.6.1.
Another approach which works for Gaussian ensembles, and symmetric dis-
tributions in general, is presented in Section 3.6.2. It works not by alter-
ing the covariance by moving the sigma-points around, but by placing the
sigma-points in a favourable place and from there any covariance can be
encoded simply by changing the weights.

3.6.1. Covariant ensembles with the Skewing-method

When creating an ensemble for general distributions, with covariance en-
coded, one working method is to use a variant of the method for combining
ensembles described in section 3.5. When creating a covariant ensemble,
the individual ensembles are here combined in a slightly different way which
skews the ensemble to encode covariance. After all parameters are combined
Simplex Reduction is used to decrease the number of parameters and make
sure all marginal moments are correct.

Skewing the ensemble will be accomplished in a similar way to how the
unscented Kalman filter[1] encodes covariance in an ensemble, as shown in
equation (2.16), with the difference that this can encode higher marginal
moments and works for a distribution of any shape.

Assume n parameters {q1,q2...¢n}, with known distributions and a known
interdependence described by a covariance matrix C. This will be shown in
figures for two parameters, but the reasoning is done for a general n.

The covariance Matrix Cyx,, is used to create a new set of vectors {131 by .. l?,,}
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which can work as a new basis when skewing the ensemble. This is done by
finding a matrix A, s.t.

AAT =C. (3.23)

The matrix square root A can be found in several ways, for example by
diagonalizing C = SDST and then taking A = Sv/DST.
A new set of basis vectors {b;,b;...b,} is built up from

» A(G)
s llAGH)IP
where A(i,:) refers to the ith row of A, meaning each row of A normalized

becomes a new basis vector.
Now assuming every parameter g; has an individual ensemble of N; sigma-

(3.24)

points

- 1 (2 N;

gi={a"a”...a™},
a new grid can be constructed in a similar way to how it is done in section
3.5. Every sample of every distribution is combined in every possible com-
bination, but this time the sigma points are moved out into the new base,
encoding the covariance, meaning the new sigma points will be

q(k) = qgil)lsl + qgQ)@z +...+ q;in)l;n (3.25&)
with every possible combination of ij,i,...,i,. The weights are multiplied
together like before

w®) = )i, (3.25D)

In matrix form the ensemble would be

6]51)31+qgl)l;2+--.+q£1)15n
qgl)bl +q§l)b2 +... +q§,2)b,,
P (D7 (3)g
bi+q5 ' ba+...+qn by
g=| "TE™ 1 (3.26a)
qul)I;I +qu2)[;2 + ... +q£an—l)[;n
0" b1+ by + ...+ g b,
with the corresponding weights
W)
ROMINC
W= : . (3.26D)
W(INI)W(ZNZ) owdeD
ngl)ngz) oowd)
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Another way of viewing this would be to see it as a transformation of an
ensemble without covariance to one with covariance using the matrix mul-
tiplication

qcov = qmdep . . (3266)

If there is no covariance this would result in the same combination as in
section 3.5, but if there is interdependence, this will skew the ensemble
making it include the covariance wanted. This difference is shown in Figure
3.6.
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Figure 3.6: The ensembles of two parameters combined without any covari-
ance (left) and skewed to encode a positive covariance (right).

This will create an ensemble of size NN, ...N,, which will fulfill the covari-
ance. Two problems now arise, however. Firstly, higher moments than the
second will change, and secondly, the ensemble size grows exponentially
with the number of parameters. Both of these problems are fixed with Sim-
plex Reduction, which can be used to both set weights to that the higher
moments are corrected, and the ensemble size can be reduced drastically.
The covariant ensemble from Figure 3.6 is shown in Figure 3.3 after Simplex
Reduction.
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Figure 3.7: The covariant ensemble after Simplex Reduction.

This method will here be called the Skewing-method.

3.6.2. Covariant Gaussian ensembles with the Corner-method

Encoding covariance into an ensemble where all of the parameters have a
Gaussian distribution turns out to also be a particular case and because
of this, it will also be given its own section. Such ensembles can also be
calculated with the technique described in section 3.6.1. Here a shortcut
is described for when all parameters have a Gaussian distribution, for an
ensemble with four moments encoded.

Assume n parameters {q1,92...¢n}, with known distributions and a known
interdependence described by a covariance matrix C. Without loss of gen-
erality, it is once again assumed that each parameter has expectation value
zero and variance one.

It is already known that for one parameter a working ensemble is § =
V3 (1 0 —I)T. One way of creating a working ensemble for any num-
ber of parameter with Gaussian distribution is to put one sample in each
corner of the room [—\@ , ﬁ]" and one sample in the center, and then calcu-
late the weights with Simpelx Reduction. In two dimensions this ensemble
would look like in Figure 3.8.
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Figure 3.8: The 2D variant of the ensemble which can be weighted to include
any covariance.

This ensemble can be adjusted to encode any covariance by changing the
weights of the samples. An example of this is shown in Figure 3.9.

12 12 24 24

12 12 24 24

Figure 3.9: Left: Weights set to encode no covariance. Right: Weights set
to encode a covariance of -0.5. Both weights encode four marginal moments.

Adjusting the weights is easiest done by Simplex Reduction, which will
enforce the covariance wanted and also remove points which are not needed.
Removing excessive points becomes important in higher dimensions since
every the ensemble grows in size very fast with higher dimensions otherwise.
In general such an ensemble can be built with the Corners Matrix defined
in Appendix D.1. The ensemble becomes the Corners Matrix with a zero
row added, i.e.
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Gn =13 <0C” ) : (3.27)
Ixn
with corresponding weights calculated by Simplex Reduction.

This method will here be called the Corner-method.

3.7. An ensemble for Symmetric Distributions in general

The Shotgun algorithm, as described in Section 3.4 can create ensembles
for any one-dimensional distribution and by combining such ensembles, as
outlined in section 3.5, one can create a multi-dimensional ensemble for any
distribution. Still the special cases are relevant to study, such as ensembles
for the Gaussian distribution, as described in Section 3.3. This ensemble
is much smaller than the ensembles created by combining ensembles. One
reason for this is that the Gaussian ensemble is symmetric. It turns out that
symmetric ensembles, in general, is a particular case and even though the
Gaussian distribution is the most common one, for completeness sake the
general case of creating ensembles for symmetric distributions is examined
here.

Creating an ensemble for a symmetrically distributed parameter resembles
the reasoning done for the Gaussian parameter in Section 3.4, but it will
not lead to the same final ensemble. In fact, the Block-Diagonal Gaussian
Ensemble will not work in the general case, but this reasoning will lead to
an ensemble which does.

Assume a random parameter g with some symmetric distribution. When
creating an ensemble with only two moments encoded, i.e. only mean and
variance, the ensemble takes the same form for any distribution, so let’s
look at encoding four moments.

3.7.1. 1D symmetric ensemble with four moments

Let’s look for an ensemble with three sigma-points, encoding four moments
for a symmetric distribution. Without loss of generality it will be assumed
to have mean value 0 and let’s let one of the sigma-points be located there,
i.e. let ¢ =0. Due to it being symmetric we can now have both of the
remaining two sigma-points be mirrored around this point, i.e. the other
points will be ¢(t) = —¢(-) = ¢(*). In other words, we look for an ensemble
on the form

ES) es
g=| o0 w= | w® |,
g i)

which encodes four moments need to fulfil the equations
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W 4w 4 p®

LB 10w =0
e <_q<i>)2 £0+w () = (8%) (3.28a)
e <_q<i>)3 F0+w® (49) oo

es (_q(i))4 04 ) (q(i))4 — (8%)

with the third moment being set to zero due to the distribution being sym-
metric. The second and fourth equations are fulfilled automatically and the
three equations that actually need to be solved to get the three parameters
g F), w and w® are

2wE) 4O =
2
o) (q&)) — (8%) (3.28b)

which is solved by

2
W) — <52q>
2(8%g)
2
w® —1_ <52‘I>
(6%q)
%) = (0%q)
(6%q)
and the ensemble for a one dimensional symmetric distribution with four
moments is
52q>2
1 2(8%)
. (6%g) 8 (6%)"
- _1 - 9) 3.28
N\, ) | wa | (3.28¢)
| (&)
(6%q)

which is easily verified to, in the Gaussian case, be the same ensemble as
(3.13).

3.8. Symmetric distributions in higher dimensions

When the Block-Diagonal Gaussian Ensemble was derived in Section 3.3
the one-dimensional ensemble was extended by ”splitting” the point in the

SSM 2016:26 40



middle and extend it into higher dimensions and after this was no longer
possible start ”splitting” the edge-points instead.

The same line of thinking could work here, but there is not a reliable way
of splitting the midpoint since there is no guarantee that the weight in the
middle is large enough. In more precise terms, dividing the midpoint would
mean one were to create the new two-dimensional ensemble as

(6%)"

but there is no guarantee that 1 —2 g will always be greater than or
equal to zero. In fact, it is easy to find an example when this is not the
case. For example if a parameter ¢ is uniformly distributed in [—1,1] it will
have <52q> = % and <54q> = % The mid point weight would be, with this

split,

<52q>2 1
(8%) 9
which is prohibited and thus splitting the mid point will not work in the
general case.
This is why, for a general symmetric distribution the ensemble will be cre-
ated by keeping the mid-point’s weight constant and splitting the other
points. Once again one wants to maintain the covariance to zero, which
means each row must be orthogonal to every other. In two dimensions this
is accomplished by letting the two-dimensional ensemble g, be

1-2

p—
p—
~ &
s9]
o
)
~

\
—~
%
N
~
|
p—
[
—
]
~
e7]
]
Q)
~—

~ &
=2}
0o
)

This ensemble has kept the centre point but doubled the number of points
not in the centre. Their weights have therefore been halved. In general,
this can be done for any number of dimensions, just keep the zero point the
same, add orthogonal columns of -1 and 1 for each parameter and multiply
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by /(6%q) / (6%q). The weights of the non-center points are set equal and
to have the sum <62q>2/<54q>.

This ensemble is the final ensemble presented and can be used for any sym-
metric distribution. Due to it always having the same, often larger, weight
in the mid-point while the surrounding weights decrease with increasing
dimension this ensemble is here called the Heavy Middle Ensemble. Its
general expression is presented in Appendix C.1.1.

3.9. Evaluating the methods

The methods for finding an ensemble for Deterministic Sampling described
in this chapter have been tested in various cases. They have been evaluated
by two criteria, the first being the correctness of the propagated uncertainty.
This study looks no further than propagated mean value and variance since
those are usually most relevant when looking at a result. The second criteria
considered is ensemble size, since keeping the number of samples low is one
of the aims of deterministic sampling.

Deterministic Sampling has been tested in both one or more dimensions
and with different kinds of distributions. Uncertainty propagation with one
parameter has been done with Gaussian distribution with both a broad dis-
tribution with o =1 and a more narrow distribution with o = 0.2. Similar
tests with three parameters have been done with a combination of Weibull
and Gaussian parameters without any covariance and three Gaussian pa-
rameters with some dependence involved. The three parameter tests have
been made with parameters who’s distributions have a standard deviation
around 0.1.

The classes of functions used to benchmark uncertainty propagation with DS
are polynomials, which have a limited number of non-zero derivatives, expo-
nential functions, which have an unlimited number of non-zero derivatives
and trigonometric functions, which are periodic. Discontinuous functions
have also been tested. Here the Heaviside function

H(x)—{l’ n>0

0, n<0

has been used to create a discontinuity in the tested function and the dis-
continuity is set to occur close to the ensemble’s mean value.
For comparison Random Sampling is used.
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4. Tests and Results

4.1. Propagation

This section intends to show an overview of the results from performing
uncertainty propagation with Deterministic Sampling. The results are pre-
sented graphically, and the figures aim to show a pattern rather than give
the exact results. A detailed presentation of the results is available in Ap-
pendix F.

The propagated uncertainty is presented as error bars with the marked mid-
point representing the mean value, and the error bar reaches one standard
deviation away. An illustrative example is shown here.

Assume uncertainty propagation has been performed with DS using three
ensembles encoding 2, 4 and 6 moments respectively and that RS has been
carried out as a reference. The example’s propagated mean and standard
deviation is shown in Table 4.1.

Table 4.1: An example of the data generated from testing uncertainty prop-
agation with DS and RS.

Mean | Std
DS 2 moments | 0.56 | 0.35
DS 4 moments | 0.67 | 0.30
DS 6 moments | 0.66 | 0.31
RS 0.66 | 0.32

This such data will here be presented as in Figure 4.1.
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Figure 4.1: The example data from Table 4.1 presented as error bars span-
ning one standard deviation away from the mean value. The bottom error
bar, representing the data gained from RS, is interpreted as the correct
uncertainty.

The error bar gained from RS are assume to be the correct uncertainty and
hence how much the other error bars agree with the bottom one measures
how accurate they are.

In this section, the results of the uncertainty propagation are only presented
as error bars. Tables with the data are, as stated, available in Appendix F

4.1.1. One dimensional ensembles

Propagation of uncertainty with Deterministic Sampling has here been tested
through functions of one parameter with a Gaussian distribution. Several
functions have been used for testing.

The calculation has been done with Deterministic Sampling (DS) with 2,
4 and 6 encoded moments. A Random Sampling (RS) simulation has been
done as a reference.

The tests have been done in two cases, one where the parameter had a
relatively thin Gaussian distribution (o =0.2) and one where it had a wide
Gaussian distribution (6 =1). Here the results are shown as figures while
Appendix F.1 shown the ensembles used and the tables of the data.
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Narrow Gaussian distribution, c = 0.2

In the case of a narrow distribution DS has shown to, in most cases, produce
a good value with two or four moments. The propagated uncertainties are

shown in Figures 4.2 to 4.5.

* DS 2 moms * DS 2 moms
® DS 4 moms * DS 4 moms
DS 6 moms DS 6 moms
* RS * RS
0 05 1 15 2 25 4 - 0 5 4 5 8
4
(a) f(9) =q* 0,=02 (b) f(q) =4° 0, =02

Figure 4.2: Uncertainties propagated through polynomials.

* DS 2 moms : * DS 2 moms
* DS 4 moms : * DS 4 moms

DS 6 moms DS 6 moms
* RS { * RS

03 04 045 05 055 06 065 0.7 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

(a) f(q) = cos(q), o4 = 0.2 (b) f(q) = cos(4q), 0, =0.2

Figure 4.3: Uncertainties propagated through periodic functions.
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(a) flg)=e%, 0, =02 (b) f(g) =€, 6,=0.2

Figure 4.4: Uncertainties propagated through exponential functions.

DS 2 moms
DS 4 moms
DS 6 moms

-0.5 0 0.5 1 15
flg)=qH(g—1.1), 6,=0.2

Figure 4.5: Uncertainties propagated through a discontinuous function.

Wide Gaussian distribution, o =1

In the case of a wide distribution DS has shown to have some more problems,
depending on what the function looks like. The propagated uncertainties
are shown in Figures 4.6 to 4.9.
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Figure 4.6: Uncertainties propagated through polynomials.

¢ DS 2 moms * DS 2 moms
* DS 4 moms * DS 4 moms
DS 6 moms DS 6 moms
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"o @
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(a) f(g) = cos(q), o5 =1 (b) f(q) = cos(4q), 05 =1

Figure 4.7: Uncertainties propagated through periodic functions.
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Figure 4.8: Uncertainties propagated through exponential functions.
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Figure 4.9: Uncertainties propagated through a discontinuous function.

4.1.2. Three-dimensional independent ensembles

Here propagation of uncertainty has been tested with functions of three
parameters. The parameters chosen here are of one Gaussian parameter g,
with 4 =1 and 6 =0.1 and two Weibull-distributed parameters, ¢, and g3,
with ¢ =6 and B = 1, giving them a mean value of ~ 0.93 and a standard
deviation of ~0.18.

The testing has been done by Deterministic Sampling with 2 and 4 moments
encoded. In the case of 4 moments, the test has been performed in one case
with only the covariance set to zero while the higher order mixed moments
left unchecked and in one instance with up to the first four mixed moments
set to represent independence. RS with 107 samples is used as a reference.
Once again, the propagated uncertainty is shown as error bars where the
midpoint is the gained mean value, and the edges are one standard deviation
away. The results are shown in Figures 4.10 to 4.12. A table with the data
is avalible in Appendix F.2.

2 moms H ¢ DS 2 moms

* DS
* DS 4 covar H * DS 4 covar
DS 4 mixed : DS 4 mixed
* RS * RS
20 40 60 80 100 120 0 200 400 600 800 1000 1200
4 6
(a) (q1+92+43) (d) (91 +92+g3)

Figure 4.10: Uncertainties propagated through polynomials.
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* DS 4 covar * DS 4 covar
DS 4 mixed DS 4 mixed
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—o—o
11 105 -1 -095 -09 -08 -08 -0.75 I 05 o 05 p 15
4
(a) cos(q1 +q2+q3) (b) cos ((q1 +92+g3)*)

Figure 4.11: Uncertainties propagated through trigonometric functions.

.

DS 2 moms
DS 4 covar
DS 4 mixed
* RS

10 15 20 25 30

ed1Ta2+43
Figure 4.12: Uncertainties propagated through an exponential function.

4.1.3. Three-dimensional ensembles with dependence

Tests have also been done for three parameters with dependence. Here three
Gaussian parameters, all with ¢ = 0.1 and a covariance matrix

1 002 0
C=02(002 1 06
0 06 1

have been propagated through several functions with three different ensem-
bles. The ensembles have encoded 2, 4 and 6 marginal moments respec-
tively. They all have the correct covariance encoded but no higher order
mixed moments are set.

The results are shown in Figures 4.13 to 4.15. A table with the data is
avalible in Appendix F.3.
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Figure 4.13: Uncertainties propagated through polynomials.

* DS 2 moms * DS 2 moms
* DS 4 moms * DS 4 moms
DS 6 moms DS 6 moms
* RS * RS
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4
(a) cos(q1 +q2+43) (b) cos (g1 +q2+43)*)

Figure 4.14: Uncertainties propagated through trigonometric functions.
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Figure 4.15: Uncertainties propagated through an exponential function.
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4.1.4. A semi-real-world example

When modeling turbulence in computational fluid dynamics the so-called
k-€-model[10] is commonly used. It contains five independent uncertain
parameters Cy, Ce, Ok, K and B. This model was used by Dunn[11] to study
uncertainty quantification by Latin Hypercube Sampling and by Hedberg
and Hessling[2] to study Deterministic Sampling. Here, the same model will
be used with the same parameters as Hedberg and Hessling uses, which are
presented in Table 4.2.

Table 4.2: The uncertain parameters in the x-€-model of turbulence.

Parameter | Probability distribution func. f(x) Constants
. afx oa—1 7(x/l3)a o =45.54
Cu Weibull B (13) e B =8.77-102
C£2 Beta Az(x_Al)pil(Az_X)qil Al i iij A2_22262
[ (A1) (Ag—x)7-1dx p=15q=2
A
) —1.0
: 1 u
O« Gaussian ol o= 167 10-2
—(x—n) =0.41
: 1 H
K Gaussian sl o —489.10-3
—-p) —52
: 1 u
B Gaussian e 5 —0.10

Two ensembles representing these distributions have been built. Both en-
code four moments and sets covariance to zero. One of them encodes the
higher order mixed moments, though while the other leaves the mixed mo-
ments beyond covariance unenforced.

The ensemble was built by first creating a three-dimensional independent
Gaussian ensemble for oy, k¥ and B from the Block-Diagonal Gaussian en-
semble. A two-dimensional ensemble for C, and C¢; has then been created
by generating the individual ensembles with the Shotgun Algorithm, com-
bining them and then reducing the size with Simplex Reduction. The 3D
and 2D ensembles have then been combined into a full 5D ensemble for the
entire model and once again reduced in size again with Simplex Reduction.
In one of the cases, only the covariance was forced in the Simplex Reduction,
while in the other case up to four mixed moments was forced. The ensemble
with only the covariance forced has 20 sigma-points and the ensemble with
up to the fourth mixed moment has 54 points.

These ensembles have not been tested on actual CFD-simulations, but eval-
uated by test-functions. The results are shown in Figures 4.16 to 4.18. The
data is shown in more detail in Appendix F.4.
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Figure 4.16: Uncertainties propagated through polynomials.

* DS 4 moms ® DS 4 moms
* DS 4 mixed * DS 4 mixed
RS RS
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(a) cos((4Xqi)) (b) eXa)

Figure 4.17: Uncertainties propagated through a trigonometric function and
an exponential function.
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Figure 4.18: Uncertainties propagated through a discontinuous function.
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4.2. Ensemble size

The size of the ensembles has been tested by constructing ensembles for
different numbers of parameters with the methods described. The number
of sigma-points has been saved the ensemble sizes gained by the different
methods have been compared and graphed.

4.2.1. Block-Diagonal Gaussian Ensemble size

The size of Gaussian ensembles which have been created with the method
described in section 3.3 are graphed in Figure 4.19. Along with it is the size

of ensembles created with the same method, but reduced in size by Simplex
Reduction.

250 T
— Block-Diagonal Gaussian ensemble
‘= ='Reduced B.D. Gaussian ensemble
200 oy
N H
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g .
& 150 [
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2
(7]
°
2 100 1
E
>
pd
50 1
0
0 20 40 60 80 100

Number of parameters

Figure 4.19: The size of the Block-Diagonal Gaussian ensembles and the
size of the same ensembles after decreasing its size with Simplex Reduction.

4.3. Heavy Middle Ensemble size

The size of the Heavy Middle Ensemble has been calculated with for up to
a hundred parameters and is size graphed in Figure 4.20. The size of the
ensemble after it has been reduced by Simplex Reduction is also shown.
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Figure 4.20: The size of the Heavy-Middle ensemble and the size of the
same ensemble after decreasing its size with Simplex Reduction.

4.3.1. Combined ensembles

Gaussian ensembles, which are symmetric and thus their ensemble can be
smaller, and Weibull ensembles, which are non-symmetric, have been cre-
ated with an increasing number of parameters. The ensembles have been
created by generating a one-dimensional ensemble and combining it with
itself several times and at each point decreasing ensemble size with Simplex
Reduction enforcing four moments and setting covariance to zero. Their
resulting ensemble size has been graphed in Figure 4.21.
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Figure 4.21: The size of ensembles created from combining one dimensional
ensembles with increasing number of parameters.

4.3.2. Dependent ensembles

The ensemble size of the covariant Gaussian ensemble generated by the
Corner Method is shown in Figure 4.22.
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Figure 4.22: Ensemble size of the ensemble created by the Corner Method.

The ensemble size as of covariant ensembles generated by the Skewing
Method is shown in Figure 4.23 for parameters with Gaussian distributions
and Weibull Distributions.
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Figure 4.23: Ensemble size of ensembles created by the Skewing method.

SSM 2016:26 56



5. Discussion

5.1. Correctness of the propagation

The tests of the propagation of mean value and variance, done in section
4.1, clearly show the general pattern that including more moments in the
ensemble will give a more accurate result. The issue is only a matter of how
many moments one need to encode. This question has a definitive answer
which can be found when the function propagated through is explicitly
known. Then it simply becomes a matter of calculating the size of the
Taylor-terms in equations (2.13), or its higher-dimensional counterpart, and
seeing when the terms are small enough to ignore. Often in the case of
running some simulation, though, an explicit expression for the function
is not known, and if one did, and if its derivatives were easily calculated,
one could just calculate the uncertainty from the Taylor expansion. So in
the cases when deterministic sampling is likely to be used, the number of
moments to be encoded needs to be estimated in some way.

5.1.1. The tests with one parameter

The tests which were done with a reasonably "narrow” distribution with
o = 0.2 shown in Figures 4.2 to 4.5 (and Table F.1) revealed that for
many functions, even functions very non-linear such as ¢ two moments
are enough to give a good approximation for the propagated mean and
variance.

The most difficult function of the once tested showed to be ¢%, in the case
of 0 = 0.2, where six moments were needed to give a great estimation of
the variance. One has to remember though that a standard deviation of
3.7, which was provided by the ensemble with four moments compared to
a variance of 4.5, which is here interpreted as the actual value, are not
extremely far apart. If the computations were massive, it might be worth
losing a certain precision since the ensemble with four moments only needs
to run 3 simulations compared to running 7 for the better value.

For the other functions tested two or four moments has shown to work well.
The tests with a wider distribution where ¢ = 1, shown in Figures 4.6 to 4.9,
illustrates a similar pattern, but with a higher threshold for a good value of
the propagated mean and variance. With such a wide distribution the error
can become extremely high, even orders of magnitude, for the variance in
difficult functions.

The function which was most difficult in the case if the narrow distribution,
q®%, became with a wider distribution even more of a problem. A new issue
arises from e* which wasn’t a big problem in the case of a narrow distri-
bution, has now become one. For ¢® and ¢%? it was now not even enough
with six moments to get a good result for the variance. The variance did,
at best, reach the right order of magnitude when the ensemble carried six
moments.
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An interesting aspect is that periodic function cos(4g) has, in this case,
caused very much trouble, which it did not do at all for the narrow dis-
tribution. This becomes a problem as the distribution has become broad
enough to "feel” the periodicity of the function. Since the period now is
27 /4 and the distribution has ¢ =1 the deterministic ensemble now has
points distributed over different periods, which makes both the propagated
mean and variance get values distributed all over the map and including
more moments are not necessarily better. The ensemble with four moments
actually gave worse values than the one with only two. One might think
that, since the six-moment-ensemble got better values again it is on its way
of converging to the right value, but this turns out to just be a lucky coin-
cidence. For example, one calculation of the propagated mean and variance
with an eight-moment-ensemble is further off from the true values than the
six-moment ensemble was.

The difference between these two cases is shown in Figure 5.1. One can see
that in the case where o = 0.2 there is no problem with periodicity since
the function has no periodicity in the region where the ensemble has sigma-
points. Here a curve can be traced through the points and will give an
estimation of the functions shape. The ensembles for the wider distribution
with ¢ = 1 does not have these properties. If one were to trace a curve
through these sigma-points, one would not recognize the function at all.
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Figure 5.1: The sigma-points for Deterministic Sampling applied to cos(4q)
when q has (a) a thin distribution with 6 =0.2 and (b) a wide distribution
with o = 1. It is shown with three ensembles with 2, 4 and 6 moments
encoded.

These cases when Deterministic Sampling fails are addressed in more detail
in Section 5.3. It should be emphasized that the situations where deter-
ministic sampling has problems are rare occasions constructed for testing
purposes and in general real-world scenarios it should work perfectly well.
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5.1.2. Tests with three independent parameters

The tests with three parameters showed a similar result as the one-parameter
test, but the problem now has an extra layer of complexity added, since there
are mixed moments to encode, which also affect the result.

In most of the cases tested encoding four moments and keeping the covari-
ance zero gives a good result for both mean and variance.

Again some problems occur with the more difficult trigonometric function
but in the other cases, it works fine.

In short, it operates in the same way as the one-dimensional case.

5.1.3. Tests with three covariant parameters

The tests with dependence encoded shown in Figures 4.13 to 4.15 (and Table
F.4) also indicates that encoding more moments will give a better result.
Interestingly, this one has more trouble propagating the variance correctly
in some of the cases.

An issue when only encoding covariance and leaving higher order mixed
moments untouched is that many of those may be relevant, in some cases
maybe even more useful than the non-mixed moments.

5.1.4. Tests with discontinuous functions

Applying Deterministic Sampling to propagate uncertainty through discon-
tinuous functions, or non-analytic functions in general, could potentially be
a problem. Since the concept of Deterministic Sampling has been, in this
report, motivated solely by a Taylor expansion, but a Taylor expansion is
not valid for discontinuous functions.

This does not mean Deterministic Sampling should be discarded here. There
is another motivation for Deterministic Sampling, used by Hessling[1], which
is that there is an inherent truthfulness in encoding statistical knowledge
in an ensemble, whatever that knowledge may be. Encoding the lowest
order moments is still a true, although not complete, representation of the
uncertainty of the parameters and by this reasoning one can see a reason as
to why Deterministic Sampling may work in this case as well.

The results when the functions had discontinuities, which were presented
in Figures 4.5, 4.9 and 4.18 (and Table F.1, F.2 and F.5), show that the
method does indeed work somewhat okay, but the discontinuity can cause
problems with the results. The mean value is somewhat off, significantly
S0 in some cases. An interesting find is that the mean value is, in the tests
done here, more off than the standard deviation. This differs from all the
other cases it has been the other way around.

It is not difficult to imagine that a discontinuous step can bias the mean and
variance in Deterministic Sampling since the ensemble has so few points and
if there is a discontinuity at some place, this may be missed by the ensemble
or affect the result more than it should.
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The one-dimensional tests when the mean and standard deviation is propa-
gated through the function f(q) =¢H(g— 1.1), who’s ensemble is visualized
i Figure 5.2 and results are shown in Figure 4.5, gets the mean value wrong
consistently, although it seems to become better with more moments, at
least with six moments. This pattern can be both due to a more accu-
rate representation of the distribution as well as because the six-moment-
ensemble has more points and is less likely to miss a discontinuity or simply
more likely to get the points more evenly distributed on either side of the
step. A problem occurs in the four-moment-ensemble which gives a worse
result than the two-moment ensemble here. Why this happens is likely
since the three points of the four-moment ensemble get a more uneven dis-
tribution around the discontinuity than the two points in the two-moment
ensemble, which can be seen in Figure 5.2. The six-moment-ensemble gets
the best result since it has points distributed more evenly on both sides the
discontinuity.

0.2 0.4 0.6 0.8 1

— &

Figure 5.2: The three ensembles tested for propagating uncertainty of Gaus-
sian parameter with o = 0.2 through the function f(g) =¢H(g—1.1).

Both the results for the wider Gaussian distribution from Figure 4.9 and
the real-world parameters from Figure 4.18 the mean misses a little, but the
standard deviation is very close to the actual value.

SSM 2016:26 60



5.2. Ensemble size
5.2.1.  Symmetrical ensembles size
Block-Diagonal Gaussian Ensemble size

The size of the Block-Diagonal Gaussian (BDG) ensemble can be seen in
Figure 4.19 which shows that this ensemble grows in steps. This behavior is
expected since this ensemble is built up from Extended Hadamard Matrices
and they grow in steps as well. On average it seems to increase linearly. If
a linear function is fitted to its growth rate, it will be roughly 2.1x+4.7.
This line plotted along with the actual values is shown in Figure 5.3.
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Figure 5.3: The size of the BDG ensemble along with a fitted linear function.

The approximated linearity is probably true for a higher number of param-
eters as well. One can calculate the ensemble sizes for ensembles with 100,
200, 400 and 800 parameters to 240, 480, 960 and 1920 samples respectively,
which is exactly behaving as a linear growth.

The ensemble size can as shown in Figure 4.19, be reduced by Simplex
Reduction. This plot shows a significant decrease in ensemble size, even
halving its size for some ensembles while some are not reduced at all. As
the figure shows, at each ”step” the reduced ensemble has the same num-
ber of parameters as the non-reduced one. This curious pattern shows up
consistently at each new step. It very likely comes from some behavior in
how the Simplex Algorithm works, but what specifically causes it is not
currently known.

This ensemble is very quick to build and can be generated almost instan-
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taneously. The reduction takes some more time though but is still not an
issue until the number of parameters becomes several hundred, which is an
unreasonably high number of parameters.

Heavy-Middle Ensemble size

The Heavy Middle (HM) ensemble grows in a similar way as the BDG
ensemble, in the way that its size increases in steps in steps, which can be
seen in Figure 4.20. Reducing it with Simplex Reduction also shrinks it
significantly and just like the BDG ensemble it also has some values which
are not reduced at all.

It also appears to, on average, grow linearly. If a linear function is fitted to
this growth rate is will be approximately 2.2x+1.15.

Comparison

Both the HM ensemble and the BDG ensemble can be used to encode the
moments of a Gaussian distribution, but only the HM ensemble can repre-
sent symmetric distributions in general. In the real world most parameters
will be Gaussian, though, and assuming a set of Gaussian parameters the
question is now which ensemble to use.

Comparing the HM ensemble to the growth of the BDG ensemble they seem
to grow roughly as quickly. In Figure 5.4 and 5.5 these ensembles are plotted
next to each other and in original and reduced form.
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Figure 5.4: The size of the BDG ensemble and the HM ensemble compared
in their original form.
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Figure 5.5: The size of the BDG ensemble and the HM ensemble compared
after they have been reduced.

It does seem like they are indeed roughly growing at the same rate. So
on average they are both equal in size, but at specific positions they can
differ a lot. In Figure 5.5, one can see that which ensemble is the most
efficient differs from point to point. Moreover, in the reduced ensembles,
which probably are the ones to use, it can differ by a lot.

For 84 parameters, for example, the reduced HM ensemble has 71 sigma-
points less than the reduced BDG ensemble. This is, of course, an extreme
number of parameters. A more reasonable, but still high, a number is 20
parameters, and in this case, the difference is 17 points in less for the BDG
ensemble.

One could define a new Gaussian ensemble which is the smallest one of
the reduced BDG or HM ensembles for that number of parameters. This
ensemble is plotted along with the others in Figure 5.6. As one can see this
approach avoids most of the ”spikes” in the reduced ensembles.
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Figure 5.6: The reduced BDG and HM ensembles along with the minimum
of both of them.

5.2.2. Combined ensemble size

The combined ensembles grow much quicker, as seen in Figure 4.21. This
technique for building an ensemble turns out to be much less efficient in
that sense. Already at 20 parameters the ensemble has over 250 sigma-
points. The Gaussian ensemble which was built by combining ensembles and
reducing them can be compared to the Block-Diagonal Gaussian ensembles,
which shows the ineffectiveness of this way of combining ensembles when
the number of parameters gets too big.

Another downside to this method is that the ensembles shown in Figure
4.21 only has the covariance set to zero while higher mixed moments are left
unchecked. Often this is enough, but the much smaller Gaussian ensembles
from Figure 4.19 has up to most of the fourth mixed moments encoded
correctly. The Gaussian ensemble seems to be simply a better ensemble,
but for now, there is no known way of making the non-symmetric ensembles
better.

One could estimate the growth rate of combined ensembles to appear quadratic.
A quadratic function fitted to the growth rate, about 0.50x% + 3.52x 4+ 0.39,
seems to work well with the data. It is plotted in Figure 5.7 for up to 30
parameters and one would expect over 500 samples for such an ensemble.
This number of sigma-points is larger than one wants to use with DS and
is a problem with this technique for creating ensembles if the number of
parameters is too high.
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Figure 5.7: Growth rate of combined and reduced Weibull ensembles along
with a second degree polynomial fitted to the data.

The combined ensemble has not been tested for ensembles with more than
24 parameters since the ensembles become so large, before reduction, that
computer memory becomes an issue. Due to the combined ensemble’s ten-
dencies to grow exponentially before reduction there is a problem with cre-
ating too large ensembles.

One way around this is to, when combining several ensembles, to reduce
the size before each new ensemble is added. This technique eliminates the
problem of having the ensemble size grow exponentially and potentially
becoming too large for the computer to handle, before finally being reduced
in size. Using this technique does not mean the problem has gone away
completely, just that the number of parameters which can be included in a
combined ensemble has been increased.

In practice, this could mean creating an ensemble as described by the ex-
ample from Appendix E.3.3. This case gives a final ensemble with 280
sigma-points, which may be a bit more than one wants. One has to re-
member though that this is an extreme case with 21 parameters all with
unsymmetrical distributions and dependence. Often the case is rather that
most parameters have Gaussian distributions and for such the number of
parameters is decreased a lot. In the example from section E.3.2 the same
case is presented but with Gaussian distributions instead of Weibull distri-
butions. Here the number of sigma-points of the final ensemble is only 34,
which is much more reasonable.
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5.2.3. Size of covariant ensembles
Corner Method

The size of covariant Gaussian ensembles built with the Corner Method can
in Figure 4.22 be seen for up to 17 parameters. The curve seems to behave
in a quadratic way, and if a quadratic polynomial is fit to this data, it will
indeed show to be a second-degree polynomial. The polynomial % +5+2
fits the data exactly and this is shown in Figure 5.8.

250 T

200

150

100

Number of sigma-points

50

— Fit to a deg. 2 polynomial
® Corner Method ensemble size

0 5 10 15 20
Number of parameters

Figure 5.8: The size of the covariant Gaussian ensemble from the Corner
Method fit to a second degree polynomial.

Since the size of the ensemble is huge before it is reduced, due to how it
is constructed, there are memory issues with creating an ensemble much
larger than this with the only the Corner Method.

Skewing method

The more general way of setting up a covariant ensemble which works for any
distribution, the Skewing method, has even bigger problems creating large
ensembles where all parameters are interdependent. The ensemble sizes
for covariant Weibull and Gaussian distributions set up with the Skewing
method shown in Figure 4.23 shows ensembles for up to 7 parameters for
Weibull distributions and 9 parameters for Gaussian distributions. This is
due to memory issues with a higher number of parameters than this. This
problem appears due to the exponential increase in size as the ensemble
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is combined and skewed and since it cannot be reduced until all covariant
ensembles are combined it will become gigantic before it is reduced.

One can see that this ensemble grows quicker than the one created with
the Corner method. There can be a problem if too many non-Gaussian
variables are all interdependent on each other, but usually, this will not be
a problem. In general, the ensemble size can be kept down by combining
the different techniques for creating ensembles and only use the Skewing
Method on small subsets of the parameters.

5.2.4. In general on ensemble size

In general, one wants the ensemble size to be as small as possible since
the idea of Deterministic Sampling is to keep this number down. For the
common model, most of the parameters will likely be Gaussian and if so the
ensemble size will not be a problem. The both the Block-Diagonal Gaussian
ensemble and the Heavy Middle ensemble can be created for any number of
parameters and will keep the ensemble size reasonably small.

If some of the parameters have non-Gaussian distributions, it is still not
a problem, since an ensemble for the Gaussian parameters can be created,
be combined with the non-Gaussian parameters and reduced to give it it a
decent size.

If some parameters have covariance, they also need to be combined sepa-
rately. For Gaussian parameters with covariance, one can use the Corner-
method to create a covariant ensemble for up to around 17 parameters be-
fore the Corner Matrix becomes too large and computer memory becomes
an issue. There is usually no need to create an ensemble with this many
dependent parameters, however. Usually, there are rather many small sets
of parameters with interdependence and not one large set of parameters de-
pending on each other, which means one can create several small ensembles
with covariance encoded and then combine them to one larger ensemble.
If there are non-Gaussian parameters with covariance an ensemble for those
is set up with the Skewing Method and combined with the rest of the en-
semble.

In short, for an ensemble of small size independent Gaussian, or other sym-
metric, parameters are preferred. The more parameters which are not in-
dependent Gaussian, the more compromised the ensemble size will be.

5.3. Limitations of Deterministic Sampling

The correctness of the propagation in Deterministic Sampling is dependent
on how well the moments can be encoded in the ensemble represent the
actual value of the uncertainty. Equations (2.13) show the series expression
of the propagated mean value and variance in the one-dimensional case.

The answer to the question of how many moments need to be encoded can
not be answered completely without knowing the function through which
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uncertainty is propagated, but as a general rule one can say that four mo-
ments in usually fine and the more the better. This rule is not the entire
truth, however. What is needed is for the largest terms in equations (2.13)
to be fulfilled, and while those usually are the first terms, which correspond
to the lowest order moments, examples can be constructed where the dom-
inating terms are those corresponding to much higher order moments.

For example, the mean value propagated by an ensemble is in one dimension

el df
(f(g) = ;07 (8'9) 5 ()

and if this is calculated for an extremely wide Gaussian distribution with,
for example, 6 =4 one gets

aaf ., d'f d°f af
q)) = 8— +32—5 +85.333—- 4+ 170.667—¢
lef dlZf d14f dl6f
—1-273.1—dq10 + 364.1—016112 +416.1—dq14 —l—416.1—dq16 +
d18f dZOf d22f d24f
+369.1@ + 295.9@ + 215.2@ + 143.5@ +....
Depending on how the derivatives of f are, the terms corresponding to very
high order moments may be the dominating terms. If, for example, all
derivatives were equal (i.e. if f(x) = ¢*) there would be no use encoding
even the first ten moments in the ensemble since the largest terms in the
series would be the ones corresponding to moments of order 12-18. In fact,
an ensemble with just the four moments 12-18 encoded would, in this case,
give a more accurate estimation of the mean value than even encoding the
first twelve moments in the ensemble.

The variance, which is
y | il i - di d]
(8@) =Y ¥ 7 [(5790) ~ (6'0) (8'9)) 5 5.

AR

i=1j=1

would in the same example need to go much higher to get anything close to
a good estimation. In fact, it is completely unrealistic to use Deterministic
Sampling at all here. The calculated expression for the variance will not be
written out here, but it is first at the term

1 5 - . d33f 2 d33f 2
e [(879) = (879) (8%9)] <dq33> ~53.10!! (@33)

that the sum’s terms stop increasing in size, of course still assuming all
derivatives are equal. So in this example, if the function has higher order
derivatives not decreasing is size sufficiently fast this example shows a case
where Deterministic Sampling is useless.
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The described example is, of course, an extreme case constructed to break
the concept of Deterministic Sampling. An important thing to learn though
is that if the probability distribution is very broad, and the model used
has significant high-order derivatives, DS is not the method to choose for
uncertainty propagation.

This is what happens in the tests shown in Figure 4.7 (and Table F.2), when
mean and standard deviation is propagated through the function cos(4g),
with ¢ having a Gaussian distribution with g =1 and o = 1. Here neither
mean nor standard deviation gets an accurate result even with six moments
encoded in the ensemble. The terms for the mean value will be

(cos(4G)) = i <6’ >d’czsq(l4q) A~

=0t q=1
~—0.654+523—-209+558—-111+

+178 —2384+272 —-272+4242 - 193 +...

where it is first at the term representing order 16 where the terms start
decreasing in size. This explains why 6 moments encoded, or even 10, would
not give a good estimation of the propagated mean. This is even worse for
the propagated variance who’s terms are too many to write down explicitly,
but it is series will not start decreasing in size until the term

62 31\ /$31 ~ d31005(44)>2 ~ 11
i [0%0) (98] (g ) | =a2m0t
The problem goes away if the distribution is thinner, however. The result
shown in Figure 4.3 (and Table F.1) indicates that if the standard deviation
instead is 0 = 0.2 there is no problem getting the propagated mean and stan-
dard deviation correct. This is also explained by the equations (2.13). The
propagated mean value now becomes, with only the terms corresponding to

the first four moments

& 4
(cos(44)) Z = (89) CZZ(I‘I) 0654021 -0.033 = ~047
i=0 q=

which is very close to the real value. The variance becomes, if only the
terms including moments up to the fourth

d’ cos(4q) d’ cos (4q)

<5 cos(4qG)) = Z Z e [ 5lﬂ <5iq> <5jq>] dg' dg/

~0.367—-2-0.117+0.0875 = 0.2195,

giving a propagated standard deviation of ¢ = 0.469, which is also close to
the actual value of around 0.50. The value calculated here differs some from
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the value gotten from the Deterministic Sampling, 0.498, (shown in Table
F.1) since this calculation has simply cut the higher order terms but the
deterministic ensemble actually has higher order moments, they are just not
exactly the same as those of the parameter’s distribution.

In summary, when using Deterministic Sampling, it is important to know
it is limitations and if the simulation behaves in a periodic way or has large
higher order derivatives, and the distributions of the parameters have large
standard deviations, then one should use another method. If the distri-
butions are not very wide, or the simulation behaves well, Deterministic
Sampling will likely work well for the problem. It is also worth noting that
the results for the real-world parameters of the k-€-model presented in Fig-
ures 4.16 to 4.18 there is no function tested which does not work, and even
the discontinuous function worked fine.

6. Outlook

6.1. Exploring and improving the ensembles for DS

The problem of uncertainty propagation with Deterministic Sampling may
appear to be solved, and in principle it may be, but naturally there are
aspects which can be improved.

For example, the covariant Gaussian ensemble gained from the Corner
method does have some problems being constructed for a high number of
parameters which all have interdependence. The inability to create such an
ensemble hints of a lack of understanding of what such an ensemble should
be like. Perhaps there could be a more memory efficient way of producing
such an ensemble, or perhaps an expression for it could be derived.

The same thing goes for the covariant ensembles with general distributions
found from the Skewing method. This approach has an even bigger problem
producing large ensembles than the Corner method. Although this is prob-
ably not a big issue in the most cases either, it should probably be explored
further.

Finally, the most useful ensembles presented here are probably the ones for
independent symmetrical distributions. Their behavior, in their reduced
form, is not understood here, and should probably be explored further.
Their ”spikey” behaviour, as shown in Figures 4.19, 4.20 and 5.6. This
behavior could probably be studied further and is actually kind of a mystery
to the author.

6.2. Other potential applications of Deterministic Sampling

Although this report specifically has looked at the use of Deterministic
Sampling for uncertainty propagation, it has been sold as an alternative
to Monte Carlo-methods. Since Monte Carlo methods have all kinds of
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applications this begs the question, can we replace Monte Carlo methods
with Deterministic Sampling in other applications, for example, integration?
Doing integration with Monte Carlo is often used when performing inte-
gration in higher dimensions, and it turns out that Deterministic Sampling
can be used here, with some limitations and some cases where it works
excellently well. Although this is not the purpose of the report, a quick,
preliminary, investigation of this has been made as some final thoughts.
Integration with Monte Carlo is done by using that

b
[ £ = (6= 0) Doy = (b= ) fim 3" £ ),

where x; is random variables uniformly sampled from [a,b], and approxi-
mating this by letting N be some high value. One could use Deterministic
Sampling for this, that is one could calculate an ensemble § representing
the uniform distribution used in the Monte Carlo integration and use this
ensemble to calculate an approximated value of the integral as

wl £ ("), (6.1)
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I
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b
[ Fdx= (b= a) (F(0)ciany = (b —0)

which would of course use way less points than the Monte Carlo integral. In
general one will only use the Monte Carlo integral if integrating over very
many variables though, but if it works in one variable there should not be
any problem scaling it up. An ensemble for a hundred uniformly distributed
variables can easily be created with the Heavy Middle ensemble.

The question remains, though, would equation (6.1) be a good approxima-
tion of the integral? This is, of course, an equivalent question to how well
the ensemble can approximate (f(x)),(,, and it turns out that this depends
greatly on what the function looks like and often on what the interval is.
For some classes of functions, though, this method can work extremely well.
The expression for the mean value as calculated from a set of weighted
points is as previously noted

(3a) L (). (6.2)

Ui @) = £ 5 (50) 2

!
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where, in a uniform distribution the moments will be

b .
i~ 1 a+b\' 0, i odd
<6q>_b—a/<x_ 2 >dx_{(b“)l n even. (63)

2(i+1)°

Those moments will grow with increasing i and with an increasing integra-
tion interval [a,b]. In Deterministic Sampling, the four first moments are
usually encoded so either the interval or the higher order derivatives must
be sufficiently small.
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A few tests have been done to check how integration with DS works, and the
result is shown in Table 6.1, along with the analytically calculated value.
The interval used is [0,4] in each case. The function with two variables
have been integrated over x,y € [0,4]. The results have some interesting
properties.

Table 6.1: Tests for integration of some functions over the interval [0,4]
with DS. In the case of the function of two variables both variables have
been integrated from 0 to 4. The analytically calculated result is shown for
comparison.

Function DS Analytical
x*—4x3 +3x2—2x+1 | 0.800 0.800
4y =3 +y)? [ 179.20 | 179.20
e 53.530 | 53.598

One can note that this technique of numerical integration does work fine for
all of the functions tested at this interval. Actually, the two first functions,
the polynomials of order 4, are more than fine. They do, in fact, get the
exact result.

This is not an approximation, and the reason is the way the mean value
depends on the encoded moments, as in equation (6.2). Since the first
four moments are exactly correct and the function, being a polynomial of
order four, has no higher derivatives than the first four, the result is not an
approximation but an exact result.

This means that the integral of any polynomial of order four or less can be
calculated exactly from this ensemble, and other functions integrals may be
approximated by this.

One subject for further study would be to examine whether Deterministic
Sampling works as a substitute for Monte Carlo integration in the real world
application when it is used and whether this can be a more efficient way of
performing integrations in higher dimensions.
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Appendices

A. Theorems

A.1. About combining ensembles

Assume two ensembles §; and §. Those can be combined, as described in
section 3.5, to create the new ensemble

(1) (1) (1, (1)

9 % N
q(1) Clg) Wiy W,
o ) (1) (W)
~_ | 4 q; _ | Mi'W™
q= w= 1 (1 : (A1)
o !
.— 1 ‘Nfl
qu qg?jv )1) Wj(vl)lv;g jv>)
a0 @ wy, Wy

This is what is here referred to when it is said that ensembles are combined.
Here the combined ensemble is written as just two parameters, but the
reasoning could be generalized for an arbitrary number of parameters.
Two theorems about combined ensembles are here presented.

Theorem A.1. Two ensembles combined will give an ensemble where all the
moments of the original ensembles are conserved.

Proof. The n-th moment of § is calculated by summing the points distance
to the mean value, to the power of n, multiplied by corresponding weights.
It can in general terms for a combined ensemble § be expressed as

Nemb

(8"q) =Y, W((:illb5nq£ib7 (A.2)
i

but in this case we can rewrite the sum in terms of the original ensembles
which becomes

NS00 (sn G <
<6nq> — Z Z w, WZJ (5nqgl) 5nq§/)) . (Aga)
i=1j=1
Moving the sums inside the vector, the expression can be rewritten as
MM o e MM Gy en
(8"q) = <~Zl ;lwg)wgﬂanp LY wwi) s qg”) (A.3b)
=1 Jj= 1=1j=
and noting that WY) can be extracted from one of the sums and ng ) from
the other we get
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0 a () O e ()
(8"q) = ): w2 Zwl 's g9 Yw Yw; 0"qy’ |. (A.3c)

Jj=1 i=1 i=1 j=1

Since the sum of the weights always is 1, the expression finally becomes

YD gngD N2 0 gn ()
@g = (Eulsa Xueed) - (o) @) (A

meaning that both parameters in the new ensemble have the same moments
as before.
O

The proof can be done in the same way for raw moments, meaning the mean
value is also conserved. Now, let’s look at the combined ensemble’s mixed
moments.

Theorem A.2. Two ensembles combined will give an ensemble where all the
mixed moments, up to the order encoded in the original ensembles, represent
independence.

Proof. The mixed moments of order n+m of an ensemble § is in general
calculated as

N
§"Ga8"3p) = Y w8"q) 5" (A.4a)
=1

The sum can be rewrite rewritten in terms of the original ensembles leading
to the expression as

Ny
8"G18" ) = ZZWI wil 574\ 5mgl)) (A.4b)

i=1j=

which can be rewritten as

N N .
(6"q10"q0) = ngl)S”qgl) ) wg])(smqgj) (A.4c)
i=1 =1

giving the final result for the mixed moments of combined ensembels.

(6"416"q2) = (6"q1) (6" 2) - (A.4d)
Note that this has been shown to be true in the case when the parameters
have been combined according to equation (A.1) only. For example one
can not let ¢ = q; = q» and get (6"7"gG) # (6"G) (6™g) for distributions in
general.
From (A.4d) we can see that the covariance of the combined ensemble,
which we get when n =m =1, will be zero. All mixed moments won’t
be zero though, but expression (A.4d) is in fact the expression for mixed
moments for independent variables.
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To show that these mixed moments are the correct ones for independent
ensembles this case will now be examined. Assume two parameters ¢g; and ¢
are independent random variables and are sampled independently N times.
Also, let N be a sufficiently high number so that the samples represents the
distribution of ¢; and ¢, well. Just calculating the mixed moments of order
n—+m between them would give

N
(8"q16"qp) = NZS"Q‘ §"qy
which does not seem to be equal to (8"q;) (6™g,) in general. Let’s instead

start from the other side and see that

P AT
(8"q1)(8"q2) = 1, ). 8"ay Y- 8" (A.50)
i=1 i=1
which can be rewritten as
m 1 n m
(8"q1) (8" qn) = =2 Z Z 1) ql 5 . (A.5b)

i=1j=

This sum can be written in many ways, but one way is to first write all the
terms where i = j and then all terms where j is shifted one cyclic step from i
and next all terms where j is shifted two steps and so on which will include
all the terms in the sum and in this case be useful. The expression would
be

(8"41) (8"2) = 7

Mz

N
Z 5mq2 =

(5"q057mgl) + 87¢P5mg@) 1.+ 7™ 57

1)
1

Nz
anqgl)amqu) + angz)amqg’) 4.+ angN)amqgl) (A.5C)

87V 4 5D 5mglh 4 4 5N gmgV ).
Looking at this expression one can realize another way of writing the sums
which is

lNl

(6"q1) (6" q2) Z( Zaﬂ 8" ’*">m°dN)> (A.5d)

where (i+k)modN is the modulos operator making (i+ k) cyclic with period
N. We now note that since ¢; and g, are independently sampled it does not
matter which point get’s paired with which when taking the sum. Each of
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the inner sums inside the parenthesis in (A.5d) results in the mixed moment
we were looking for, i.e.

(6"q1) Z "qq06™ 611 (A.5e)

and since the sum is over a constant now we get the final result for the
sampling

(6%q1) (8" q2) = (8"q16" 2) (A.5f)

which is the same expression as in equation (A.4d). This means that the
mixed moments of the combined ensemble be those representing indepen-
dence between the parameters.

O

SSM 2016:26 77



B. Theory

B.1. A more detailed description of linear optimization with
the Simplex Method

Assume we have a quantity z we want to maximize or minimize, and that z
can be written as a linear function of some positive parameters {x;,x2,...x,}:
x>0V i

Z=cix1+caxy+...+cpx, (B.1a)

Also assume there are some linear constraints to these parameters described
as

apxi+apxy+...+aux, =b;
arixy+axxy+...+amx, =by (B.lb)

A1 X1 +amxo+ ...+ aupxn, = by

This can be written as a linear system of equations as

Z—CiX1—CXp—...—CpXp =0
anxitapx+...+apx, =b
ar1x1+axx;+...+amx, =by (B.lc)
A1 X1+ amaXo + ...+ QunXn, = by

and in matrix form as

1 —¢; —c —cy, Z 0

apy  app ... A X by
0 an axn ... ay n|l=15b]. (B.1d)
0O am aw ... awn Xy b,

Unless n = m this will not have a unique solution, but can be subject to
optimization, in this case, assume we want to maximize z.

By using the technique from linear algebra known as Gaussian elimination,
one can rewrite the system into the following equivalent form
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1 00 ... 0 a6m+1 S.oag, z 0

010 0 a:1m+l ailn X1 il
0 01 0 ay,, - a, n|l=|56]. (B.2)
00 0 ... I dypy - ap) \Xn b,

Upon visual inspection one can note that one solution to (B.2) is to set all
x; which appear in more than one row to zero which leads to the solution

i<

X = { ! l_m (B3)
0 i>m

z= bj).

This is at least one working solution, and it gives z = b)), which is some
number gained from the Gaussian elimination. This solution is valid as
long as all b} are positive since all x; are supposed to be positive, so if we
are really lucky, this will be a valid solution.

There is little chance that just pivoting the first m columns this way would
give a solution with only positive x;, but there is a way to find one, or see
that one does not exist. If we choose very carefully which columns and rows
to pivot we can get the system into some form,

1 ... 0 0 ... 0 0 0 ... 0
aln ... 0 aii 0 a/lj 1 a’lN Z 1
. /
any N < N A 0 c/zj a/2N X1 bl
. . . . . /
| AU : Do : 0 l=|( 0 |, (B.4)
. /
azgi - 1 a,; 0 ... AN b1
ant1y oo 0 az; ... 0 a:n+1,j 0 ... ayy

where all b} corresponding to the pivoted columns are greater than or equal
to zero and hence find a solution where all x; > 0.

Assuming this is done, the question is now, is this the optimal solution
which maximizes z7 To know this one need only look at the top row of
(B.2) and see the values of the coefficients a,. If they are all positive we
know any change in any of the parameters would give a smaller z, and hence
7 is maximized by this solution.

The Simplex Method offers an algorithm for performing the Gaussian elim-
ination according to certain rules which give only positive coefficients in the
top row, and keeps all b, > 0, or shows that such a solution does not exist|[8],
hence finding a valid solution which maximizes z. This method will not be
described any further here, however.
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A note is that same approach can be used to minimize z, simply by choosing
to maximize 7/ = —z.

Another more important note, in this case, is that many of the x; will be
set to zero, if possible. It is for this feature the Simplex algorithm will be
used in this project, rather than for optimization.

B.2. A more detailed description of Simplex Reduction

Assume a set of N sigma points § intended to represent the distribution of a
parameter g and encode the first m moments. Hence, the ensemble should,
with weights fulfill equation (2.21). This can be set up in matrix form as

| wil) 1
R CC) R 1) w@ (q)
540 5240 . §2M w® | | (6%)
6’"q(1) 5mq(2> E smq(N) (m+1)xN wl) Nx1 (6"4) (m+1)x1

(B.5)
Note that, if N > m+ 1, this equation has not a unique solution in general.
This can now be treated as an optimization problem. Since the weights
should all fulfil w; > 0 the Simplex Method described briefly in Section 2.5
and more in depth in Appendix B.1, turns out to be useful here. This may
seem counter-intuitive since the Simplex Method is designed specifically for
minimization or maximisation of a quantity, which is not the aim here. The
aim here is a solution where all weights are positive or zero and this is
something the Simplex Algorithm can find.
What is done here is to define the quantity z=w; +w,+...+w, and apply
the Simplex Algorithm to it for minimization or maximization. This is fed
into the Simplex Algorithm, along with equation (B.5) as constraints. The
Simplex Algorithm will set up the system as

1 -1 | z 0

0 1 1 ... 1 w(l) 1

0 ¢V 4@ W e) (q)

0 8% 84 . 8qW | [ w® [ =] (8%) (B.6)
0 : : : : : :

0 &mgt) §mg® .. §mgN) wl) (8™q)

It is now apparent that whether the algorithm intended to minimize or
maximize z is irrelevant, it will always be 1 and the whole first row is un-
necessary, but most pre-written Simplex Methods require it as input. The
Simplex method will still start working and perform the Gaussian elimi-
nation according to certain rules which, if possible, gets the system in the
following form, with all of the constants on the right-hand side are positive.
If this procedure is successful, the system will be in the form
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ap o 0 ayy 0 aqj 1 diy z 1
an ... i oay ... 0 db dyy wb b,
TSP S SO N [NV (R S G % o
- S , . :
a1 ody 0 .. w) b
a1y - 0 @y o 0 @,y 0 oa,

where for every row there is a column with the number one in that row and
zeroes everywhere else. From this form one can trivially find a solution by
setting w(®) = b} for weights corresponding to these columns and all other
weights zero.

A pre-written Simplex Method will perform all of this automatically and
return a vector of weights where some of them may be zero. If some weights
are zero, this means those points are not needed in the ensemble and can
be removed.

This method of using the Simplex Algorithm to not only calculate a valid
set of positive weights but also to remove unnecessary sigma-points has been
named Simplex Reduction.

Simplex Reduction can be used just as well for ensembles with several pa-
rameters. If this is done, the equations for each of the parameters moments
should be included in (B.5), as well as the equations for mixed moments one
wants to encode. This is a way of encoding dependence or independence
into the ensemble.

If one wanted, one could write an algorithm not requiring the top row of
(B.6) as input since for this purpose it is not needed. The author has used
the open source GNU Linear Programming Kit (GLPK) for the Simplex
Method. In MATLAB’s optimization toolkit there is a linear programming
function which also works for this purpose, but only if it is set to specifically
use the Simplex Method. Other linear optimization methods will give a
result, but not set the excessive weights to zero. This is why Simplex is
used.

C. Expressions for the ensembles

C.1. The Block-Diagonal Gaussian Ensemble

Extending the reasoning about Gaussian ensembles done in Section 77, a
general expression for independent Gaussian parameters can be written.
Now the standard deviation and mean value will be taken into account
which means the ensemble will be scaled to fulfill the standard deviation
and translated to fulfill the mean value. The general expression for the
Block-Diagonal Gaussian Ensemble, encoding four moments of n indepen-
dent parameters, is
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1 (q)
V3o | -1 |+ () n=1
0 q
10
-1 0
Ga=3V3| 0 1 |Z+M, n=>2 (C.1a)
0 -1
0 0
Ca
V3 Cp S+M, n>3.
Ce

The scaling is done by the matrix X, which is a diagonal matrix including
all the standard deviations. Multiplying with this from the right scales
the ensemble to give each parameter the correct standard deviation. It is
written as

(eJ] 0o ... 0
0 Oy ... 0

s=|. T . (C.1b)
0O 0 ... o,

The matrix M provides the translation of the ensemble giving each param-
eter the correct mean value. It is written as

M= |{a) {(g) {qn) | . (C.1c)

The weight-vector w, corresponding to the ensemble g, is

(1/6 1/6 2/3)T, n=1
(1/6 1/6 1/6 1/6 1/3)T, n=2
W
Wy |, n>3.
W,

(C.1d)

\
Here, for n > 3, the weights come in chunks W, corresponding to the rows
with the matrix C;. If the number of rows in Cy is r, W, will simply be

We=—1": (C.le)
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In equation (C.1), the order of the matrices C,, Cp and C. are increased
incrementally, i.e. one of them increases per added dimension according to

J + 6rem(
J + 6rem(

c= i

where | %] is the floor function, rem(%) is the remainder from the division

and §;; is Kronecker’s delta function.

For the actual matrices C; the Extended Hadamard Matrices described in
Appendix D.2 are recommended. The Corner Matrix described in Appendix
D.1 also works but gives a much larger ensemble if the number of parameters
is big.

This way an ensemble can be constructed for any number of independent
parameters with a Gaussian distribution, with the first four moments en-
coded.

),2
)1 (C.1f)

WIS Wi
Wiz Wz

C.1.1. The Heavy Middle Ensemble

Assume n independent parameters ¢; all with symmetric distributions of the
same shape. Their ensemble can be written as

Gn = (01CX> Q+M, Ww= (1_?;2qy>. (C.2a)

(6%q)
The scaling is here done by the matrix Q, similarly to how the matrix X
scales the Block-Diagonal Gaussian ensemble. Q is defined as

)
T T ¢
0 a0
a=| ° @) ' (C.2b)

<54qn>

0 0 cee 4/ S0

The matrix M translates the ensemble to the correct mean value and is
defined the same way as in equation (C.1c). The weights to the non-zero

samples, which here are collected in the column vector W, will all be equal
and

1
W ==
p

rx1

where r is the number of rows in the matrix C,.
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Just as in the Section C.1 the matrix C, can be any matrix with where
all columns have mean value 0, each point is -1 or 1, and all columns are
orthogonal. The Extended Hadamard Matrix defined in Appendix D.2 is
recommended.

This ensemble has been named the Heavy Middle Ensemble since the weight
of the middle point stays the same while the weights of the surrounding
points decrease with the number of parameters.

Both the Block-Diagonal Gaussian Ensemble and the Heavy Middle Ensem-
ble can often be reduced in size by Simplex Reduction.
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D. Definitions

D.1. The Corner Matrix

The Corner Matrix of order n is here defined as a matrix which has, if
each row is considered a point in space, one point in each corner of the n
dimensional room [—1,1]". It can be recursively constructed as

1
1> , n=1
C,= (D.1)

1”— I
w1yt Coi a1
—12n—1><1 Cnfl

The first order Corner Matrices are

C = (_11> (D.2a)

1 1
1 -1
G = 1 (D.Qb)
-1 -1
1 1 1
1 1 -1
1 -1 1
1 -1 -1
C; = 11 1 (D.2¢)
-1 1 -1
-1 -1 1
-1 -1 -1
1 1 1 1
1 1 1 -1
1 1 -1 1
1 1 -1 -1
1 -1 1 1
1 -1 1 -1
1 -1 -1 1
1 -1 -1 -1
Cy = PR | | (D.2d)
-1 1 1 -1
-1 1 -1 1
-1 1 -1 -1
-1 -1 1 1
-1 -1 1 -1
-1 -1 -1 1
-1 -1 -1 -1
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D.2. The Extended Hadamard Matrix

When constructing the Block-Diagonal Gaussian Ensemble described in sec-
tion C.1, a special class of matrices is used. The kind of matrix used is a
matrix where every column has mean value zero, standard deviation one,
every element either 1 or —1 and every column orthogonal to every other.
One matrix fulfilling these requirements is an extension of the Hadamard
matrices which will be described here.

A Hadamard Matrix

A Hadamard Matrix, H,, of order n is a square n X n matrix who’s elements
H,El’] ) e {—1,1}, and who’s rows are all orthogonal to each other.
One way of constructing Hadamard matrices, invented by Sylvester in 1867,
is the recursive rule

(1) : m—1

HZ" = Hznfl Hznfl : 2)’[ > 1 (D3)
Hznfl _Hznfl
which limits their construction to order’s 1,2,4,8.... The Hadamard Con-

jecture, though, proposes that a Hadamard Matrix or order 4k exists for
every positive integer k. Although this has not been proven, many more
ways of constructing Hadamard Matrices has been found since then.

This means the first order Hadamard Matrices are as follows.

H = (1) (D.4a)

HZ_G _11> (D.4b)
111

Hy = i _11 _11 :} (D.4c)
I -1 -1 1

The Extended Hadamard Matrix

It can be verified that if one constructs a matrix in the following way

D, = < i) , (D.5a)

the resulting matrix will be one where each column has variance 1, mean
value 0, and no covariance with the other columns. Verifying this is quite
trivial since every element in H, is +1 and if each collumn adds a mirror of
itself it will have the sum 0 and of course the standard deviation will be 1
since every element is deviating from the mean by 1.
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Since n can only be a power of 2, but we want, for the purpose of building
an ensemble, such a matrix but allowing n to be any integer. This is simply
done by using

E, =Dy(:,1:n), (D.5b)

where n is any integer, and m is the smallest integer > n for which a
Hadamard Matrix can be constructed. Dy(:,1:n) refers to the n first
columns of D,,.

The matrix E, is here called the Extended Hadamard Matrix of order n,
although it bears a resemblance to the matrix for the Binary Ensemble
described by Hessling|[1].

The first orders matrices are as follows.

E = (_11> (D.6a)

1 1
I -1
o (D.6b)
-1 1
1 1 1
I -1 1
1 1 -1
I -1 -1
Ex=1_, | _i (D.6c)
-1 1 -1
-1 -1 1
-1 1 1
1 1 1 1
1 -1 1 -1
1 1 -1 -1
I -1 -1 1
N (D.6d)
-1 1 -1 1
-1 -1 1 1
-1 1 1 -1
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(D.6e)

(D.6f)

-1

88
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E. Examples

E.1. Determine ensemble without weights

This section is intended to be a clarifying example of what is described in
Section 2.4.3

Assume we have one uncertain parameter ¢ with the standard exponential
distribution, i.e. it has the PDF

flg)=e".
Its first four moments would then be
() =1
<52q> =1
<53q> =2
<54q> =9.

Also assume we want use Deterministic Sampling to find the mean value and
standard deviation of this the function cos(q) when g has this distribution.
If we want to encode these four moments into an ensemble for Deterministic
Sampling, we need to force them to fulfill four equations and hence four
points are required. So we look for an ensemble § = {g(1),¢®,43,¢*}
fulfilling these moments and the equation becomes

)
( (
(@ =1+ (g =1+ (¢ = 1) + (¢ = 1)’]
[(¢V = 1)*+ (¢ = 1)*+ (¢ = 1)* + (¢ = 1)*]

This is a very messy system of equations, but its solutions can be found
numerically. One solution is

O N = =
|

¢V~ 0.76—1.36i
¢? ~ 3.17
¢ ~ —0.69
¢¥ ~ 0.7641.36i.

The system did, in this case, turn out to only have complex solutions. This
is what is expected, in the general case, since there is no guarantee that real
solutions will exist.

So we have an ensemble. Now let’s calculate the propagated mean value
and variance. The propagated mean value becomes
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(cos(q)) ~

1
~ cos(gV) +cos(¢g®) +cos(¢®) +cos(¢™) | ~

1
~ [c0s(0.76 — 1.36) + cos(3.17) + cos(—0.69) +cos(0.76 + 1.36i) | ~

~ 0.69.

The propagated variance becomes

(8%cos(q)) ~
[(cos(q(l)) —0.69)%+ ...+ (cos(¢™) — 0.69)%| ~
~ 0.26.

1
N

Are complex sigma-points a problem? Not necessarily, but it should be
avoided. This solution does indeed encode the first four moments, and using
it to perform uncertainty propagation would probably work in most cases.
A problem is though that the parameters usually represent some physical
quantity, which should be a real value. Therefore, the software used for
simulations will in many cases not support complex values for the parame-
ters. The complex parameters are also in principal a bad representation of
the probability distribution which should be strictly real-valued.

The problem of getting a complex ensemble can be solved by using a
weighted ensemble instead.

E.2. Encoding moments into a weighted ensemble

This section is intended as a clarifying example of what is described in
Section 2.4.4.

Assume, just as in Section E.1, that we have one uncertain parameter g
with the standard exponential distribution, i.e. it has the PDF

flg)=e, qe0,0).

Its first four moments would then be

{g) =1
<52q> =1
<53q> =2
<54q> =09.

Also assume we want use Deterministic Sampling to find the mean value and
standard deviation of this the function cos(g) when ¢ has this distribution.
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To avoid an ensemble with complex sigma-points, we want to use a weighted
ensemble. This means each sigma-point ¢!} gets an associated weight w!?.
Now we want the ensemble to encode the first four moments, but also make
sure the sum of the weights is 1. This means there are five constraints, and
we need five sigma-points to fulfill this. The equations are now

D 4@ 43 1@ 45

1 =wh4

1= g 4w 43 0) 4y >q< )4 w34

1 =wl(@W =12 4+w® (@@ =12+ wB (¥ = 1)2 +w® (¢ = 1)2 +wB) (¢ —1)?
2 =wl(gM =13 +w® (g =13 +w® (¥ =17 4wl (¢ —1)7 4wl (¢ — 1)
9 =wl(g = 1) +w@(g® = 1)* + w3 (gl = 1)* +w (g = 1)* 4wl (¢ — 1)

This system should be solved for the weights, meaning we need to set the
sigma-points ¢'¥) to some reasonable values. Any distinct five points will
guarantee a solution, but knowing what the distribution looks like one
should try to pick some points which are reasonable.

Let’s pick points within two standard deviations from the mean value. Since
the mean value is 1 and the standard deviation also is 1, let’s pick

¢dV=0
g? =1
q(3) =1.5
g“ =2
q(s) =3.

We now get a linear system guaranteed to have real solutions. The system
becomes

1 =0w 4+ 1w® +1.5w0) 42w 4 30)

1 = 1w 40w +0.52w3) 4 1w®) 4220)
2 = 1w+ 0w® +0.53w + 1w 4230
9 = 1w +0w® +0.54wC) 4 1w 4 2405).

Solving this system gives the weights

w) ~0.61
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Let’s use this ensemble to propagate uncertainty through the function cos(q).
The propagated mean value is calculated as

{cos(q)) ~
~w cos(g™M) +w? cos(¢?) + w cos(¢gP) +w® cos(g™) +w® cos(¢®)) ~
~ 0.61cos(0) —3.0cos(1)+7.1cos(1.5) —4.5¢cos(2) +0.78 cos(3) ~
~ 0.60.

The propagated variance is then

(8%cos(q)) ~
~wl) (cos(q(l)) - 0.60) ’ +o 4w <Cos(q(5)) - 0.60)2 ~
~ —0.60.
Here we have run into a serious problem. The variance is not only wrong but
completely unreasonable. The variance, defined as a sum of square values,

can not possibly be negative. This is a problem which can arise if negative
weights are used and is the reason for this project.
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E.3. Examples of how to create ensembles

This section contains some examples of how the different methods for cre-
ating ensembles can be used together. The examples chosen here are picked
to represent how ensembles can be created in general, and the process is
shown as pseudo-Octave-Code

E.3.1. 5 Gaussian parameters without covariance

An ensemble for five independent parameters without dependence can be
generated with the process shown here.

1 %Five Gaussian parameters without covariance

2 %with four moments encoded

3

4 %define moments, for example

5 moments = [0,2,4,3,1 % mean value for each parameter
6 1,2,1,0.2,0.3 % variances

7 0,0,0,0,0 % mom 3 = 0

8 3,12,3,0.12,0.27]; % mom 4 = 3*variance 2
9

10 % Create ensemble with Heavy Middle ensemble

11 [q,w] = HeavyMiddleEnsemble (moments)

12

13 %Could also have used the BDG-ensemble

14 %[q,w] = BlockDiagonalGaussian (moments)

15

16 %Reduce ensemble size to get final ensemble
17 [q,w] = reduceEnsemble(q,moments) %Final ensemble has 9 ..
sigma - points
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E.3.2. 21 parameters with Gaussian distributions and some dependence

Assume 21 Gaussian parameters, three of which have some interdependence
with each other. An ensemble for this can be generated by the steps shown
bellow. The final ensemble will have 34 sigma-points.

1 % Example of 21 Gaussian parameters, 3 of which have ...
covariance described by matrix

2 C= |1 0.5 -0.2

3 0.5 1 0.3

4 -0.2 0.3 1 ] ;

5

6 % Ensemble for the 18 independent parameters. Let’s pick the ...

simple moments

7 ml = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

8 i1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

10 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3];

11

12 [gl, wl] = BlockDiagonalGaussian (ml);

13

14 % Ensemble for the 3 covariant parameters

15 m2 = [0,0,0

16 1,1,1
17 0,0,0
18 3,3,3];

19 % Use the Corner method to get a covariant ensemble for the ...
covariant parameters.

20 [q2,w2] = CornersEnsemble(m2,C);

21

22 %Combine them

23 [q,w] = combineEnsembles(ql,wl,q2,w2);

24

25 %Reduce ensemble to smaller size must enforce the total
covariance. That is why a large covariance matrix is
created , and the lower right corner becomes the one for
the three dependent parameters

26 Ctot = diag(ones(1,21));

27 Ctot(19:21, 19:21) = C;

28

29 %and total moments variable

30 mtot = [ml, m2];

31

32 % now reduce and get final ensemble, which will have 34 ...
sigma- points.

33 [q,w] = reduceEnsembleCovar(q, mtot, Ctot);
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E.3.3. 21 parameters with unsymmetrical distributions and some depen-
dence

Assume a model through which uncertainty should be propagated. Also as-
sume that the model has 21 uncertain parameters, off which three have some
known interdependence. Assume also all of them are Weibull-distributed
and the ensemble should have four moments should be encoded, which
means the individual parameters will have an ensemble of five sigma-points
since the distribution is unsymmetrical.

The main point of this example is to show how the problem of combined
ensembles growing exponentially in size as many parameters are combined, if
in each step of combining two ensembles; they are reduced before combining
with another parameters ensemble.

This ensemble is built by first creating an ensemble for the independent
parameters by combining and reducing. Then an ensemble for the depen-
dent part is created, and covariance is encoded. The two parts are then
combined and reduced. The process is described step by step bellow and
shown as pseudo-Octave-code.

1. Individual ensembles for each parameter are created with the Shotgun
Algorithm. They get five sigma-points each.

2. The ensembles for the 18 independent parameters are combined and
reduced. Their ensemble will have 221 points.

3. Now ensembles for the three dependent parameters are combined and
skewed. Their resulting ensemble now has 125 samples.

4. The ensemble for the dependent parameters is skewed to encode their
covariance, and Simplex Reduction is used to reduce it is size and make
sure four moments are encoded. Now this ensemble has 14 samples.

5. Combine those ensembles resulting in a single ensemble for everything.
It has 3094 samples.

6. The final ensemble is once again reduced by in size by Simplex Reduc-
tion, and covariance is forced in the process. The resulting ensemble
has 280 sigma points.
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26
27

% Example of how to generate 18 independent ensembles with ...
the shotgun-algorithm

%Create and combine the independent ensembles

[qind, wind] = shotgunAlgorithm (moments);
for i=2:18
[qtemp, wtemp] = shotgunAlgorithm (moments) ;
[qind, wind] = combineEnsembles(qind ,wind, gtemp, wtemp);

%It is important to reduce ensemble size between each ..
step, otherwise it will grow unreasonably large
[qind ,wind] = reduceEnsemble(qcmb, moments) ;
end

Y%Now make the covariant part
for i=1:3

[qdep{i}, wdep{i}] = shotgunAlgorithm (moments) ;
end

%Combine those

[qdep, wdep] = shotgunAlgorithm (moments) ;

for i=2:3
[qtemp, wtemp] = shotgunAlgorithm (moments) ;
[qdep, wdep] = combineEnsembles(dep,dep, qtemp, qtemp);
%This time we do NOT reduce at each combination

end

% Skew Ensemble to encode covariance

qdep = skewEnsemble(qdep, covariance);

% Reduce to make sure higher moments are correct and reduce
size

[qdep ,wdep] = reduceEnsembleCovar(qdep, moments, covariance);

Y%Now combine both dependent and independent part and reduce
[q,w] = combineEnsembles(qind ,wind,qdep,wdep) ;
[q,w] = reduceEnsembleCovar (q,moments, covariance);
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F. Detailed results

F.1. 1D ensembles

Propagation of uncertainty with Deterministic Sampling has here been tested
through functions of one parameter with a Gaussian distribution. Several
functions has been tested.

The calculation has been done with Deterministic Sampling (DS) with 2,
4 and 6 encoded moments. A Random Sampling (RS) simulation has been
done as reference.

The ensembles used are for 2 and 4 moments

- _(u—o0\ (1)2
42mom = <,LL+G> Womom = <1/2> 5 (Fla)
u—+3c 1/6
q4mom — u W4mom — 2/3 5 (Flb)
u++30 1/6

which are the previously known expressions. The ensemble with 6 moments
is

—2.3046160 + 1 0.047800
—0.0169090 + u 0.250499
0.9704530 +u 0.316545

Geémom = | 2.5574820 +u Wemom = | 0.025754 |, (F.1c)
1.5658320 +u 0.016841
—0.6067270c +u 0.019078
—0.8453510+u 0.323482

which has been found with the Shotgun Algorithm.

For a Gaussian distribution with mean value u = 1 and standard deviation
o = 0.2 the propagated mean and standard deviation are shown in Table
F.1.
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Table F.1: The propagated mean value and standard deviation of a Gaussian

parameter with g =1 and o = 0.2 through various functions.

DS 2 mom | DS 4 mom | DS 6 mom RS

40 2 samples | 3 samples | 7 samples | 107 samples
4 Mean 1.2416 1.2448 1.2448 1.2451
1 Std 0.83200 0.96056 0.96627 0.96628
] Mean 2.2338 2.4722 2.4833 2.4830
1 Std 2.0660 3.7410 4.5519 4.5240
cos(q) Mean | 0.52953 0.52960 0.52960 0.52965
Std 0.16717 0.16564 0.16566 0.16564
cos(4q) Mean | -0.45540 -0.47587 -0.47462 -0.47465
Std 0.54290 0.49764 0.50729 0.50440
o Mean 2.7728 2.7732 2.7732 2.7733
Std 0.54728 0.56001 0.56022 0.56042
o2 Mean 7.9881 8.0042 8.0045 8.0044
Std 3.0351 3.3141 3.3318 3.3347
H(g—1.1) Mean | 0.60000 0.22440 0.43903 0.37785
Kt Std | 0.60000 | 0.50178 | 0.58863 0.56974

For a wider Gaussian distribution, with ¢ =1 and g =1 the propagated
results show in Table F.2.

Table F.2: The propagated mean value and standard deviation of a Gaussian
parameter with g =1 and ¢ = 1 through various functions.

DS 2 mom | DS 4 mom | DS 6 mom RS
4G 2 samples | 3 samples | 7 samples | 107 samples
4 Mean 8.0 10.0 10.0 10.003
1 Std 8.0 20.445 25.785 25.721
8 Mean 128 518.00 764.88 766.09
q Std 128 1156.5 40545 6812.3
cos(q) Mean 0.29193 0.33129 0.32785 0.32762
Std 0.70807 0.56331 0.62148 0.60377
cos(4q) Mean 0.42725 -0.60987 0.088038 -1.1963e-4
Std 0.57275 0.26989 0.59168 0.70723
o Mean 4.1945 4.4531 4.4817 4.4825
Std 3.1945 4.9476 5.7460 5.8807
o2 Mean 27.799 44.309 53.102 54.696
Std 26.799 85.795 193.63 373.34
H(g—1.1) Mean 1.000 0.45534 0.75857 0.86629
K Std 1.000 1.0182 1.0442 1.0155
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F.2. 3D independent ensembles

Here propagation of uncertainty has been tested with functions of three
parameters. The parameters chosen here are of one Gaussian parameter g;
with 4 =1 and 0 =0.1 and two Weibull-distributed parameters, ¢, and gs,
with ¢ =6 and B = 1, giving them a mean value of ~ 0.93 and a standard
deviation of ~0.18.

The testing has been done by Deterministic Sampling with 2 and 4 moments
encoded. In the case of 4 moments the test has been performed in one case
with only the covariance set to zero while the higher order mixed moments
left unchecked and in one case with up to the first four mixed moments set
to represent independence. RS with 107 samples is used as reference.

The ensembles have been found by finding the parameters individual ensem-
bles with the Shotgun Algorithm, combined them as described in section
3.5 and Simplex Reduction has been used to reduce the number of samples.
The ensembles used can be viewed in Appendix G.1.

The results as these ensembles are used to calculate the propagated mean
value and variance through some test functions is shown in Table F.3.

Table F.3: The mean value and standard deviation propagated through
various functions with deterministic sampling using various ensembles. The
ensemble with 2 moments encoded has covariance set to zero. One of the
ensembles with 4 moments encoded has covariance set to zero while higher
mixed moments are left unchecked. The other ensemble with 4 moments
encoded has the first 4 mixed moments set to represent independence. Ran-
dom Sampling with 107 samples is used as reference.

DS 2 mom | DS 4 mom | DS 4 mom
. RS
f(q1,92,93) COV Z€ero COV Zero 4 mixed 107 smp
9 smp 14 smp 31 smp
,  Mean | 70.569 70.073 70.098 70.087
(@1+4:+45) Std 34.453 26.058 25.897 25.852
. Mean | 63834 616.14 616.49 616.67
@tata)l gy 560.49 353.61 34331 340.10
S@tqrig)  Mean | 18.167 18.028 18.030 18.035
Std 6.5899 4.9255 4.8854 1.8637
Mean | -0.92676 | -0.92363 | -0.92440 | -0.92432
coslatata) g 0.13768 0.070309 | 0.095134 | 0.094377
. Mean | 0.50285 0.76876 | -0.035705 | -3.4515e-4
coslateral) grq 035402 | 042882 | 0.72885 | 0.70692

F.3. 3D dependent ensembles

The results from the tests with three dependent parameters, described in
Section 4.1.3, are shown in Table F.4. The three parameters all have Gaus-
sian distributions with ¢ = 0.1. The ensembles have encoded 2, 4 and 6
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moments respectively. They all have the correct covariance encoded but
no higher order mixed moments are set. The ensembles used are shown in
Appendix G.2. Table F.4 shows the mean value and variance gained by
propagating uncertainty with these ensembles through different functions.

Table F.4: The mean value and standard deviation propagated uncertainty
through various functions with Deterministic Sampling. All of the ensembles
have encoded covariance but no higher mixed moments. Random Sampling
is used as reference, also with the same covariance encoded.

DS 2 mom | DS 4 mom | DS 6 mom RS
H41,42,93) 7 smp 8 smp 22 smp 107 smp
. Mean | 1.2736 1.2038 1.3140 1.3074
@tata) qq [T0.02550 1.3430 1.1115 1.1744
. Mean | 1.7107 1.9178 1.8727 1.8755
(@1+42+43) Std 1.7701 3.7320 2.4291 2.9516
Sartaeq)  Mean | 2.7901 2.7915 2.7979 2.7961
Std | 0.56182 0.61858 0.61515 | 0.61309
Mean | -0.9692 20.96951 | -0.96911 | -0.96923
coslateta) - grg [ 0.03882 | 0.056749 | 0.031321 | 0.040674
. Mean | -0.27913 | 0.67729 0.29426 | -4.50e-05
coslatetal)  qq [T 052662 | 037705 | 0.69734 | 0.70714

F.4. Semi-real world example

This is a more detailed presentation of the data from the tests described in
section 4.1.4.

Two ensembles representing the five parameters of the k¥ — e-model has been
tested. One of the ensembles encode four marginal moments and enforces
covariance to zero, but does not set any restrictions on the higher order
mixed moments. The other ensemble encodes both four marginal moments
as well as sets all of the mixed moments up to order four to represent
independence.

These ensembles have not been tested on actual CFD-simulations, but eval-
uated by test-functions. The mean value and standard deviation of those
tests are presented in Table F.5.
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Table F.5: The mean and standard deviation as ensembles representing
the x-€-model’s uncertain parameters are propagated through various test

functions.
DS 4 moms | DS 4 moms
. . RS
Function COV Z€ero 4 mixed 107 smp
20 smp 53 smp

. Mean 5598.2 5598.3 5598.4

Xa) Std 350.50 360.21 360.28

¢ Mean 3.1470e7 3.1471e7 3.1470e7

Ea) Std 4.0231e6 4.0700e6 4.0710¢6
Mean | -0.86004 -0.85640 -0.85677
slZalgeq [ 0.22535 0.18376 | 0.18317
(4 Mean | 1.2107elb 1.2266e15 1.2264el5
Std 6.4531el4 7.4206e14 | 7.5010e14

86+ T0) 50 Mean 5.4516 5.8101 5.6261

’ veT Std 4.1703 4.1120 4.1102

G.
G.1.

Ensembles used in the tests

Independent 3D ensembles from section 4.1.2

g1 is a Gaussian parameter with g =1 and ¢ =0.1. ¢ and g3 are Weibull-
distributed parameters, with a =6 and § = 1. Ensemble Gomom has the first
2 moments encoded, Gamom has the first 4 and Gamix has the first 4 moments
encoded as well as all mixed moments up to the 4th forced. All ensembles
has the covariance set to zero.

The ensemble for 2 moments is

672m0m =

0.9 0.92693
0.9 0.92693
0.9 1.3857
1.1 0.44957
1.1 0.44957
1.1 0.92693
1.1 0.92693
1.1 1.3857
1.1 1.3857

0.92801 0.49889
0.35668 0.00025367
0.92801 0.00085789
0.92801 0.028309
1.3104 Womom = | 0.043198
0.92801 0.29398
0.35668 0.059255
0.92801 0.030315
1.3104 0.044945

(G.1a)

For 4 moments where the covariance has been set to zero, but no higher
mixed moments have been forced, the ensemble used is
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67 4mom —

0.82679
0.82679
0.82679
0.82679
0.82679

1.1732
1.1732
1.1732
1.1732

0.62283
0.62283
0.95649
0.95649
1.2476
0.99012
0.62283
0.95649
0.95649
1.2476
0.99012
0.95649
1.2476
0.59595

0.58692
1.2123
0.93679
1.1932
0.58692
0.93679
1.1932
0.9262
0.93679
1.2123
1.1932
0.9262
0.9262
0.58692

W4mom -

0.027618
0.060407
0.012344
0.0099932
0.056304
0.0457
0.035929
0.4912
0.067585
0.02625
0.058251
0.0017574
0.036087
0.070572

(G.1b)

and for 4 moments where all the first 4 mixed moments have been fixed

SSM 2016:26

102



0.82679 1.3012 0.96052 0.00068992

0.82679 0.61074 0.35621 8.0458e-5
0.82679 0.61074 0.96052 0.030937
0.82679 0.94864 0.99418 0.021847
0.82679 0.94864 0.61386 0.026005
0.82679 0.94864 1.2499 0.0088534
0.82679 0.94864 0.35621 5.5219e-5
0.82679 0.94864 0.96052 0.053019
0.82679 0.3125 0.61386 2.7124e-5
0.82679 1.2177 0.61386 0.0069034
0.82679 1.2177  1.2499 0.0094503
0.82679 1.2177 0.96052 0.0087998
1 0.61074 0.61386 0.03591
1 0.61074 1.2499 0.022321
1 0.61074 0.96052 0.065428
Gamix = 1 0.94864 0.61386 | Wamix = | 0.076958 (G.1c)
1 0.94864 1.2499 0.057431
1 0.94864 0.96052 0.30383
1 0.3125 0.96052 0.00039582
1 1.2177 0.61386 0.016791
1 1.2177  0.96052 0.087604
1.1732  1.3012 0.96052 0.0061707
1.1732 0.61074 0.61386 0.00021641
1.1732  0.61074 0.96052 0.028191
1.1732 0.94864 0.99418 0.027613
1.1732  0.94864 0.61386 0.026413
1.1732  0.94864 1.2499 0.0086525
1.1732  0.94864 0.96052 0.052506
1.1732  0.3125 0.96052 0.00067619
1.1732 1.2177 0.61386 0.0068636
1.1732  1.2177  1.2499 0.0093649

G.2. Covariant 3D Gaussian ensembles from section 4.1.3

Three gaussian parameters, all with o =0.1 and a covariance matrix

1 002 0
c=0c2[002 1 06
0 06 1

are represented in three ensembles with 2, 4 and 6 moments encoded along
with the covariance. Mixed moments of higher order than 2 is not forced in
any way.

The ensembles for 2 and 4 moments have been calculated with the Corner-
method described in section 3.6.2, while the one with 6 moments has been
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calculated with the Skewing-method from section 3.6.1.
The ensemble with 2 moments is

quoms =

1.1
1.1
1.1
1.1
0.9
0.9
0.9

the one with 4 moments is

q 4moms —

1.1732
1.1732
1.1732
1.1732
0.82679
0.82679
0.82679
1

1.1732

1.1732  0.82679

0.82679
0.82679
1.1732
0.82679
0.82679
1

1.1 1.1

1.1 0.9
1.1
0.9
1.1 1.1
1.1
0.9

0.9
0.9

0.9
0.9

1.1732

1.1732

0.82679

1.1732
1.1732

0.82679

1

and the one with 6 moments is
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Womoms =

W4m0ms =

0.155
0.100
0.095
0.150 |,
0.245
0.005
0.250

0.051667
0.033333
0.031667
0.05
0.081667
0.0016667
0.083333
0.66667

(G.2a)

(G.2b)



1.2491 1.1209 0.91764 0.013112

0.85459 0.87524 0.97737 0.036678
0.85626 1.0258  1.0276 0.15967
0.8631 1.0232 1.0194 0.055697
1.0112 091821 1.1183 0.0048227
1.0094 0.47851 0.47832 1.2252¢ — 05
1.0151  1.1184 0.91804 0.0085342
1.0146 12186 1.2184 0.0079886
1.0133  1.0248  1.0192 0.075825
0.58902 1.2376 1.2897 0.0013674

N | 11719 073486 0.56295 | | 0.00068884

Qomoms = 1 1 1708  0.94989 1.1907 | 'Omoms T | 0.034299
1.1729  1.0264 1.0189 0.085541
1.0238 13127 13125 0.0010115
1.0239  1.2892  1.2419 0.003553
1.0204 0.82464 0.82005 0.0777
1.0201  0.87699 0.97709 0.11153
1.0168  0.68715 1.1039 0.0017618
1.0175  0.5635 0.73299 0.00046851
1.0234  1.1709  1.0751 0.10505
1.0221  0.97735 0.87672 0.15007
1.0215  1.0753  1.1706 0.064616

(G.2¢)
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2016:26 The Swedish Radiation Safety Authority has a
comprehensive responsibility to ensure that
society is safe from the effects of radiation.
The Authority works to achieve radiation safety
inanumber of areas: nuclear power, medical
care as well as commercial products and
services. The Authority also works to achieve
protection from natural radiation and to
increase the level of radiation safety
internationally.

The Swedish Radiation Safety Authority works
proactively and preventively to protect people
and the environment from the harmful effects
of radiation, now andin the future. The Authority
issues regulations and supervises compliance,
while also supporting research, providing
training and information, and issuing advice.
Often, activities involving radiation require
licencesissued by the Authority. The Swedish
Radiation Safety Authority maintains emergency
preparedness around the clock with the aim of
limiting the aftermath of radiation accidents
and the unintentional spreading of radioactive
substances. The Authority participatesin
international co-operationin orderto promote
radiation safety and finances projects aiming
toraise the level of radiation safetyin certain
Eastern European countries.

The Authority reports to the Ministry of the
Environment and has around 300 employees
with competenciesin the fields of engineering,
natural and behavioural sciences, law, economics
and communications. We have received quality,
environmental and working environment
certification.

Stralsakerhetsmyndigheten
Swedish Radiation Safety Authority

SE-17116 Stockholm Tel: +46 8799 40 00 E-mail: registrator@ssm.se
Solna strandvag 96 Fax:+4687994010 Web: stralsakerhetsmyndigheten.se
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