
Research

Report number: 2017:11  ISSN: 2000-0456
Available at www.stralsakerhetsmyndigheten.se

Extended Common Load Model:  
A tool for dependent failure modelling 
in highly redundant structures

2017:11

Author: Tuomas Mankamo



SSM 2017:11



SSM 2017:11

SSM perspective 

Background 
The treatment of dependent failures is one of the most controversial 
subjects in reliability and risk analyses. The difficulties are specially 
underlined in the case of highly redundant systems, when the number 
of redundant components or trains exceeds four. The Common Load 
Model (CLM), originally defined in the 70’ies, differs from other CCF 
models, as it relies on a specific physical analogy. The model was 
extended in late 80’ies with specific aims to model highly redundant 
 systems. Practical use of the model requires a computer tool, but in 
highly redundant systems the benefits give an evident payback.

Objectives 
The extended method ECLM details have not been publicly available 
before. However, it has been developed with certain funding via the 
Nordic PSA group (NPSAG) including SSM. It has therefore been an 
interest to have the method properly documented and published. The 
objective with this report is to describe the mathematical details in the 
definition of Extended CLM (ECLM), which is developed to better suit 
for modelling of highly redundant systems. ECLM has four parameters, 
while the initial CLM was a two-parameter model. This report focuses 
on parameter definition and interface between a dedicated CCF analy-
sis and PSA models. The estimation of model parameters is described 
for Maximum Likelihood and Bayesian approaches. Also a comparison 
is presented with respect to other common CCF models. Special exten-
sions are described for time-dependent modelling and asymmetric 
CCF groups.

Results 
The result is that the method is documented and available for the 
stakeholders, including SSM. The report is also published as an NPSAG 
report.

Need for further research
There is no continuation planned for this since it is the end result of 
previous work.

Project information 
Contact person SSM: Per Hellström 
Reference: NPSAG Project no. 34-002
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Summary 
This report describes an extension of Common Load Model, specially developed 
for the treatment of failure probabilities and dependencies in highly redundant 
systems. The model is based on expressing failure condition by stress-resistance 
analogy; at the demand, the components are loaded by a common stress, and their 
failure is described by component resistances. A multiple failure occurs, when the 
load exceeds several component resistances. In Extended Common Load Model 
the load constitutes of base and extreme load parts, modelling failures at low and 
high orders, respectively. Four parameters are defined; for each part a probability 
parameter describing likelihood level and a correlation coefficient describing 
failure dependence. Good or reasonable fit has been obtained with dependence 
profiles in failure statistics even for large component groups. The estimation of 
model parameters can be based on standard procedures of maximum likelihood 
method or Bayesian method. 
 
The model is defined in terms of subgroup failure probabilities and is subgroup 
invariant. This implies that the model applies with same parameter values to any 
subgroup of a homogeneous group, so called Common Cause Failure group. 
Subgroup invariance facilitated application of the model is varying demand 
conditions where different parts of the group are challenged. Furthermore, model 
parameters applicable to two separate groups of different size are directly 
comparable, if mutually homogeneous or under assumption of that, which is 
helpful also in data acquisition.  
 
ECLM is basically defined as pure demand failure probability model. It can be 
extended to other types of failure on demand like instantaneous unavailability of 
standby components and failure over mission time. Further extensions have been 
made during the course of applications to model access criticality and failure 
correlation of adjacent control rods, and asymmetric groups like in case of design 
diversification, e.g. redundant components of old and new, and partially same 
design. 
 
The main limitation is generally sparse statistical data about Common Cause 
Failures, a shared problem of parametric models for Common Cause Failures. 
The problem is pronounced with the model extensions where additional features 
should be verified by operational experience; much is based on engineering 
judgment for the time being. 
 
Applications of ECLM concentrate in the Nordic BWR plants, for safety/relief 
valve systems, and control rods and drives. These applications have been 
supported by the collection of Common Cause Failure data for analysed systems. 
Applications to control rods and drives have been made also in French PWR 
plants. Other applications include highly redundant configurations of isolation 
valves and check valves, and main steam relief valves of a Russian RBMK plant.  
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1 Introduction 
1.1 Characteristics of the CCF analysis for highly redundant 

systems 

The treatment of dependent failures is one of the most controversial subjects in 
the reliability and risk analyses [CCF_PG, NKA/RAS-470]. The difficulties are 
specially underlined in the case of highly redundant systems, when the number of 
redundant components or trains exceeds four. The Common Load Model (CLM), 
originally defined in [CLM_77], differs from the other CCF models, as it relies 
on a specific physical analogy. This proves to be advantageous in several respects 
as will be explained in the continuation, and when comparing with the other 
approaches. The model was extended in late 80’ies with specific aims to model 
highly redundant systems. Practical use of the model requires a computer tool, 
but in highly redundant systems the benefits give an evident payback. 
 
The motivation to this development arose from the practical needs to realistically 
assess the failure probability of the overpressure protection and pressure relief 
function in the PSA study at Teollisuuden Voima Oy (TVO). The TVO/BWR 
units (Olkiluoto 1 and 2) had twelve safety/relief valves (SRVs) at that time 
before modernization. The SRVs are imposed on demand in different ways 
depending on the transient case and event scenario. The success criteria range 
from 4/8 to 1..9/12. This early application has been described in [SRE88HiD]. 
TVO/PRA included also early applications to other highly redundant systems, 
including control rod and drive system.  
 
1.2 Scope of this report 

This report describes the mathematical details in the definition of Extended CLM 
(ECLM), which is developed to better suit for modelling of highly redundant 
systems. ECLM has four parameters, while the initial CLM was a two-parameter 
model. This report focuses on parameter definition and interface between a 
dedicated CCF analysis and PSA models. The estimation of model parameters is 
described for Maximum Likelihood and Bayesian approaches. Also a comparison 
is presented with respect to other common CCF models. Special extensions are 
described for time-dependent modelling and asymmetric CCF groups. 
 
1.3 Applications 

Since the early applications to TVO/PRA the following works can be highlighted: 

 Analysis of SRV experience was carried out incorporating Swedish BWR 
units, and a reference application prepared for Forsmark 1/2, emphasis 
given on the integration with PSA models [SKI TR-91:6]. 
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 CCF analysis of the hydraulic scram and control rod systems, including the 
analysis of operating experiences of the Nordic BWRs and reference 
application to Barsebäck 1 and 2 [SKI-R-96:77] 

 Development of a time-dependent extension for risk monitor or follow-up 
purpose and test arrangement analysis of highly redundant systems 
[TVO_SRVX] 

 Quantification of asymmetric system configurations for SRVs (for the 
modernized TVO plant and a new plant concept) and for containment 
isolation valves 

 
Similar new applications have been made more recently for other plants, 
including following cases: 

 Control rods and drives in French PWR plants [ICDE-EdF-2001] 

 Highly redundant configurations of isolation valves and check valves, and 
main steam relief valves of Leningrad plant (RBMK). 

 
Earlier applications have been upgraded, especially for control rods and drives 
[SKI Report 2006:05]. 
 
The practical applications have implied gradual development of the calculation 
tools. The treatment of critical failure combinations of control rods and drives has 
been enhanced for increased realism. Basic definition of ECLM has stayed as 
initial during the course of time and different kinds of applications. 
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2 Basic Concepts 
To begin from, it is important to clearly specify, what is the measure of failure 
probability which is then primarily used to express dependencies among a group 
of components called as CCF group – or in the current terminology Common 
Cause Component Group (CCCG). The treatment of the subject is focused here to 
the quantification of time-independent failure probabilities or so called demand 
failure probabilities of standby components. A time-dependent extension of 
ECLM is discussed in Section 7.2. 
 
2.1 CCF group and subgroup concept 

Identical components of a CCF group, normally in standby, are imposed in the 
model, to an operation demand. The event of basic interest is the failure of 
specific ‘m’ components in the demand. The probability of such an event is 
denoted by 

Psg(m)  = P{Specific m components fail|Demand on CCF group n} 
 (2.1) 

Particular variable notation “Psg” for Probability of SubGroup failure is used 
here, in order to make a clear distinction with respect to often confused 
probability notations. 
 
The CCF group will be assumed internally homogeneous, hence Psg(m) is same 
for any choice of ‘m’ components, which constitute a subgroup of the considered 
CCF group. It is also assumed, that if the demand is placed only on a part of 
components, the failure probability of any challenged ‘m’ components will be 
same in the challenged subgroup, e.g. no extra stresses are imposed if fewer 
components participate in the system response. Such influences should be 
modelled separately. Especially, the total component failure probability Psg(1) is 
equal among the components, and remains same in different demand conditions. 
This aspect should not be confused with the treatment of event combinations 
which differ depending on the applicable failure criterion for the demand 
condition (to be discussed in Chapter 4). 
 
An example of a highly redundant CCF group of ten electromagnetic pilot valves 
(EPVs) is presented in Figure 2-1. In a depressurization demand, a subgroup of 
eight EPVs are actuated to open the corresponding SRV main valves (which form 
a different CCF group). Four lines are sufficient to achieve the required fast 
pressure reduction. Consequently, if a subgroup of five or more EPVs fail within 
the challenged subgroup of eight EPVs, depressurization fails. An additional 
aspect influencing subgroup under focus is a situation where DC power supply to 
EPVs is degraded. For example, if one of the DC buses is down for maintenance 
(8 hour’s Allowed Outage Time in power state applies at the Olkiluoto 1 and 2 
plant), the depressurization function needs to be accomplished by a subgroup of 
six EPVs. The failure criterion changes from nominal 5 out of 8 into 3 out of 6. 
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An example of the critical failure combination when DC bus A is inoperable, and 
of the corresponding failure probability is: 

Psg(3) = P{XEPV181 * X EPV182 * X EPV184 } (2.2) 

where XEPV# denotes the failure of a specific EPV, compare to Figure 2-1. It 
should be emphasized, that the probability Psg(3) does not take into account the 
status of other 7 EPVs: they may operate or fail at demand, or may not be 
challenged at all if power or actuation signal is missing. Chapter 4 will explain, 
how the total failure probability of system function is derived from the basic 
probability entities Psg(m), which are preferred in the ECLM definition. 
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Figure 2-1 Illustration of a subgroup of size 8 in a CCF group comprising n=10 identical 
components for Olkiluoto 1 and 2 depressurization function (configuration 
before the plant modernization in 90’ies). In the depressurization demand 8 
SRV lines are challenged: those SRV lines are presented by solid boxes, 
while the other two (which participate only in overpressure protection) are 
presented by dashed boxes. V02..13 denote main valves and EPV179..188 
denote electromagnetic pilots. The success criterion is 4 out of 8 in this 
example, i.e. failure events of multiplicity 5 are minimal cut sets. The SRVs 
are equipped also with diverse impulse pilot valves that are spring-operated 
and provide backup actuation in overpressure protection. The impulse pilot 
valves are not part of remotely actuated depressurization function and are 
hence not presented in this simplified diagram. 
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Similarly, as for BWR reactor relief system, the success criteria vary for many 
safety systems depending on the initiating event and successful operation or 
failure of other systems. These different demand and success criteria cases need 
to be handled consistently. For this reason, it is beneficial, that the CCF 
quantification model applies to subgroups within the system with the same model 
parameters. This property is called subgroup invariance. It will be discussed in 
more detail in Chapter 4, along with its practical implications. The above defined 
Psg(m) entities are an example of subgroup invariant variables under the assumed 
conditions of internal symmetry within the CCF group. Consequently, the size of 
the whole CCF group need not be explicitly denoted as part of the variable 
notation for Psg entity in the case that it is evident from the context what is meant 
by the subgroups. In the connections where the size of the whole CCF group is 
needed to be emphasized, notation Psg(m|n) can be used. Compare to further 
discussion of the different probability entities in Chapter 4. 
 
Probability Psg(m) is monotonously decreasing for increasing failure multiplicity. 
The term dependence profile will be used to mean the shape of Psg-curve, 
especially related to how failure probability is saturating at high orders. 
 
2.2 Stress-resistance expression 

In the CLM, the failure condition is expressed by stress-resistance analogy: at the 
demand, the components are loaded by a common stress S, and their failure is 
described by component resistances (strengths) Ri, compare to Figure 2-2 and 
Eq.(2.3.a). Both the common stress and component resistances are assumed 
stochastic, distributed variables. A multiple failure occurs, when the load exceeds 
several component resistances, compare to Eq.(2.3.b) presented as part of 
Figure 2-2. 
 
In this model, the dependence arises partly from the common load, partly from 
the identical resistance distributions of the components. However, within the 
resistance distribution, a component may individually vary from the others. The 
actual resistances are not exactly known prior to the demand, which effectively 
places the components in symmetric position (assumption of homogeneity). A 
relatively wide distribution of resistances means low dependence in general, 
because then it is less likely that a particular load exceeds several components’ 
resistances at the same. The opposite condition of relatively narrow distribution 
of resistances means high dependence, because then it is likely that if the load 
exceeds the resistance of one component the same can happen for several other 
components also. The properties of the inherent dependence mechanism in CLM 
are discussed more thoroughly in the original introduction to the model 
[CLM_77]. 
 
The probabilities Psg(m) are the measurable entities: a specific multiple failure 
profile can evidently be produced by many different choices of the stress and 
resistance distributions. The normal distributions are still used in the extension 
ECLM. An extreme load part is added to describe dependencies at high failure 
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multiplicity. In the extension, there are four parameters which are defined and 
discussed in more detail in Chapter 3 and Appendix 1. Nevertheless, only four 
parameters prove to describe adequately dependencies in highly redundant, 
internally homogeneous groups as far as statistical data are available. 

STRESS-RESISTANCE EXPRESSION 

S  >  Ri for each i in a specific subgroup of m components  (2.3.a) 

SUBGROUP FAILURE PROBABILITY EXPRESSION 

 





x

m
RS )x(F.)x(f.dx)n|m(Psg (2.3.b) 

where 
fS(x) = Probability density function of the common stress 
FR(x) = Cumulative probability distribution of the component 

resistances 

Figure 2-2 Basic concepts in the Extended Common Load Model (ECLM). 
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2.3 Practical interpretation of the model 

The general stress-resistance expression (2.3) can be refined to describe common 
and independent failure causes for each component in the following way 

sc + si  >  rc + ri (2.4) 

where 
sc  = Common stress imposed to all components 
si  = Independent stress fluctuations from component to component 
rc  = Common or nominal resistance of the components 
ri  = Resistance variations from component to component 

 
Each of these two common entities and 2*n component specific entities are 
stochastic variables. Assuming the components are identical and form a 
homogenous CCF group, the si have identical distribution and ri respectively. The 
expression can be rearranged by moving common entities on the left and 
component specific entities on the right hand side: 

i

iicc

RS

srrs






 (2.5) 

Comparing this reduced form to the general stress-resistance inequality (2.3) 
reveals that the "generalized" common load S comprises those failure mechanism 
factors that increase common part of stress or decrease common part of 
resistance. Similarly, the "generalized" resistances Ri comprise those factors 
which increase individual part of the resistances or decrease individual part of the 
stresses. 
 
The above discussion applies to a CCF group which is internally symmetric. In 
case of asymmetry, the stress/resistance variables can be arranged 
correspondingly, which provides a basis to further extensions of the approach. 
 
If there would be available sufficient knowledge about the failure mechanisms, 
and statistical distributions for the contributing factors, the analysis could be 
made "explicitly" at the level of inequality (2.4). In case of some simple structural 
elements this might be possible in practice. In most cases there exist too large a 
number of potentially significant failure mechanisms, each too rare to obtain 
statistical data. Then it is motivated to apply the stress-resistance inequality in its 
reduced form (2.2), and use some suitable distributions with convenient 
parametrization. The distributions are fitted to the measurable probability entities 
Psg(m), in order to estimate the distribution parameters or the equivalent model 
parameters. 
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3 Parametrization of ECLM 
Due to the way of definition, ECLM is a very general model. The same 
probability pattern of multiple failures can be obtained (at least with reasonable 
accuracy) by using many alternative distributions for common load and 
component resistances. For practical uses it is essential to adopt parametric 
distributions, which are both well understandable in practical terms, and 
mathematically convenient to apply. 
 
3.1 The use of normal distributions 

In the early definition, normal distributions were used, and simple 
parametrization with just two parameters, total component failure probability and 
correlation coefficient, were found suitable for low redundant cases [CLM_77]. 
In highly redundant cases this proved not sufficient to describe observed 
probability patterns of multiple failures, i.e. fit to empirical values of Psg(m). 
Several alternative ways of extension were explored, including the use of extreme 
value distributions for common load. The trial and error phase resulted in the 
most suitable option, where load distribution was extended to the superposition of 
two normal distributions, base and extreme load parts: 
 

fS(x) =  wSb.fSb(x) + wSx.fSx(x) , (3.1) 

where wSb and wSx are weight fractions (positive numbers which sum up to 1). 
The resistance distribution was retained as sole normal distribution. 
 
Correspondingly, the integration equation, Eq.(2.3.b) divides up into base load 
and extreme load parts: 
 

   

)m(Psg)m(Psg

)x(F.)x(f.dx.w)x(F.)x(f.dx.w)m(Psg

xtrbas

x

m
RSxSx

x

m
RSbSb



 







 (3.2) 

 
The key idea in the extension is targeting the base load part to describe failure 
probabilities at low multiplicities, and the extreme load part to the (often 
stronger) dependence at high multiplicities. 
 
The normal distribution is not only convenient to use, but it can be expected to be 
rather generally valid as in most cases the failure mechanisms are random 
processes with large number of contributing terms. If the contributions influence 
additively, normal distribution often applies. On the other hand, if the most 
significant variables contribute multiplicatively, then lognormal distribution often 
applies, or alternatively stated, logarithmic transformation brings the situation 
back to the additive case. The lognormal and normal distributions are fully 
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compatible to be used for underlying distributions of CLM, as shown in detail in 
[CLM_77]. 
 
In the superposition above, the extreme load part can be interpreted to describe 
environmental shocks, latent design faults, systematic maintenance errors or 
combinations of these which may cause a large number of identical components 
to fail concurrently. Basically, further parts can be added to the load distribution. 
However, two parts have been up to now sufficient to fit with empirically 
observed probability patterns of multiple failures (in homogeneous groups). The 
fit has been in fact surprisingly good even for higher order failures in many cases 
when statistics have been available. Experiences from model fit to failure data are 
discussed further in Chapter 5. Specific kinds of further extensions have been 
made in non-homogeneous cases to model internal asymmetry of component 
group, to be discussed later. 
 
3.2 Choice of model parameters 

In the extension, the following four model parameters are defined: 
 
Table 3.1 Parameters of the Extended Common Load Model, range in practical 

applications. 

Parameter Description Range Typical value 

p_tot Total component failure 
probability 

[0, 0.5] 10-4 - 10-2 

p_xtr Extreme load part as 
contribution to the single 
failure probability 

[0, p_tot] p_xtr/p_tot  1% … 
5% 
and p_xtr >10-5 

c_co Correlation coefficient of the 
base load part 

[0, c_cx] 0.1 … 0.5 

c_cx Correlation coefficient of the 
extreme load part 

[c_co, 1] 0.6 … 0.9 

 
Mathematical details of the parametrization will be handled in Appendix 1. To 
summarize, the distributions are scaled as (0, dSb)-normal for base load, (1 - dR, 
dSx)-normal for extreme load and (1, dR)-normal for resistance. The probability 
parameters are related to Psg(1) and correlation coefficients to standard 
deviations {dSb,dSx,dR} in the following manner: 
 

 

  2
R

2
Sx

2
Sx

xtr

2
R

2
Sb

2
Sb

dd

d
cx_c;1Psgxtr_p

dd

d
co_c         ;1Psgtot_p







 (3.3) 
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The parameters form two pairs. The first pair {p_tot, c_co} is related to base load 
part, and the other pair {p_xtr, c_cx} to extreme load part. The adopted 
parametrization yields in reduced coupling between the pairs, giving the benefit 
of intuitively clear impact of the parameters on the multiple failures: pair {p_tot, 
c_co} describes the probability level and dependence at low multiplicity and pair 
{p_xtr, c_cx} correspondingly at high multiplicity. 
 
The existence of three underlying distributions {fSb,fSx,fR} means in total 6 
distribution parameters. Because a linear translation of the stress/resistance 
variable does not affect the failure probability Psg(k), the degrees of freedom is 
effectively 5. In the chosen parametrization, one degree of freedom is frozen by 
anchoring the relative position of fSx at a specific point between medians of fSb 
and fR, i.e. leaving only the variance of fSx free. (Base load median is set at 0, 
extreme load median at 1, and resistance median at 1 - dR, compare to the details 
in Appendix 1.) This specific anchoring gives the desired reduced coupling 
between parameter pairs {p_tot, c_co} and {p_xtr, c_cx}. 
 
It must be emphasized that certain weak coupling is imposed by adopting total 
component failure probability p_tot as one model parameter. This is due to 
following relationship, compare to Eqs.(3.2-3): 
 

p_tot = p_bas + p_xtr, where p_bas = PsgBas(1) (3.4) 

Especially, it is good to be aware that in a sensitivity analysis where, for example, 
p_xtr is varied while keeping other parameters constant (p_tot also constant) base 
load part adapts in opposite direction compared to p_xtr. Even though the 
reflected changes in base load part are small they show up clearly in dependence 
profile in a way that looks strange if one is not aware of the underlying 
relationship. The influences become simpler and more intuitive by keeping p_bas 
as constant when varying dependence parameters p_xtr, c_co and c_cx, i.e. allow 
p_tot floating. 
 
The optional choice of parameter pairs {p_bas, c_co} and {p_xtr, c_cx} as model 
parameters would be mathematically convenient. But from practical point of view 
p_bas has to be replaced by p_tot. It should be noticed that p_bas is usually 
numerically very close to p_tot. 
 
A further coupling is imposed by using dR in the definition of both c_co and c_cx 
in order to obtain unified normalization, see Eq.(3.3). These relationships will be 
discussed in more detail in Appendix 1, Section 8, including advices for the 
parameter variations in sensitivity analyses. 
 
It needs to be also emphasized that parameters c_co and p_xtr interfere because 
they contribute in parallel to low order failures. This interference will be 
discussed closer in the connection to parameter estimation in Section 5. 
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Usually p_xtr lies at or above the level of 10-5 or near to a few percent relative to 
p_tot, compare to Table 3.1. Mathematically p_tot is limited in ECLM below 0.5 
due to the fixed relative placement of distributions. In practice total component 
failure probability is well below that limit.  The correlation coefficients have 
values between [0, 1]. The value 0 means total independence and value 1 total 
dependence. Practically meaningful relationship is c_cx  c_co. Often the base 
load correlation lies in the range of 10%..50%, while the typical value of the 
extreme load correlation is in the range of 60%..90%. 
 
It should be noted that the parameters defined for the ECLM above, are related to 
the output of the model rather than to the stress and resistance distributions 
directly. Only the total component failure probability can be estimated in direct 
way from the number of failures per number of test/demand cycles. The other 
parameter estimates cannot be expressed in closed form but must be solved using 
Maximum Likelihood search or Bayesian method, and computerized estimation 
tool. The details of estimation will be handled in Chapter 5. 
 
3.3 Subgroup invariance 

With the given model parameters, numerical integration of the stress-resistance 
expression produces probability values for multiple failures, primarily for Psg(m). 
From the Psg entities then other types of probability entities can be derived 
following the transformation scheme to be discussed in Chapter 4. 
 
Due to this scheme, ECLM fulfils the subgroup invariance requirement, which is 
evident also from the definition of the model. This means first of all, that the 
same model parameters apply in each subgroup, which is very convenient for 
practical uses. On the other hand, the parameters of CCF groups with different 
size are directly comparable. This enhances much the utilization of information 
from analogical cases - without a need to manipulate the event data from different 
sizes of CCF groups by use of complex mapping up/down methods. Compare to 
the further discussion of this aspect in [NAFCS-PR03]. 
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4 Calculation of Failure Probabilities 
One of the central innovations in this integral approach to the treatment of 
dependencies in highly redundant structures is the consideration of various kinds 
of probability entities for subgroup failure, each providing a different point of 
view. Acronym SGFP is used here for subgroup failure probability. 
 
4.1 Subgroup failure probability concepts 

As stated in Chapter 2, we are considering a CCF group of n identical 
components. The basic entity is the failure probability a specific set of 
components defined in Eq.(2.1). It will again be emphasized that this entity has 
following invariance properties in internally homogeneous CCF group (of n 
components): 
 

Psg(k|m)  = Psg(k|n) =  Psg(k), for any k  m  n, and (4.1) 

for any selection of k and m components 

Subgroup of m components can denote a demand subgroup or any other 
embedded CCF group to be considered for analysis aims. 
 
Subgroup invariance means that, for example, the probability of k specific 
components failing is same whether they are considered alone or as a subgroup of 
the total n components, in both cases, disregarding the information on the other's 
survival or failure, i.e. Psg(k|k) = Psg(k|n) = Psg(k). 
 
The failure dependencies are in ECLM primarily modelled via Psg entities and 
numerically derived from integration Eq.(2.3.b). The other (structural) probability 
entities are then constructed in the following way. 
 
Assuming the demand is imposed on m components, the success criterion can be 
interpreted also via the equivalent failure criterion k out of m. The associated 
total failure probability of the reliability structure is denoted by (notation “Pts” 
comes from total for the structure): 
 

Pts(k|m)  = P{k or more out of m components fail | Demand on 
subgroup m } (4.2) 

 
For example, in case of Figure 2-1, the failure criterion is 5 out of 8, and Pts(5|8) 
is the desired result value. 
 
There is an exact one-to-one correspondence between Pts(k|m) and Psg entities, 
but Pts(k|m) is not subgroup invariant by any means, instead it is directly coupled 
to the demand group size m and failure criterion k out of m. The transformations 
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are presented in Figure 4-1 (notice that the equations there are derived for a 
demand group of size n, but they apply equally well to any subgroup m  n, when 
n is a homogeneous CCF group). The algorithms are based on standard 
probability calculus and their derivation is discussed in [SKI TR-91:6]. 

Figure 4-1 Transformation scheme of subgroup failure probability entities in a 
homogeneous CCF group of n components. These algorithms apply also 
within any subgroup of the whole CCF group. 
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The transformations can conveniently be made by the use of the exclusive 
subgroup failure probabilities by (notation “Peg” comes from exclusive for the 
group): 
 

Peg(k|m)  = P{Just the specific k out of m components fail, while the  
other m-k survive|Demand on subgroup m }  (4.3) 

In some context it is convenient to include the number of combinations of k out 
of m, into this exclusive probability concept yielding a related entity by (notation 
“Pes” comes from exclusive for some): 
 

Pes(k|m)  = P{Just some k out of m components fail, while the  
other m-k survive|Demand on subgroup m } (4.4) 

If written out, the transformation equations become quite long in case of, for 
example m=10. But computationally they do not present any big problem as the 
required code fragments become short when applying usual recursive technique. 
 
In conclusion, Psg entity has a key position among the four different SGFP 
entities, basically owing to its subgroup invariance. The great benefit of using Psg 
entity, for example in data comparison, is the fact that it describes the dependence 
profile of the increasing failure multiplicity without “disturbance” of 
combinatorics and order exclusion which affect the other SGFP entities. On the 
other hand, the three other SGFP entities have each a specific area of use in 
modelling and quantification of dependencies. 
 
4.2 Calculation of SGFPs by the use of ECLM, EPV example 

To summarize what was said in the preceding section, the usual flow of 
calculations is following: 
 

ECLM(Parameters:= p_tot, p_xtr, c_co, c_cx)  
 →  Psg(k)  →  Peg(k|m)  →  Pes(k|m)  →  Pts(k|m) (4.5) 

The calculation order needs to be changed in ultra-high redundant systems 
because of numerical accuracy limitations with Psg(k) → Peg(k|m) 
transformation in large groups as will be discussed in Chapter 6. The above 
calculation order is used in so called ‘base’ implementation with scope of groups 
up to 20 … 30 components, depending on ECLM parameter values. 
 
Using the EPV example of Figure 2-1, the result of ECLM integration are first 
presented in Figure 4-2 and then the SGFP entities are derived for different 
subgroups in Figure 4-3. Details related to the parameter estimation will be 
discussed later in Chapter 5. Concerning the demand group of 8 EPVs challenged 
in a depressurization need, the desired result is Pts(5|8) for failure criterion 
5 out of 8. 
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The example shows a usual dependence profile. Values of Psg(k) saturate quite 
strongly at higher multiplicity, as the extreme load part Psgxtr becomes then 
dominating, while the base load part Psgbas is determining at low multiplicities. 
Due to the strong dependence at higher multiplicities, the Peg(k|m) values 
become rather small at intermediate multiplicities for bigger subgroups, which is 
also quite usual. 
 

Figure 4-2 Probability quantifications by the use of ECLM for the CCF group of ten 
EPVs for Olkiluoto 1 and 2 [RESS_HiD]. 

HiDep Version 2.1
Extended Common Load Model
Avaplan Oy, March 1997

TVO 1/2, electromagnetic pilot valves, best estimate
Point estimate

  CCF group size CLM parameters ND 34
KmMax 10 p_tot 4.0E-2 c_co 0.40 VfSum 12.95

p_xtr 3.0E-3 c_cx 0.80 p_est 3.81E-2

Km Psg_b Psg_x Psg Zk Peg Pes Pts Vk Sk/ND
0 0.991 9.03E-3 1.000 - 0.775 0.775 1.000 26.50 1.000
1 3.70E-2 3.00E-3 4.00E-2 0.040 1.38E-2 1.38E-1 2.25E-1 5.00 2.21E-1
2 6.04E-3 2.15E-3 8.19E-3 0.205 1.04E-3 4.69E-2 8.73E-2 1.00 7.35E-2
3 1.78E-3 1.77E-3 3.55E-3 0.434 1.66E-4 2.00E-2 4.04E-2 0.80 4.41E-2
4 7.15E-4 1.55E-3 2.26E-3 0.637 4.49E-5 9.43E-3 2.04E-2 0.50 2.06E-2
5 3.47E-4 1.40E-3 1.74E-3 0.770 1.87E-5 4.71E-3 1.10E-2 5.88E-3
6 1.92E-4 1.28E-3 1.47E-3 0.846 1.17E-5 2.45E-3 6.29E-3 5.88E-3
7 1.16E-4 1.20E-3 1.31E-3 0.890 1.11E-5 1.34E-3 3.84E-3 0.15 5.88E-3
8 7.47E-5 1.13E-3 1.20E-3 0.915 1.81E-5 8.12E-4 2.50E-3 1.47E-3
9 5.09E-5 1.07E-3 1.12E-3 0.932 6.37E-5 6.37E-4 1.69E-3 1.47E-3
10 3.61E-5 1.02E-3 1.06E-3 0.943 1.06E-3 1.06E-3 1.06E-3 0.05 1.47E-3

LogLikeL -21.313
DeltaLL 0.000
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Figure 4-3 Generated failure probabilities for any subgroup of the ten EPVs for 
Olkiluoto 1 and 2 [SKI TR-91:6]. 

  

pts(k|m)
k pts(k|10) pts(k|9) pts(k|8) pts(k|7) pts(k|6) pts(k|5) pts(k|4) pts(k|3) pts(k|2)
0 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
1 1.75E-01 1.61E-01 1.48E-01 1.33E-01 1.17E-01 1.01E-01 8.37E-02 6.52E-02 4.54E-02
2 4.20E-02 3.61E-02 3.03E-02 2.47E-02 1.93E-02 1.43E-02 9.72E-03 5.75E-03 2.55E-03
3 1.24E-02 9.98E-03 7.82E-03 5.90E-03 4.24E-03 2.87E-03 1.78E-03 9.48E-04
4 4.44E-03 3.50E-03 2.70E-03 2.03E-03 1.49E-03 1.06E-03 6.70E-04
5 2.09E-03 1.69E-03 1.37E-03 1.09E-03 8.43E-04 5.72E-04
6 1.30E-03 1.11E-03 9.26E-04 7.44E-04 5.18E-04
7 9.74E-04 8.36E-04 6.83E-04 4.80E-04
8 7.77E-04 6.40E-04 4.51E-04
9 6.05E-04 4.28E-04

10 4.08E-04

TVO I-II Electromagnetic pilot valves/FO best estimate 
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4.3 Interface to PSA models 

In standard PSA approach, the CCF basic events are used as an interface to PSA 
fault trees. This frame becomes increasingly tedious to use due to rapidly 
escalating number of event combinations for CCF groups of five or more 
components. Instead, the dominant contributors can be expressed by a limited 
number of appropriately defined functional events and by using SGFP entities. 
For example, in Olkiluoto 1 and 2 PRA (initial design), only 11 interface entities 
were used for the SRVs as compared to about 210*22*212 component event 
combinations between electromagnetic pilots, pneumatic pilots and main valves 
within 12 SRV modules (10 ordinary safety/relief lines and 2 regulating relief 
lines). 
 
It should be emphasized, that the definition of interfacing events needs to be done 
carefully, in order to properly take into account risk-significant cross 
combinations with loss of activation signals, failure of power buses and other 
hardware or functional dependencies. Experiences this far show that a rather 
limited number of these cross combinations are important, which implies that the 
interface from a highly redundant CCF group can be managed. 
 
As an example, the interface with electric power supply dependence can often be 
most conveniently structured according to the failure situations of power buses. 
For example, in the case of depressurization demand, when 8 SRV lines are 
challenged, and with failure criterion 5 out of 8, the EPVs contribute effectively 
in the following schematic way (compare to Figure 2-1): 
 

PtsEff(5|8)  PtsEPV(5|8)  +  4 . uDCB . PtsEPV(3|6) (4.6) 

where 
uDCB  = Mean fractional downtime of a DC bus supplying EPVs 

This is a usual Rare Event Approximation: the first term corresponds to the 
situation where the four DC buses are all available, but five or more of the EPVs 
fail; the second term corresponds to the situation where one DC bus is down for 
maintenance, and in conjunction three or more of the six EPVs fail in the other 
subs. In practice, there may exist other cross-combination terms, which need to be 
included in a similar way [SKI TR-91:6]. The identified terms can then be 
transformed into equivalent functional event presentation to be incorporated in 
the system fault trees. 
 
4.4 Comparison with the approaches based on the structure of 

common cause events 

The mostly used CCF models Multiple Greek Letter Method (MGLM) and Alfa 
Factor Method (AFM) are based on describing dependencies by the use of CCF 
basic events. Normally, CCF basic events with input probabilities Qk(n), are 
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explicitly included in PSA fault tree models, and MCS reduction is cared by a 
computer program. This provides a very convenient interface into PSA models, 
which works well in low redundancy cases. In high redundancy cases, due to the 
large number of CCF basic events to be added for many component gates, MCS 
reduction becomes overwhelmingly burdened. Hence, the pre-processed, reduced 
presentation in terms of functional events and SGFPs for the PSA model interface 
as described in the preceding section is the preferred approach. 
 
In practice, if AFM/MGLM would be used, a reduction into the SGFP scheme is 
the only viable way in highly redundant cases. The problem is that the SGFPs 
cannot be expressed exactly in terms of the CCF basic events. In low order cases, 
relatively simple approximations exist, but in high redundancy cases, handling of 
combinatorics and necessary approximations become cumbersome. Besides, the 
AFM/MGLM parameters are not subgroup invariant (an example about the 
parameter variability is presented in [SKI TR-91:6]). This means that cases, 
where only part of the system is challenged, become laborious to handle. One 
way is to consider the subgroup as imbedded in the whole group, preserving all 
CCF basic events for the total group, selecting those which validate the failure 
criterion in the subgroup demand case. This has been the usual way. Alternative 
way is to map AFM/MGLM parameters and CCF event probabilities down to the 
CCF group corresponding with the demanded subgroup. This necessitates the use 
of rather complicated routines. In contrast, when a subgroup invariant model is 
used, the same CCF parameters apply to any subgroup. 
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5 Parameter Estimation 
Due to the lack of a reverse analytic solution for the stress-resistance analogy 
expression, a formula-based direct estimation of ECLM parameters is impossible 
(except for one parameter, the total component failure probability p_tot). Hence, 
standard numerical methods for Maximum Likelihood search or Bayesian 
estimation have to be applied. It should be noticed that most other parametric 
CCF models, when used in highly redundant cases, necessitate also the use of 
computerized estimation tools. 

5.1 Likelihood Function 

The Likelihood Function can be constructed in the usual way given the available 
information about success/failure events in a group of n components over a 
number of test/demand events [Henley&Kumamoto]: 





n

0k

)n|k(V)]n|k(peg[)})n|k(V{|cx_c,co_c,xtr_p,tot_p(Lik (5.1) 

where 
V(k|n)  =  the number of failure events of multiplicity k in a CCF group of 

n components, i.e. Sum Impact Vector 
V(0|n)  =  the number of success events, i.e. test/demand cycles in which 

all components survived 
ND  =  the number of tests and demands on the whole group of n 

components 





n

0k
)n|k(V

An example of Sum Impact Vector V(k|n) is given in the subtable of Figure 4-2; 
its derivation from operating experience is explained in [SKI TR-91:6]. 
Constructing the Sum Impact Vector from the failure records follows the general 
principles presented in [CCF_PG]. Compare also to the more recent method 
description [NAFCS-PR03]. A refined approach is developed in an application, 
which uses state model to describe the development of latent CCF mechanisms 
and chances to detect them in random demands between test points [T314_TrC]. 

For the calculation of the Likelihood Function, Peg(k|n) entities are obtained 
from Psg(k) entities, using the transformation presented in Figure 4-1, while 
Psg(k) values have first been integrated from the stress-resistance analogy 
expression, Eq.(2.3.b) - with distribution parameters derived from the model 
parameters. The whole scheme of the estimation cycle is illustrated in Figure 5-1. 
As described in Chapter 3 the model parameters are intentionally chosen to 
represent the failure probability levels and strength of dependence, i.e. the 
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outcome of the model. In the background the model parameters are 
mathematically connected to the stress/strength distributions. The benefit of this 
parametrization approach is that the behaviour of the model outcome is well 
predictable with respect to the parameters. 

 
Figure 5-1 Flow scheme of parameter estimation for ECLM. 
 
The drawback is, as said, that the model parameters cannot be directly calculated 
from the count of failure events. The indirect estimation is required for ECLM. 
The compatibility verification for the fit of model with the empirical failure 
pattern will be discussed in more detail in Section 5.3.  
 
Example shapes of the Likelihood Function, with respect to the model parameters 
p_xtr, c_co and c_cx, are presented in Figure 5-2. The example case is the same 
as used earlier, the group of ten EPVs in Olkiluoto 1 and 2. Compare to the point 
estimation in Figure 4-2. 
 
An apparent benefit of Likelihood Function-based approach is that it allows a 
convenient scheme for combining event data from different sources and from 
CCF groups of different sizes (which assumes a mutual homogeneity, or a 
postulation of that as an approximation, see further details of CCF data pooling in 
[NAFCS-PR03]). In the first approximation, joining data bases A and B results in 
the following compound Likelihood Function, corresponding to weighting by the 
total number of test/demand cycles (the Sum Impact Vector without elements is 
denoted by bold capital letter V): 
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Compound Likelihood Function can be used also in the case of asymmetric tests 
or demands to combine statistical data over test/demand subgroups.  
 

Figure 5-2 Illustration of the Likelihood Function behaviour for p_xtr, c_co and c_cx 
separately at the maximum [ECLM-Tcases]. The example case is the ten 
EPVs of Olkiluoto 1 and 2 [RESS_HiD]. 

 
5.2 Total component failure probability 

The point estimate for the total component failure probability p_tot can be 
obtained from the total number of failures: 
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5.3 Comparison with empirical failure pattern 

The evidence and the model can best be compared by constructing the empirical 
failure pattern: 

S(k|n)  =  Number of test/demand events where k or more out of n 
components are failed 

  



n

km
)n|m(V (5.4) 

Dividing this by the total number of tests/demands ND gives the point estimate of 
the total structural failure probability, i.e.(look for this kind of comparison in 
Figure 4-2): 

ND
)nk(S

)nk(Pts  (5.5) 

For comparison purposes, this relationship is preferred due to the stable nature of 
S(k|n) profile even in the case of sparse data. However, the comparison could 
alternatively be performed between SGFPs and their point estimates: 
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5.4 Maximum likelihood search strategy 

The Likelihood Function appears to be rather smooth and searching the maximum 
point can be simplest done by interactively controlled numerical iteration. The 
point estimate for the total component failure probability p_tot, obtained from 
Eq.(5.3), can be kept constant during the search process. 

The search for the other model parameters can be started from usual values. If no 
other clue is readily available, the following initial values can be used: 

p_xtr   ~  0.03*p_tot (5.7) 
c_co   ~  0.4 
c_cx   ~  0.8 

Practical experiences show, that it is preferable to first search after a reasonable 
fit of the extreme load part p_xtr, because the dependence pattern is most 
sensitive for it. Next, continue with c_co and leave c_cx last. In practice, the first 
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iteration round can be based on visual comparison of Pts(k|n) and S(k|n)/ND fit as 
explained above, compare also to Figure 4-2. Fine tuning can then be performed 
by considering numerical changes of Likelihood Function. The current version of 
HiDep Toolbox contains a semi-automated tool for the search of the maximum 
likelihood estimates.  
 
Because of the stable nature of Likelihood Function, and because the model 
parameters influence largely independently to outcome probabilities, the 
maximum likelihood search converges soon for the adopted ECLM 
parametrization. In most cases less than ten trials are sufficient in order to 
identify p_xtr, c_co and c_cx all with a reasonable accuracy. The particular 
details of the parametrization, which broke the dependence between the pairs 
{p_tot,c_co} and {p_xtr,c_cx} prove thus useful. The model parameters can 
nevertheless interfere in estimation. For example, c_co and p_xtr can contribute 
in parallel to low order failures, implying a diagonal correlation in Likelihood 
Function. The surface determined by Likelihood Function can rise in a direction 
deviating from c_co and p_xtr coordinate directions. This aspect can be 
controlled by watching Likelihood Function values for a grid of parameter values, 
or by using some developed search algorithm for the maximum of a multi-
parameter function. 
 
In case of sparse data for high multiplicity failures, extreme load part p_xtr can be 
considered primary parameter for the dependence at high multiplicity, while 
extreme load correlation c_cx has a side role, and can be preserved at the typical 
value of 80%. 
 
For correlation coefficients c_co and c_cx, the Likelihood Function is usually 
rather symmetric on the linear scale, and the maximum point is apparent, 
Figure 5-2. The width of the maximum area may be quite broad (absolute value 
of the second derivative small) if data are sparse. 
 
For the extreme load part p_xtr, it is more natural to consider the Likelihood 
Function on the logarithmic scale for p_xtr: it is usually rather flat towards small 
values, but decreases steeply for higher values when approaching the area which 
contradicts with the evidence about the number of high multiplicity failures, or if 
p_tot will be approach. If data are sparse, there may not be a maximum point at 
all for p_xtr, but the Likelihood Function may be monotonously (although 
weakly) increasing for decreasing p_xtr. If this happens to be the case, the 
Bayesian estimation approach is to be preferred. In the absence of Bayesian 
estimation tool, the following shortcut can be used: p_xtr should be chosen at the 
level where the Likelihood Function begins to significantly reduce from the plain 
level at smaller values of p_xtr. 
 
5.5 Experiences from parameter estimation 

By generic data is meant here typical parameter values estimated for a collection 
of similar component types, similar with respect to complexity, share of 
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mechanical and electrical parts, component boundary, and operational, test and 
maintenance environment, as well as similarity in defenses against CCFs. 
 
Some data compilations contain CCF data pooled over much different component 
types, e.g. pooled data of all demand failures. Such data represent a statistical 
mixture of failure mechanisms and CCF types which can be problematic to apply 
to a specific target component. It is hence recommended to find out reference 
data for earlier analyzed similar component type. 
 
A possible last resort is the use of parameters of so called Generic Dependence 
Classes, see discussion in [Nafcs-PR02, Section 4.2]. They were originally 
derived for CCF groups of size up to four, covering component types like pumps, 
valves, breakers and diesel generators. So they may not be applicable in highly 
redundant systems. 
 
The statistical input (Impact Vector) can in some cases contain a large number of 
complete CCFs. This can mean that no sensible parameter estimates are obtained, 
e.g. maximum likelihood is obtained at null correlation coefficients. This 
situation can be related to mapping up of complete CCFs observed in smaller 
component groups, which may be unrealistic conservative. The dilemma of 
mapping up has been discussed in [NAFCS-PR03, Section 6.2]. Possibly, actual 
complete CCFs can have actually occurred due to some specific causes in the size 
of CCF group under consideration. Exceptionally large number of complete CCFs 
is most likely related to special CCF mechanisms like external events or other 
events beyond normally defined component boundary, or systematic operational, 
test or maintenance errors or system design errors, or combination of these. A 
possible solution is to separate special complete CCFs and model them explicitly, 
and cover the other part of statistical data by parametric CCF model. 
 
Another peculiar Impact Vector is such a case where the elements are strongly 
decreasing as the function of multiplicity. This situation can arise, for example, if 
binomial model is used to map up potential CCFs, compare to the discussion in 
[NAFC-PR03, Section 6.2]. Maximum of Likelihood Function can be then 
obtained with null extreme load part. The statistical significance of Impact Vector 
is in such a case anyhow weak at high orders. Generic data can be used for 
extreme load part parameters. Leaving extreme load part out reduces ECLM to 
the early defined two parameter CLM. Experiences thus far show that in all cases 
with sufficient statistics the dependence profile of real components contains an 
outstanding extreme load part. 
 
In some cases, the statistical input can show peculiarities caused by 
inhomogeneity. For example, exceptionally many failures of order two may have 
occurred in a group of four components due to weaker defence against CCFs 
between redundancy pairs, i.e. the group is pair-wise asymmetric. A 
recommended solution is to divide CCFs to those possible for the whole group 
and those specific to redundancy pairs, resulting in smaller CCF subgroups to be 
modelled in addition to the whole group. 
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CCF model comparison [CCFCoFin] contained estimation tests with a large 
number of different data sets. This material can provide useful insights for the 
elaboration of new data cases. 
 
5.6 Model behaviour as the function of ECLM parameters 

Inherited from the definition, the model parameters have the following 
meaningful ranges for practical application: 
 

0.5  >  p_tot  >  p_xtr  >  0 (5.8) 
0  <  c_co  <  c_cx  <  1 

Looking for the visual "look and feel", it should be emphasized once more, that 
the parameters form two pairs. The probability parameters p_tot, p_xtr give the 
value wherefrom the associated Psg-curves start at multiplicity k=1. The 
correlation coefficients c_co, c_cx describe the slopes of the curves: small value 
means weaker dependence and steeper decrease of the probability as the function 
of failure multiplicity, while a value of c_cx near to 1 would result in strong 
saturation at higher failure multiplicities. 
 
As a specific feature of this approach, it should be noted that the CLM inherently 
allows individual variation in component vulnerability to failure, as described by 
the resistance distribution. As a benefit, this model will not show so strong 
tendency of producing overly pessimistic dependence at high multiplicity in case 
of sparse data, as most other models, which often reduce effectively to a 
conservative "cut-off" probability at high failure multiplicities. 
 
5.7 Bayesian estimation outline 

Besides maximum likelihood search, the Likelihood Function serves as a basis 
for the more developed Bayesian estimation. This approach will be shortly 
outlined here as related to beginning experiments used to estimate Pts(k|n). 
According to the standard Bayesian approach, the expected value of model 
related Pts(k|n) can be obtained from: 
 

  )c,c,p;nk(pts.)c,c,p(f.dc.dc.dp)nk(ptsE xoxxoxPostxox  (5.9) 

 
where the normalized, compound posterior density function is 




)c,c,p(Lik.)c(f).c(f).p(f.dc.dc.dp
)c,c,p(Lik.)c(f).c(f).p(f

)c,c,p(f
xoxxcx_coco_cxxtr_pxox

xoxxcx_coco_cxxtr_p
xoxPost V

V
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Here, the total component failure probability p_tot is considered fixed (but the 
scheme could be readily extended to handle it as the fourth free parameter). 
Apriori distributions are noted as fp_xtr, fc_co, fc_cx for the other three model 
parameters considered free variables in the estimation. For the Likelihood 
Function, a shorthand notation is used here as compared with Eq.(5.1). Similarly, 
the notation for parameters p_xtr, c_co, c_cx are shortened to px, co, cx. 
 
For the apriori distributions, the simple piecewise linear- constant shapes are used 
as shown in Figure 5-3, considering p_xtr on the logarithmic scale and correlation 
coefficients c_co, c_cx on the linear scale. The distribution shapes reflect the 
judgment about the  

 possible range of parameters (nonzero distribution density) 

 most likely range (constant distribution density) 
 
The derived expected values are noted on Figure 5-3. They prove to be in quite a 
good agreement with the maximum likelihood values, assuming a reasonable 
amount of data. The behaviour of Likelihood Function for c_cx is not shown 
here, it is very flat, compare to Figure 5-2. The expected value of c_cx is thus 
determined in the example case by the a priori distribution. Even generally, the a-
priori distributions have a big role and their choice is therefore crucial in 
Bayesian estimation. 
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Figure 5-3 Illustration of the behaviour of Likelihood Function, and a priori distributions 

and posterior distribution of Pts(5|8) in Bayesian estimation experiments in 
1990. 
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5.8 Uncertainty treatment 

The uncertainties and their treatment in the CCF analysis of highly redundant 
systems is similar to probabilistic safety analyses in general. The sparse data on 
high multiplicity failures mean that the uncertainty range is large. Engineering 
judgment is often used extensively in the interpretation and extrapolation of the 
data. A special difficulty is concerned with how to take into account design 
changes or other countermeasures which are usually implemented after CCF 
occurrences. The verification of the learning effect is a difficult issue. 
 
The uncertainty impact on the results and conclusions of the analysis can be in 
the simplest approach be investigated by sensitivity analyses/parameter 
variations. A more consistent evaluation of uncertainties can be made by 
Bayesian approach which is straightforward to apply in case of ECLM, 
representing a well-behaving, ordinary parametric model. 
 
Advanced techniques are recently developed in France for ECLM parameter 
estimation [PEstim-ECLM-FR2013]. 
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6 Ultra High Redundant Systems 
This chapter handles application of ECLM to ultra-high redundant systems like 
control rods and drives extending the methodology description presented earlier 
in [SKI Report 2006:05] and recent application reports. 
 
Special care is required for numerical accuracy in the calculation of multiple 
failure probability at the orders with very high number of component 
combinations as will be discussed in Section 6.1. 
 
In the case of control rods and drives an additional specific aspect is important. 
The failures of adjacent control rods impose much bigger reactivity effect in 
comparison to spread failure placements. This aspect concerns failure 
consequences but does not violate the assumption about homogeneity of CCF 
group. The treatment of adjacent rod patterns in the definition of failure criteria 
will be discussed in Section 6.2. 
 
Some CCF mechanisms are more likely in the case of adjacent control rods and 
drives, representing a special type of non-homogeneity of CCF group. These so 
called localized failure mechanisms are considered in Section 6.4. Main part of 
CCF mechanisms can be regarded to have no position correlation, i.e. control rod 
and drives can be modelled as a homogeneous CCF group with respect to them. 
These so called scattered failure mechanisms are considered in Section 6.3, 
covering also the general case of ultra large homogeneous CCF group. Section 
6.5 combines the calculated results over different failure mechanisms. 
 
The failure probabilities are considered in this chapter as so called demand failure 
probabilities. 
 
6.1 Arrangement of probability calculations in very large 

groups 

The calculations in very large CCF groups have to be arranged so that Peg entity 
is derived first from the following version of ECLM expression, compare to 
analogous Eq.(2.3) used to obtain Psg entity: 
 

�����|�� � � �� ∙ ����� ∙ ��������
��� ∙ �� � ��������� (6.1) 

This route is necessary to avoid problems with small differences in Psg entity 
values and very large binomial coefficients at the intermediate multiplicities in a 
very large group, implying that transformation Psg(Km) → Peg(Km|KmMax) 
containing alternative positive/negative terms cannot be handled with a standard 
double accuracy of computer programs in ultra-high redundant cases. However, 
the opposite transformation Peg(Km|KmMax) → Psg(Km) contains only positive 
terms, and is manageable up to CCF group sizes of at least about 160, a practical 
limit in the applications to control rods and drives of Nordic BWRs. 
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Alternatively, Psg and Peg entities can be integrated in parallel. The 
transformations Peg(Km|KmMax) → Pes(Km|KmMax) → Pts(Km|KmMax), 
needed to find out the failure probability of the system function for a given failure 
criterion, deal only with positive terms, and is manageable also in ultra-high 
redundant cases. 

An implication of the above feature is that scale down to a subgroup cannot be 
performed based on a subset of Psg(Km) similarly as in the base implementation 
of ECLM, using the subgroup invariance property of Psg entity, compare to 
earlier discussion in Section 3.3. In ultra-high redundant case the subgroup 
system needs to be re-quantified in order to obtain Peg entity within the 
subgroup, which effectively means a change of the CCF group size (KmMax), a 
drawback of ‘ultra’ implementation. Scale down needs are fortunately not 
frequent in ultra-high redundant systems whereas they are typical in CCF 
modelling of safety/relief valves and similar systems. 

It has to be noticed that there is no low bound for using ultra-implementation 
(with the sacrifice that probability entities of subgroups cannot be derived without 
complete recalculation). Thus ultra-implementation can be applied to a group of 
twelve safety/relief valves, for example, to verify the results with respect to using 
base implementation for the same group (with same data). 

6.2 Failure criteria for control rods and drives 

The placement of control rods with respect to horizontal cross-section of reactor 
core can be described by so called control rod map where X and Y coordinates 
are given to each control rod. A selection of control rods can be denoted by the 
following different ways: 

 Group, especially when meaning physical components
 Combination or set, typically in the treatment of failure events
 Pattern in the control rod map, like in Figure 6-1

Group size refers to the number of included control rods. Term shape is used for 
geometrical type of control rod pattern. 

The third dimension, coordinate Z describes the degree of insertion. Usually it is 
expressed by the degree of withdrawal: fully inserted as Z = 0% and completely 
withdrawn as Z = 100%. This dimension is not usually taken into account in risk 
analysis. In normal operation part of control rods is completely withdrawn, part 
partially inserted. It is conservatively assumed that all control rods are completely 
withdrawn before demand. Furthermore, partial failure of insertion (stagnation at 
an intermediate position) is not covered among the modelled failure modes, only 
complete failure of insertion. The treatment of complex phenomena in failure 
event analysis and classification is discussed in more detail in the recent data 
analysis [SKI Report 2006:05]. 
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The failure criterion for control rods is usually expressed by two conditions 
combined with Boolean OR: 

 The pattern of failed control rods contains a critical number and 
placement of adjacent control rods (KCri), or 

 The number of failed control rods placed in any positions exceeds a 
threshold number (KThr) 

 
Two control rods are called as tightly adjacent if their X coordinates are same and 
Y coordinates differ by one step, or vice versa. Diagonally adjacent placement 
means that both X and Y coordinates differ by one step. The first type imposes 
much larger reactivity effect. Shapes 3.1-2 in Figure 6-1 constitute of tightly 
adjacent placements while Shape 3.3 is a mixture of tightly and diagonally 
adjacent placements. Tightly adjacent pattern is defined as a placement of failed 
control rods where each control rod is tightly adjacent to at least one other control 
rod in the pattern. 
 
More specifically, the first condition of failure criterion is defined in terms of 
Minimal Critical Shapes. Minimal Critical Shape represents basic type of tightly 
adjacent patterns with critical number of adjacent control rods. Attribute 
‘minimal’ expresses the condition that removing one rod makes the pattern non-
critical. Minimal Critical Shape is logically similar to Minimal Cut Set but has 
the special property of being a two-dimensional geometrical pattern (of adjacent 
failing rods in the horizontal cross-section of core, i.e. in control rod map). 
Minimal Critical Shape is also a type collection of geometrically equivalent 
patterns that can be obtained from a basic one by rotation, as mirror image and/or 
by linear translation in control rod map. Figure 6-1 illustrates Minimal Critical 
Shapes that are discussed later in more detail. Different instances of Minimal 
Critical Shape (placements on core map) constitute Minimal Cut Sets (failure 
combinations of concerned control rods and drives). 
 
Effects at the core edge are usually truncated, i.e. the presented failure criteria 
apply across the whole core, and the core is treated in certain sense as infinite 
even though the number of control rods is finite. It is possible to divide the core 
into centre and outer zones, defining failure criteria separately in the zones. This 
option makes the treatment of failure combinations more demanding.  
 
It is preferable to model control rod drive as combined together with control rod, 
compare to the description of control rod and drive components in [SKI Report 
2006:05, Section 2.1]. This super-component, Control Rod and Drive Assembly 
(CRDA) has dual functions: hydraulic insertion and screw insertion. 
Correspondingly, it has three functional failure modes: failure of hydraulic 
insertion (exclusively), failure of screw insertion (exclusively), and failure of 
both functions. The failure criteria can differ among the failure modes depending 
on the reactivity shutdown requirements in different transient conditions. 
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Figure 6-1 Minimal Critical Shapes of the adjacent failing control rods handled in 

F1/F2 reference application [SKI Report 2006:05, Figure 5-3]. (Minimal 
Critical Shapes are denoted here by Shape3.1/2/3 corresponding to 
notation Shape 1/2/3 in the named reference.) 

 
6.3 Scattered failure mechanisms 

As defined, scattered failure mechanisms affect in homogeneous way control rods 
and drives. In a homogeneous CCF group – and without excess criticality 
imposed by failures of adjacent control rods – the functional failure probability is 
obtained as Pts(KThr|KmMax) which can be expressed as 
 

��������|������ � ∑ �������|������ ∙ ������|������������������ (6.2.a) 

CmbS entity represents the number of random combinations of Km rods out of 
KmMax (precisely): 
 

�������|������ � �������� � (6.2.b) 

The above probability expression applies to the general case of (ultra large) 
homogeneous CCF group. In the case of control rod and drives the possible 
coincidental inclusion of critical patterns of adjacent rods in the random failure 
combinations needs to be taken into account. A smaller number of randomly 
placed rods than threshold KThr can contain a Minimal Critical Shape or other 
kind of critical dense pattern implying failure of reactivity shutdown. 
 
The number of combinations of Km rods containing a Minimal Critical Shape is 
approximately 
 

�������|������ � �� ∙ ������ � ���
�� � ��� � (6.3) 

where  
KmA = Size of Minimal Critical Shape 
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NA = Number of different placements of Minimal Critical Shape 
within core 

KmMax = Total number of control rods 
 
In order to take into account other kinds of critical dense pattern, so called 
interpolation rule is used to calculate the weighted number of critical 
combinations CmbW(Km|KmMax) from the bounds: 
 

Low bound = CmbA(Km|KmMax)  =  Number of combinations for 
Km rods containing Minimal 
Critical Shape A 

High bound = CmbS(Km|KmMax)  =  Number of all random 
combinations for Km out of 
KmMax rods 

 
Logarithmic interpolation algorithm will be used to calculate the weighted 
average: 
 

CmbW(Km|KmMax) = CmbA(Km|KmMax),  if Km  Km1 (6.4) 
 = Exp[w1∙Ln(CmbA(Km|KmMax))  +  

w2∙Ln(CmbS(Km|KmMax))], if Km1 < Km < 
Km2, with  

  w1 = (Km2 – Km)/(Km2-Km1) and  
  w2 = (Km – Km1)/(Km2-Km1)  = 1 - w1 
 = CmbS(Km|KmMax) ,  if Km  Km2 

 
Within interpolation range Km1  Km  Km2 applies CmbA  CmbW  CmbS. 
The interpolation is linear on logarithmic scale with respect to failure 
multiplicity. 
 
The weighted average is aimed at taking into account the possible inclusion of 
other types of dense critical patterns besides of Minimal Critical Shape at 
increasing order of failure combinations. The start of interpolation range can be 
set as Km1 = 2∙KmA. 
 
The presented formula for CmbA(Km|KmMax) is an overestimation at large 
multiplicity because of double-counting instances of Minimal Critical Shape. The 
overestimation is, however, small below break-even point KmB at which the 
approximation exceeds the number of random combinations CmbS(Km|KmMax). 
See Figure 6-2 which compares the number of combinations in case of Minimal 
Critical Shape of 2x2 rods and Barsebäck 1 and 2 core with KmMax=109 [SKI 
Report 96:77]. It is relatively simple for this regular shape to find out by sampling 
technique the fraction of random patterns containing it once or several times. The 
comparison is made on relative logarithmic scale because dealing with huge 
numbers on absolute scale, e.g. CmbS(40|109 =  1.03E+30. Insights from the 
applications show advisable to set the end of interpolation range as Km2  KmB. 
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Compare to the interpolation range [6, 15] used in F1/F2 reference application 
[SKI Report 2006:05, Section 5.4.2 and Figure 5-4]. 
 
Limited sampling of failed rod patterns was performed in the recent analysis 
upgrade for Forsmark 1 and 2 [NPSAG 01-04-RADDA]. The reactivity influence 
of failure patterns was assessed by calculated multiplication factor in selected 
core conditions. The experiments showed that the treatment of scattered failure 
mechanisms by interpolation rule is reasonable, seemingly on conservative side. 
 
Count NA can be derived relatively easily manually by figuring out different 
placements of Minimal Critical Shapes on core map. For example, in the case of 
Forsmark 1 and 2 core and three shapes defined in Figure 6-1 it is obtained NA = 
1830, composed from the following contributions for the different shapes:  
Shape 3.1: there are 131 different linear placements and 2 different rotations, 

i.e. 131*2=262 (mirrored image equals to the initial one) 
Shape 3.2: there are 136 different linear placements and 4 different rotations, 

i.e. 136*4=544 (mirrored image equals to the initial one rotated by 
180 degrees) 

Shape 3.3: there are 128 different linear placements, 4 different rotations and 2 
mirrored image of the basic shape, i.e. 128*4*2=1024. 

 
Weighted Pts entity can be obtained from (for Km  KmA): 
 

�������|������ � ∑ �������|���������������� � ������|������ (6.5) 

The net result for scattered failure mechanisms is so derived as PtsW(KmA). The 
second part of failure criterion is thus not directly used in the probability 
calculation. A remarkable difference between KmB and KThr indicates that the 
two parts of failure criterion may not be compatible. In case of KThr  KmB the 
end of interpolation range can be conservatively forced to Km2 = KThr. In the 
opposite situation with KThr  KmB it is recommended to set Km2 = KmB. It 
must be emphasized that the assessment of KThr is much based on engineering 
judgment, and is diffuse in the sense that among the random combinations of 
given number of failed rods an increasing part of combinations is critical as the 
function of increasing failure multiplicity. 
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Figure 6-2 Number of combinations in case of Minimal Critical Shape of 2x2 rods 
and Barsebäck 1 and 2 core containing 109 rods. Sampling results are 
presented by using following entities/definitions: 
One or more hits = Number of sampled patterns of given multiplicity, 

containing at least one Minimal Critical Shape of 
2x2 adjacent rods 

Two or more hits = Number of sampled patterns of given multiplicity, 
containing at least two instances of Minimal 
Critical Shape of 2x2 adjacent rods 

Cmb4 = Number of random patterns of given multiplicity, 
containing at least one Minimal Critical Shape of 
2x2 adjacent rods, analytic approximation 

CmbW = Number of random patterns of given multiplicity, 
being critical, weighted approximation 

CmbS = Number of all random patterns of given 
multiplicity, used for normalization of the 
presented entities 
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6.4 Localized failure mechanisms 

Operational experience indicates CCF types which affect more likely neighbor 
rods in comparison to rods separated by distance. The position dependence can be 
of the following two types: 

 radial correlation type, failures concentrate symmetrically around some
position

 band correlation type, failures concentrate within a band around the core,
i.e. at about the same distance from the core centre

The physical background and observations of position dependence are discussed 
more in [SKI TR 96:77, SKI Report 2006:05]. 

ECLM implementation assumes that some rod is firstly and/or most severely 
affected, called as reference rod and denoted as Rod . The rod positions under 
influence form inner and outer shells, see Figure 6-3. Band correlation is 
simplified in modelling by two rows of adjacent rod positions, Rod  in the 
second row. There is an equivalent mirrored configuration where Rod  is in the 
first row, closer to the core centre if that is in upward direction in the diagram, 
Figure 6-3. This degree of freedom is implicitly taken into account in the fraction 
of band correlated type, to be handled in Section 6.5. 

Figure 6-3 Shell layers in modeling of localized CCFs. 

The failures of the rods most adjacent to the reference rod are assumed to be 
stronger dependent and of next adjacent rods weaker dependent. Dependence 
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beyond outer shell (and band) is neglected. In both types the conditional failure 
probability of neighbour rods given failure of Rod  is dependent on the distance 
from Rod  in the same manner but in radial type the number of failure 
combinations is larger. The mathematical details are described in Appendix 2. 
Main aspects are following: 

 It is assumed as if all observed failures would fall into a type of localized 
failure mechanisms; hence p_tot is set equal to the total component failure 
probability of CRDA (of a given failure mode) multiplied by the number 
of CRDAs; the interpretation of p_tot is, in this context, the probability 
that a localized failure mechanism is present somewhere in the core, one 
rod being most severely affected 

 The different level of dependence is taken into account by different 
parameter of extreme load part p_xti and p_xto for inner and outer shells, 
respectively. The lower conditional probability of outer shell components 
is modelled by a shift of resistance distribution 

 Extreme load part parameter p_xto (outer shell) is set equal to the value of 
p_xtr that has primarily been estimated for randomly scattered failure 
mechanisms; this corresponds to the judgment that the failure probability 
of CRDAs, which are separated by distance, should be similar for 
localized and scattered failure mechanisms 

 The ratio of p_xti/p_xto = 10 for localized failure mechanisms is based on 
judgment; the value of this ratio is less critical than the level of p_xto 

 Correlation coefficients have same values for localized failure 
mechanisms as for scattered failure mechanisms 

It is advisable to present the total failure probability in terms of Psg entities, 
because then the other rods beyond the outer shell are conveniently excluded. 
This unburdens combinatorial analysis and calculations substantially. It has to be 
emphasized, that Psg entities are defined as the probability of specific 
components failing irrespective of the condition of other components beyond 
outer shell (they may either operate or fail). This leads to the following formula: 
 

���� � ∑ ∑ �������� ���� � �������� ����������  (6.6) 

where 
Cmb(Kis, Kos) = Combination coefficients 
Psg(Kis, Kos) = Probability that in addition to Rod , specific Kis 

inner shell and Kos outer shell rods fail 
The array of combination coefficients is derived by Boolean reduction of the 
failure event expression. The derivation starts from the probability expression in 
terms of Minimal Cut Sets: 
 

���� � ������ � ���� � �� ������ (6.7) 

where Mi denotes Minimal Cut Sets, i.e. different placements of Minimal Critical 
Shape completely inside inner and outer shells, including rotated and mirrored 
images. The exact reduction can be obtained by so called Inclusion-Exclusion 
Principle [Henley&Kumamoto, p.320]. It is worthwhile to notice that no 
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truncations or other approximations are involved in this stage. The terms in 
reduced probability expression are arranged with respect to the number of inner 
and outer shell components, yielding combination matrix. Because Rod  is in 
every Minimal Cut Set and in every term of reduced probability expression, it is 
convenient to index by Kis=0 and Kos=0. The reduction process is exemplified in 
Appendix 2. 
 
Regarding the realization of numeric calculations, see quantified cases in [SKI 
TR 96:77 and SKI Report 2006:05]. 
 
The used definition of inner/outer shell configuration has varied in the course of 
applications. This is related to sparse information about CCF events which does 
not give any strong guidance in this aspect. The shell layout of Figure 6-2 has 
been used in the recent applications where the size of Minimal Critical Shape has 
varied from 2 to 6. In the latest upgrade for Forsmark 1 and 2 with more 
optimistic failure criteria, and size of Minimal Critical Shape 9 or 12, the shell 
layout was somewhat extended [NPSAG 01-04-RADDA]. 
 
The introduced extension of CLM proves to behave in a practically consistent 
way, and because of requiring only one additional model parameter, it is still well 
manageable. Admittedly, the estimation of model parameters from empirical data 
is difficult even in the long term because of sparse occurrences of CCFs 
containing position dependence. Thus, the model should in principle be 
considered as a sensitivity analysis tool, which relies much on engineering 
judgment. 
 
6.5 Combining failure mechanisms 

The failure mechanisms were divided in following categories with respect to 
position correlation: 
 

Scatt Scattered failure mechanisms, no position correlation 
LocZ.B/R Localized failure mechanisms, position correlation of 

band/radial type 
 
Probability calculations are performed firstly for each category assuming as if it 
would encompass all failures. The overall result (of a given failure mode) is 
assembled using assessed fractions of categories, schematically: 
 

��� � ������ ∙ ��������|������ � ������� ∙ ���������� � ������� ∙���������� (6.8) 

This rationale is an approximation because the functional failure probabilities of 
categories are not linear in ECLM probability parameters. It is adopted because 
the estimation of parameters specifically for the categories is difficult owing to 
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sparse data. Besides, the approximation rationale makes it easy to perform 
sensitivity analysis with respect to ECLM parameters and category fractions. 
 
6.6 Random sampling method, a proposal 

The development of sampling (simulation) technique-based quantification of the 
failure of reactivity shutdown has been proposed, combining the calculation of 
probability and evaluation of reactivity impact for patterns of failed rods, 
compare to NPSAG project proposal B.4 2007 [NPSAG-CRD-SimulProp]. 
Difficulties of combinatorial analysis tied to analytic approach are bypassed in 
sampling approach.  

 
The use of sampling technique removes the need to express the failure criteria for 
control rods in simplified forms being difficult to verify unless clearly 
conservative. The sampling technique makes possible to consider different fuel 
loading configurations, core edge effects and other core conditions in an efficient 
way which is also expected to contribute to more realistic results in comparison to 
traditional approach. 
 
Prototype experiments show that the sampling approach should be feasible, and 
the execution times not too long with nowadays computers. 
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7 Model Extensions 
This chapter describes special model extensions used in practical applications in 
addition to the extension for localized CCFs (position correlation) of control rods 
and drives, handled in Section 6.4. 
 
7.1 Component failure rate model 

As underlined in basic definition section ECLM suits primarily to model failures 
of standby components at demand (latent failures), owing to underlying physical 
load-strength analogy model. ECLM applications are in fact confined within that 
scope, including safety and relief valves, control rods and drives, scram valves, 
and motor operated and check valves used as isolation valves (in highly 
redundant configuration). 
 
Cases of failure modes characterized by probability of spontaneous occurrence 
per unit of time (failure rate) divide up in two categories: 

 Failures during mission time after initiating event 
 Self-revealing (monitored) failures in normal state, in the absence and/or 

before initiating event 
Latent failures of standby components belong to in basically different category, 
subject to time-dependent modelling by using instantaneous unavailability as will 
be discussed in Section 7.2. 
 
Considering the failure probability over whole mission time, and no repairs 
assumed during mission time, is similar to ordinary failure at demand. The 
physical analogy model also applies though the failures of redundant components 
(including dependent failures) can be time-separated during mission time. 
 
It must be, however, emphasized that the mission time need to be handled as a 
whole, i.e. p_tot shall be associated to failure rate x mission time. It makes 
difference if ECLM is applied directly to hourly rate (o), i.e. failure probability 
per hour (t), with p_tot = o∙t, and the results are thereafter multiplied by the 
number of hours in mission time. From the view of physical analogy model this 
means that failures during consecutive hours are handled as mutually 
independent. The difference is pronounced in low to middle order multiplicity of 
failure, below the order where extreme load connected failures (complete CCFs) 
become dominant and where naturally the total failure probability behaves 
linearly with respect to time. Furthermore, the statistical data for CCFs of mission 
time should be based on the use of CCF screening window which is compatible 
with mission time, i.e. not limited cover to strictly simultaneous component 
events which are often called as shock failures in connection to failure rate based 
model. 
 
The dependence level (ECLM parameters) can differ between demand part and 
mission period. This can be specific to component type and length of mission 
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period. It should also be noted that for standby components like emergency diesel 
generators and ECCS pumps failures at demand and during first operating hour(s) 
can be correlated, i.e. influenced by same failure mechanisms/CCFs. In such 
cases combining the first operating hour(s) with demand part is advisable, 
modelling only failures at later stable operating time separately. 
 
Regarding the second type of spontaneous failures, CCFs of monitored (self-
revealing) failures during normal state are usually neglected as relatively small 
contributors, treating those failures only as contributors to maintenance downtime 
of components. Using ECLM would be rather artificial. CCIs belong also to this 
category. They are recommended to be modelled by explicit causal models like 
fire risk analysis, flood analysis, seismic analysis and specific methods for other 
types of external hazards. It is theoretically feasible to model a CCI by triggering 
event with an occurrence frequency per unit of time, and conditional probability 
of damages to redundant components (dependent failures per demand) modelled 
by ECLM. 
 
7.2 Time-dependent component unavailability model 

Time-dependent extension of ECLM has been used in risk monitoring and 
follow-up analyses, and in the evaluation of test arrangements. The extension is 
based on so called q+∙t –model used as time-dependent component model. The 
instantaneous unavailability of a standby component is expressed in the following 
form: 
 

       LastTests
tt ttqeq1qtu LastTests     (7.1) 

where 
q = Time-independent part of unavailability 

s = Standby failure rate 
tLastTest = Last test or demand before time point of consideration t 

The approximation represents a linear model which can be used in practical 
applications without problems of accuracy. Failure data are needed from similar 
components for at least two different test intervals in order to estimate both 
parameters q and s [TI_Opt88]. 
 
Auxiliary parameter xTI is introduced to describe the relative portion of time-
independent part with respect to unavailability at test: 
 

xTI = q/u(T) = q/(q + s∙T) (7.2) 

s = (1 - xTI)∙u(T)/T 
where 
T = Test interval, or generally mean time between test or demand 
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Conceptual basis for using ECLM is like following. A common load (demand) 
occurs in the end of standby time. Component condition is not known during 
standby. Failed component state can exist at the beginning of standby time, or be 
entered during standby time or realize in the end of standby time at demand. 
Component events need not be simultaneous. The probability of failure end states 
increases as the function of standby time. 
 
The simplest way to implement time-dependent modelling for ECLM is to handle 
probability parameters {p_tot, p_xtr} by using the linear model, and to keep 
correlation coefficients {c_co, c_cx} as constant because their variability has a 
smaller influence. Generic insights indicate that dependence level use to increase 
for longer test/demand intervals of standby components. It is believed that this 
behaviour has still only small influence in comparison to the relevance of 
correlation coefficients used for the case. Compare to initial more thorough 
discussion of the time-dependent extension in [TVO_SRVX, Section 1]. More 
recently the described approach has been used for the analysis of alternative test 
arrangements of SRVs in Olkiluoto 1 and 2. 
 
Ordinary estimation of time-dependence for extreme load part parameter p_xtr is 
practically impossible due to lack of sufficient statistics. Because the two 
probability parameters are usually much inter-related it makes sense to assume 
same linear behaviour of time-dependence in relative manner, and same relative 
portion of time-independent part xTI first obtained for total component failure 
probability: 
 

p_tot(0) = xTI∙ p_tot(Tm) (7.3) 
p_xtr(0) = xTI∙ p_xtr(Tm) 

Here t = 0 is associated to time point after successful test or demand, and Tm 
denotes mean time between test or demand during power cycle related to 
demand-based estimation of probability parameters. 
 
Linear time-dependent model of probability parameters {p_tot, p_xtr} while 
keeping correlation coefficients {c_co, c_cx} as constant implies that SGFP 
entities inherit an approximately linear behavior as the function of standby time. 
It is hence sufficient to quantify SGFP entities at two time points, most 
conveniently at the beginning of standby time (after complete renewal) at t = 0 
and at t = Tm. ECLM parameters for time point t = Tm can be associated to the 
estimates obtained from the failure statistics, possibly partly based engineering 
judgment. In principle, with abundant data, the parameters of time-dependent 
extension could be estimated by using analogously extended Likelihood 
Function. 
 
The proportionality assumption with equal xTI cannot be generally applied for 
SGFP entities even though – with above discussed assumptions – they are crudely 
linear with respect to time over range [0, 2∙Tm]. Sensitivity calculations show that 
the slope of relative change increases for increasing failure multiplicity. (This 
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property actually means increasing level of dependence as the function of standby 
time which makes common sense, compare to the earlier discussion of this 
aspect.) As a corollary, SGFP entities really need to be calculated at two time 
points. Owing to linear transformations between different SGFP entities it is 
mathematically equivalent to use any of them as primary entity for time-
dependent calculation. 

Time-dependent and time-independent parts can be modelled also separately, 
forming two CCF groups corresponding to the failure modes. Furthermore, if 
time-independent part is considered negligible, the extension can be adapted to 
hold only time-dependent part. 

7.3 Asymmetric CCF groups 

ECLM can be extended in various ways to handle non-homogeneity (asymmetry) 
within a CCF group. The model load can be decomposed into parts that are 
specific to different subgroups. Alternatively, the component resistances can be 
shifted relatively to each other. These techniques can also be combined. A 
specific type of extensions to asymmetric case was already presented for 
localized CCFs of control rods and drives in Section 6.4. 

Another type of extension is presented here for the situation where the CCF group 
constitutes of two subgroups of differences in component design, like old 
components and new components with some design improvements. In addition, 
different component age breaks some dependencies between the design 
subgroups. This type of extension has been applied in modelling of SRVs of 
Olkiluoto 1 and 2 after modernization where new SRVs were installed in addition 
to old SRVs. 

It is assumed, that fraction zAB of CCF mechanisms are common to subgroups A 
and B. The assumed decomposition of CCF mechanisms is described in ECLM 
by the following extended stress distribution:  

fStress(xA, xB) = (1 - zAB) . fA(xA) . fB(xB)  + 
zAB . fAB(xA) . (xB - xA) (7.4) 

where 

()  = Dirac’s delta-function 

All stress distributions for the subgroups and their combination (on the right hand 
side) are assumed identical, while the resistance distribution of subgroup B is 
shifted relative to subgroup A (fixed as base group) in order to describe the 
reliability difference. Differing total component failure probability is 
accomplished in this way. Components of subgroups have in this extension 
different parameter p_tot while other ECLM parameters are same. Design 
diversity is described by fraction zAB in addition to difference in total component 
failure probability. 
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Due to the linearity of the stress-resistance expression in ECLM, the above 
compound stress function translates into similar decomposition of SGFP entities, 
giving the probability that specific number kA, kB of components fails in 
subgroups A, B, respectively (size of whole group is n = nA + nB): 
 

PsgSys(kA, kB) = (1 - zAB) . PsgA(kA) . PsgB(kB)  + 
zAB . PsgAB(kA, kB) (7.5) 

Index ‘Sys’ refers to system (whole group) failure. PsgSys and PsgAB are two-
dimensional arrays. Other SGFP entities have corresponding definition in the 
asymmetric case of two design groups: 
 

Peg(kA, kB|nA, nB) = P{ Specific kA, kB of the components fail in 
subgroups A, B, respectively, while the other 
components survive} (7.6) 

Pes(kA, kB|nA, nB) = P{ Some kA, kB but no more of the components 
fail in subgroups A, B, respectively } 

Pts(kA, kB|nA, nB) = P{ Some kA,  kB or more of the components fail in 
subgroups A, B, respectively 

These can be derived from Psg-entities by using transformations that are 
straightforward extensions of the transformations in symmetric base case (one-
dimensional SGFP arrays). The dimensions are treated independently in 
combinatorial analysis of two-dimensional SGFP arrays. Compare to similar 
extension in [TC_PASDG]. 
 
It is equivalent with the described approach to model separately the failure and 
CCF mechanisms affecting the whole group homogeneously, and separately those 
affecting exclusively design subgroups. CCF groups are formed for all 
components and for each design subgroup, and the groups are assumed mutually 
independent. The results can be combined in PRA fault trees, or off-line in the 
presented array form. 
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8 Comparison with Alternative Models 
Insights of an earlier model review and comparison will be shortly summarized 
here, more details are presented in Ref.[SKI TR-91:6, HR_CCFRe]. 
 
The mostly used CCF models, Multiple Greek Letter Method (MGLM) and 
Alpha Factor Method (AFM), were already discussed in Section 4.4 with regard 
to advantages and drawbacks in handling demand subgroups and constructing 
interface to PRA models. A remarkable drawback of AFM and MGLM is the 
addition of a new model parameter for each degree of redundancy. For CCF 
groups of more than 10 components there becomes unnecessarily many 
parameters when compared to in which detail actual data exists about high 
multiplicity failures and dependencies. Leaving away some of the intermediate 
parameters results in a model which is difficult to track with respect to whether 
the event combinatorics is handled properly (experiments in this direction are 
discussed in [HR_CCFRe]). Handling of a large number of Alpha Factors or 
MGLM parameters would also be very laborious because they are not subgroup-
invariant.  
 
This contrasts to ECLM, which includes four parameters, fulfilling the desired 
property of subgroup invariance.  
 
The more viable alternatives for a CCF model in highly redundant cases can be 
found among ordinary parametric models. This concerns specially the Binomial 
Failure Rate Model and its variant, Multi-Binomial Model (MBM), adapted to 
demand failure probability model [HR_CCFRe]. As MBM is defined in terms of 
SGFPs, it fulfils the desired property of subgroup invariance. However, more 
than one nonlethal shock term seems to be needed in order to more generally 
describe dependence patterns in CCF groups of sizes above n=10, which makes at 
least six model parameters. 
 
In the connection to the recent review of ECLM, so called Beta CCF Method was 
proposed. This model contains only two parameters. It is thus a trivial conclusion 
that this proposal cannot be adequate for modelling of CCFs in highly redundant 
systems, see [NKS 90-2003]. 
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9 Discussion of Experiences 
The principal advantage of ECLM is that the stress-resistance expression is a 
comprehensive description of the dependence mechanisms for any group of 
identical components – limited only by the simplifications in the stress and 
resistance distributions used for a practical implementation of the concept. In 
principle, all shared caused mechanisms can be covered by the common stress 
variable and its distribution. But also indirect CCF mechanisms such as 
systematic degradation (e.g. due to variations in operating environment or 
maintenance quality) can be effectively described by the stress distribution. On 
the other hand, resistance distribution provides room for variation from 
component-to-component. Therefore, ECLM has expressive power of more 
general type than the approaches based on CCF basic event model. 

ECLM is a particular specialization of the stress-resistance expression as 
described in this report. It contains four model parameters but proves nevertheless 
rather flexible to practically adequate description of dependences in internally 
homogeneous groups up to the extent as there are available statistics of high order 
failures. 

ECLM applies well to the cases where the time variable can be reduced to the 
consideration of failures at a random time point, at which a demand is imposed on 
standby components, and where the component operability/failure conditions can 
be assumed equal and symmetric within the group. The model can also be applied 
to failure over mission time. 

Further extensions of the stress/resistance distribution model can be made when 
the standby components are tested with different intervals or non-symmetric time 
scheme. Also, there may exist design diversity which breaks the internal 
symmetry. ECLM adapts well to extensions for non-homogeneous groups, for 
example, in order to describe asymmetric diversity against CCF mechanisms. 
CCF mechanisms may also be localized in such a way that adjacent components 
are more likely affected than the component separated by distance such as in the 
case of control rods and drives. 

The main limitation is generally sparse statistical data of CCFs which problem is 
shared by all parametric CCF models. The problem is pronounced with the model 
extensions because the additional model features should be verified by 
operational experience. For the time being, much is based on engineering 
judgment. The implementation of Bayesian estimation methods can help to utilize 
available statistics and related knowledge more efficiently. Further development 
is especially desired on techniques to combine information from different sources 
taking into account the evidence about the impact of design differences and CCF 
defence differences. 
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A1-1 Stress-Resistance Distributions 
The common load is constructed of two distribution parts, compare to Fig.A1-1 
(the diagram uses rescaled variable y, which is defined in Section A1-2): 
 

fS(x)  = wb . fSb(x)   + wx . fSx(x) (A1-1.1) 

where 
fSb(x) = Base load part, density function 

  =  

fSx(x) = Extreme load part, density function 

  =  

 
Z() denotes (0,1)-normal distribution density function. The stress distributions 
are basically determined by means Sb,Sx and standard deviations Sb,Sx: 
Weight factors sum up to 1: 
 

wb  +  wx   =  1 (A1-1.2) 

 

Figure A1-1 Schematic presentation of the stress-resistance distributions. 
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Correspondingly, the total single failure probability is divided up into base load 
and extreme load parts: 
 

psg(1)  = p_tot 
 = p_bas  + p_xtr 
 = wb . P1b + wx . P1x  (A1-1.3) 

 
where p_tot and p_xtr are chosen as model parameters. The auxiliary variables 
P1b and P1x denote the respective probability integral: 
 

 (A1-1.4) 

 
The resistance distribution is determined by mean R and standard deviation R: 

 

 
F() denotes standard (0,1) normal distribution function. For practical 
convenience its complementary function 1 – F() is preferred in the numeric 
analysis, and will be denoted as: 
 

PNorm()  = 1 - F() (A1-1.5) 

 
The reverse function of PNorm()will be denoted as xNorm(). 
 

A1-2 Rescaling, Standard Deviations 
The stress/resistance variable x will be rescaled with respect to the interval 
[Sb,R] through the following substitution: 
 

 (A1-2.1) 

with corresponding renormalization of standard deviations: 
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The rescaling converts the argument in the base load part into y/dSb, and in the 
extreme load part in the following way: 
 

 (A1-2.2) 

Where 
 
yxm  = Rescaled mean point of the extreme load part 

 =  (A1-2.3) 

 
Similarly, the argument in the resistance distribution is converted in the following 
way: 
 

 (A1-2.4) 
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A1-3 Integral Expression 
The stress/resistance probability integral is converted by the rescaling into the 
following form: 
 

 (A1-3.1) 

 

A1-4 Correlation Coefficients 
The following correlation coefficients are defined in analogy to the original CLM 
parametrization, and these are set as model parameters: 
 

 (A1-4.1) 

 

 
Alternative, the ratios dR/dSb, dR/dSx could be used as “dependence parameters”. 
However, c_co, c_cx are preferred because their value range makes sense 
together with fact that value 0 means independence and 1 total dependence, 
compare to the discussion of the parameter choice in the original introduction to 
CLM. 
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A1-5 Total Single Failure Probability 
The connection to the decomposition of the total single failure probability in 
Eq.(A1-1.3) means that 
 

p_bas = p_tot   -   p_xtr 

 =  

 =  (A1-5.1) 

 =  

 = wb . P1b  

where the following auxiliary variable is defined 

xn_bas  =  

 
Similarly 
 

p_xtr =  

 =  (A1-5.2) 

 =  

 = wx . P1x  

 
where the following auxiliary variable is defined 
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A1-6 Reverse Solution for Distribution 
Parameters as the Function of Model 
Parameters 

The parameters p_tot, p_xtr, c_co, c_cx are chosen as macro parameters of 
ECLM. For the numeric integration of the stress/resistance equation, the 
distribution parameters are obtained by the following reverse solution. 
 
In the first step of the reverse solution the following relationship is obtained from 
Eq.(A1-5.2) for variable P1x: 
 

P1x  = PNorm(xn_xtr) 

and then with the reverse solution, using the normal distribution point 
xNorm() as the function of cumulative distribution value: 

xn_xtr  = xNorm(P1x) 

 =  

 =  (A1-6.1) 

 
In the last stage, the relationship given in Eq.(A1-4.1.b) was used. 
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The total number of parameters is basically 8: two for each three normal 
distributions and two auxiliary weights wb and wx. But these weights are bound 
by the following normalization equation: 
 

wb + wx = 1 (A1-6.2a) 

 
which is equivalent to 
 

 (A1-6.2b) 
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ybm = 0 (A1-6.3a) 

 
Another choice to fix the scale is the placement of the mean of resistance 
distribution: 
 

yRm = 1 (A1-6.3b) 

 
This choice does not yet reduce the generality of implementation because the 
relative spread of the three distributions and the placement of extreme load part as 
well as the ratio between extreme and base load part effectively determine the 
outcome probabilities. So there are 5 effective free variables at this point. 
 
The placement of the extreme load distribution proved out to be difficult to 
express by a meaningful model parameter. After a series of trials with many 
different parametrization alternatives, it came up that the overall relationship 
between the parameters is greatly simplified by the following anchoring: 
 

yxm = 1 - dR (A1-6.3c) 

 
This choice reduces the coupling between model parameter pairs {p_tot, c_co} 
and {p_xtr, c_cx}, which showed up practically convenient.  
 
The mean of fSx is thus anchored at a distance of one standard deviation of the 
resistance distribution, to the left from the mean of the resistance distribution 
(usually between means of fSb and fR because in practical cases dR < 1). The 
chosen anchoring implies that, see Eq.(A1-6.1): 
 

 (A1-6.4.a) 

and consequently, P1x becomes dependent of the extreme load part 
correlation only: 

 (A1-6.4.b) 

 
Fixing the distribution placements in the above described way means that there 
are left 4 degrees of freedom, which are represented by the four defined model 
parameters. At his point the following four distribution variables remain still to be 
expressed in terms of the model parameters: 
 

{ wx, dSb, dSx, dR } (A1-6.5) 

 
The relative placement of base load mean to the left from resistance mean implies 
that P1b  0.5, similarly p_tot is limited below 0.5. There are correspondingly 
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theoretical limits of other parameters close to the extreme values beyond 
practically meaningful ranges, not discussed here.  
 

A1-6.2 Expressions for the remaining distribution variables 
The open distribution variables in set (A1-6.5) will then be expressed in terms of 
macro parameters. Firstly, by using Eqs.(A1-1.2-3): 
 

wx  =  (A1-6.6.a) 

wb  = 1  -  wx  (A1-6.6.b) 

P1b  =  (A1-6.6.c) 

 
Using Eq.(A1-5.1) and inserting c_co from Eq.(4.1.a): 
 

xn_bas = xNorm(P1b) =   (A1-6.7.a) 

   =   (A1-6.7.b) 

   =   (A1-6.7.c) 

 
These lead to the following solutions: 
 

dSb =   (A1-6.8.a) 

dR =   (A1-6.8.b) 

 
Finally, rearranging Eq.(4.1), the following expression is derived: 
 

dSx =  (A1-6.9) 
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A1-7 Summary of Variable Expressions 
In summary, the required set of distribution variables for the rescaled 
stress/resistance expression, Eq.(A1-3.1), can be derived through the following 
steps: 
 

Calculation step Compare to Eq. 

wx  =    with    (A1-6.4.b) 

wb  = 1  -  wx   (A1-1.2) 

dSb = co_c.
bas_xn

1    with xn_bas  =  xNorm(P1b) (A1-6.8.a) 

   and 
b

b1 w
xtr_ptot_pP 

  (A1-6.6.c) 

dR = co_c1.
bas_xn

1
   (A1-6.8.b) 

dSx = 
cx_c1

cx_c.dR 
  (A1-6.9) 

yxm  = 1  -  dR  (A1-6.3c) 

 
In HiDep program, the integration is performed numerically by using the standard 
approximations for the normal probability distribution F() = 1-PNorm() and its 
reverse function xNorm(), as presented in [A&S, Sections 26.2.17 and 26.2.23]. 
 

A1-8 Sensitivity to Model Parameters 
As already discussed the used definition of model parameters has the advantage 
that parameter pairs {p_tot, c_co} and {p_xtr, c_cx} have intuitively anticipated 
influence on outcome probabilities and dependence profile, and weak mutual 
coupling is achieved. Certain relationships exist, however. They are good to 
know because else the behaviour of model outcome may look unexpected, e.g. in 
sensitivity analyses, even though the peculiarities are quantitatively small. This 
section continues the general discussion in Report Section 3.2. 
 
The two probability parameters p_tot, p_xtr are straightly present in the 
breakdown of the total component failure probability, and in that way related: 
 

p_tot = p_bas + p_xtr 
= Psg(1) 
= (1-wx)∙P1b  +  wx∙P1x (A1-8.1) 
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The choice of p_tot as one model parameter is a practical must. In sensitivity 
analyses for parameters it is meaningful to allow p_tot float when varying 
parameters p_xtr, c_co and c_cx, and retain probability level of base load part by 
keeping p_bas constant, or preferably P1b as constant in order to isolate the 
coupling of weight factors as will be discussed later in more detail. 
 
Weight factor wx is relatively simply connected to extreme load part parameters 
with linear connection to p_xtr and rather weak negative coupling to c_cx within 
the typical range of parameters: 
 

�� � �����
��� � �����

������√������� (A1-8.2) 

Multiple failure probability can be presented in the following form in order to 
show parameter relationships:  
 

Psg(m) = (1-wx)∙Pmb(dR, dSb)  +  wx∙Pmx(dR, dSx) (A1-8.3) 

 
Here the shorthand notations Pmb and Pmx are used for the integration terms. The 
derivation of the above breakdowns uses several equations handled in the 
previous sections. The base load part is indeed primarily determined by 
parameters {p_tot, c_co} as can be verified from Eqs.(A1-6.6 and 6.8) and taking 
into account that p_xtr is small compared to p_tot, and wb = 1wx close to one in 
practical cases. 
 
Common normalization of correlation coefficients by using dR implies that 
correlation coefficient c_co influences all standard deviations while c_cx 
influences only dSx, compare to summarized expressions in Section A1-7. As a 
consequence, model parameters p_xtr and c_cx influence primarily extreme load 
part. They affect base load part via normalization wb = 1-wx but only weakly 
because wx is in practical cases small or very small. Parameter p_xtr influences 
linearly as a relative factor via wx to extreme load part probabilities Psgxtr(m), 
being thus the simplest model parameter to understand with respect to 
relationships. Parameter c_cx influences via wx probability level (rather weak 
negative coupling) and via dSx to dependence profile of extreme load part 
(positive coupling to Psgxtr(m) for m>1). The influence of parameter pair {p_xtr, 
c_cx} concentrate thus on extreme load part, being much simpler than influence 
of parameter pair {p_tot, c_co}. 
 
It is not of interest in practice to perform sensitivity analysis with respect to p_tot 
(or p_bas), keeping other model parameters as constant. From a theoretical point 
of view it is worth to notice that p_tot (or p_bas) affects base load part directly 
via P1b but also all standard deviations. This has remarkable influence on the low 
order probabilities. The influence to extreme load part is practically small. 
(Couplings are globally positive.) 
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It is important to notice that strictly taken it is not possible to keep both p_bas = 
(1- wx)∙P1b and P1b constant when varying parameter pair {p_xtr, c_cx} except if 
wx is kept constant, and parameters p_xtr and c_cx are varied as coupled via 
Eq.(A1-8.2). It is preferred to retain the probability level of base load part by 
keeping P1b constant in individual variation of p_xtr or c_cx, because then 
standard deviations are less affected. 
 
In summary following specific remarks can be presented for parameter variations. 
 
p_xtr: Sensitivity to model parameter p_xtr is simple, especially if probability 

level of base load part is retained by keeping P1b constant. In 
combination with c_co and c_cx constant this implies that distribution 
variables are unchanged, and Psgxtr(m) varies linearly with respect to 
p_xtr. The probability level of base load part changes very little in 
opposite direction because of small influence via weight factors. 

c_cx: Parameter c_cx affects first of all the variance of extreme load (dSx) 
which is seen in Psgxtr(m) in growing degree at increasing multiplicity, 
i.e. as slope change (positive coupling). It influences also the probability 
level of extreme load part via weight factor wx (negative coupling) but 
this influence can be masked by the stronger influence via distribution 
variance. The probability level of base load part changes even for varied 
c_cx, also very little in opposite direction because of small influence via 
weight factors. 

c_co: Parameter c_co affects all standard deviations. The main impact is, 
however, the slope change in the dependence profile of base load part 
(positive coupling). Other influences are relatively small, usually even 
very small. 

The behavior of Psg entities in parameter variations is intuitively simple to 
anticipate for base load part, extreme load part and in total. The changes for other 
SGFP entities are complicated because of interference from combinatorial 
aspects. The behaviour of Pts(1|n) can look in the first instance anomalous in 
certain parameter combinations as it can decrease for increased c_co and vice 
versa while at other orders Pts(m|n) is positively coupled to c_co. This aspect can 
be illustrated in simplest way in a system of two components where (Pm denotes 
Psg(m)) 
 

Pts(1|2)  =  2∙P1 – P2, and Pts(2|2)  =  P2 (A1-8.4) 

 
If dependence among the components is increased (P2  0) so that P1  ½∙P2 
then Pts(1|2) will decrease “surprisingly”. Similarly, the increase (decrease) of 
parameter c_cx can in certain cases cause decrease (increase) of Pts(m|n) at low 
to intermediate order (negative coupling) while else the coupling is positive.  
 
It has to be mentioned that earlier the limited numerical accuracy of ECLM 
integration procedure disturbed the output of sensitivity calculations. At this point 
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the numerical approximations used for normal probability functions can cause 
some small but qualitatively disturbing discrepancies in parameter variations. 
Especially, the inverse XNorm(•) is not very accurate, compare to last paragraph of 
Section A1-7. It would be good to replace that with a better approximation, 
preferably such one that XNorm(PNorm(x)) is sufficiently close to x. The problems 
with numerical accuracy can become pronounced at extreme values of model 
parameters. The numerical accuracy can also affect derived maximum of 
likelihood function in cases with flat surface top; the maximum is then also much 
uncertain from statistical point of view. 
 
All in all, it is advisable to track changes in distribution variables during 
parameter variations in order to have control what is happening in the sensitivity 
calculations. 
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Appendix	2	

Localized	CCF	Mechanisms	of	Control	Rods,	Application	of		
Common	Load	Model,	Mathematical	Details	

This appendix presents the mathematical details of model extension to 
handle localized CCFs of control rods. ‘Report’ is used here to refer to the 
contents of the report body. 
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A2-1 Modelling Assumptions 
A2-1.1 Scope 
The extension for modelling localized CCF mechanisms of control rods is 
generally described in Report Section 6.4, including the reasoning behind key 
assumptions. This appendix focuses on the mathematical details, including 
parametrization of the extension. This presentation updates earlier description 
[CLM-LocZ-1995]. This presentation serves also theoretical basis for the 
practical calculation tool in HiDep Toolbox. Therefore, variable notation 
resembles the convention of programming languages. 

A2-1.2 Basic concepts, shell layout 
Localized CCF mechanisms are basically assumed to first affect one control rod 
denoted as Rod . The failure can next escalate to adjacent rods which constitute 
inner shell in the two-dimensional map of control rods, in horizontal cross-section 
of core, see Figure A.2-1. The next adjacent rods of outer shell can fail with 
lower conditional failure probability. In the model extension this is accomplished 
by shifting resistance distribution to right but else retaining the model setup. This 
means one additional model parameter. 
Retaining the standard deviations is equivalent to assuming that correlation 
coefficients are same for outer and inner shell components. The model extension 
is built on dividing the CCF group into two subgroups. The first affected 
component (Rod ) is handled belonging to the subgroup of inner shell 
components. The other subgroup is constituted of outer shell components.  
Failure criterion is defined by using Minimal Critical Shape, and requiring that its 
placements have to contain Rod . Failures beyond the two shells are neglected, 
i.e. null conditional failure probability is assumed for eventual placements of
Minimal Critical Shape which contain distant rod positions (and Rod ).
Localization (position correlation) is divided up in two types, radial and band
correlated types, each with specific shell layout. Compare to Report Figure 6-2
which shows the configurations used in recent applications. Indexing of relative
rod positions is specific to shell layout configuration and correlation type
similarly as the set of different placements of Minimal Critical Shape.

Figure A2-1 Shell model of localized CCFs. 

Y9
X2 X5 Y5

Rod X0 X1 Y1
Inner shell     X8 Y12
Outer shell  Y8
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A2-2 ECLM Probability Expression and 
Parameters 

A2-2.1 Probability expression 
The probability that specific number of inner shell components (kis) and outer 
shell components (kos) fail is obtained by the following integration: 

������������ ���� �	 �A2‐1�	
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Compare to the analogous expression using rescaled variables for the base 
implementation in Appendix 1, Eq.(A1-3.1). Here yom denotes the mean of the 
shifted resistance distribution for outer shell components, see Figure A2-2. 

The failure of Rod  is represented by indexes (0, 0). It is mathematically 
handled as a member of inner shell CCF subgroup. PsgLocZ(-1, 0) presents no 
failure event (equal to one). Elements (0, kos) for kos  0 represent theoretical 
failure combinations of Rod  and some outer shell components and no inner 
shell components. These are virtual cases because contributing failure cases 
(relevant placements of Minimal Critical Shape) all contain one or more inner 
shell components. This is well illustrated in the example in Section 3.  

The probability calculations can be arranged by using Psg entity, thus the other 
SGFP entities are not needed in the quantification of localized CCF mechanisms 
as will be explained in Section 3. It should be noticed that in eventual 
transformations the range of kis is [-1, nis] while kos runs over normal range [0, 
nos]. 
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Figure A2-2 Stress and resistance distributions of the model extension. 

A2-2.2 Inner shell dependence parameters 
The dependence among inner shell group is modelled by parameter pair {p_tot, 
c_co} for base load part and by parameter pair {p_xti, c_cx} for extreme load 
part similarly as in the base implementation of eCLM. For improved clarity the 
probability parameter of extreme load part is denoted here as p_xti for inner shell 
components. This notation ensures consistency with using p_xto for the 
probability parameter of extreme load part of outer shell components, a new 
model parameter. The distribution variables – for common stress and for 
resistance distribution of inner shell components –are connected in the same way 
to the model parameters of inner shell group as in the base implementation, the 
connecting equations are presented in Appendix 1. 

It is peculiar to the extension (actually to the used indexing) that total component 
failure probability in inner shell group is represented by PsgLocZ(0, 0) = p_tot, i.e. 
it is associated to the failure of Rod , not taking into account the status of other 
components. It has similar breakdown to base load and extreme load parts as in 
the base implementation which was discussed in Appendix 1. It should be noticed 
that element PsgLocZ(1, 0) represent the failure of Rod  and one specific inner 
shell component. The issue of total component failure probability will be 
discussed further in Section A2-2.4.  

A2-2.3 Outer shell dependence parameters 
Component resistance distribution is shifted to right for outer shell components in 
comparison to inner shell components, compare to Figure A2-2. The mean is 
placed at: 
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Auxiliary variable uout has value  1, similarly yom per definition. The first ‘1’ on 
the right hand side represents the mean of resistance distribution for inner shell 
components. The shift of resistance distribution implies that the probability level 
of outer shell components is lower than for inner shell components. 
 
Total failure probability of outer shell components is represented by PsgLocZ(-1, 
1), and denoted here by p_toto. Its breakdown is following, compare to 
Appendix 1, Eqs.(A1-5.1 and 2): 
 

������ � �� � ����� � ���
����� ����

� � �� � ����� ������������� ����
�	 �A2���	

Load fractions wb and wx are same as for inner shell components related to the 
assumption that stress distribution is common. The latter term of the breakdown 
is defined as the probability parameter for extreme load part of outer shell 
components p_xto, a new model parameter. It can be further developed in the 
following way: 
 

����� � �� � ����� �������������������������� ����
� �A2��� 

� �� � ����� � ���� � ��
����� � ���

� 

� �� � ���������� � ������� 
Auxiliary variable xn_xtr is defined with the following connection to probability 
parameter for extreme load part of inner shell components, here denoted as p_xti, 
compare to Eqs.(A1-5.2 and 6.3.c): 
 

������ � √� � ���� � � ���
���� ����

	 �A2���	
����� � �� � �������������	

Reduction in the probability parameter for extreme load part becomes thus: 
 

�����
����� �

�������������������
������������� 	 �A2���	

Auxiliary variable uout can be solved using the last equation sets into the  
following way: 
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������������� �

������ � ������������� �
������������� � (A2-7) 

Mean ymo can then be expressed in terms of model parameters using its definition, 
Eq.(A2-2). Other distribution variables can be obtained from model parameters in 
the same way as in the base implementation. Their derivation is summarized in 
Appendix 1, Section 7. 
 
It is of interest to develop also the first term of the breakdown in Eq.(A2-3), i.e. 
base load part probability of outer shell components. It can be expressed in the 
following way using auxiliary variable xn_bas defined in Appendix 1, Eq.(A1-
5.1): 
 

������ � �� � ��������� � �������	 �A2���	
Altogether following breakdown is thus obtained 
 
 (A2-9) 

������ � ������ � �����
� �� � ��������� � ������� � �� � ����������� � �������	

 

A2-2.4 Further remarks about the model extension 
As described in Report Section 6.4 model parameter p_tot of the extension to 
localized CCFs is first associated to the estimated probability of all types of 
failures anywhere in the core and the results are at the end weighted (normalized) 
by the fraction of localized CCFs. The association uses approximation where 
parameter p_tot is set to n∙<p_sgl>, the product of the number of control rods n 
and estimated total (single) component failure probability of all failure 
mechanisms denoted here as <p_sgl>. Strictly taken, the probability that one or 
more component fails Pts(1|n) should be used. The relationships are 
schematically following: 
 

p����	 �	 n��p�����				������n�	 �A2����	
The approximation n∙<p_sgl> is used because it can be set before calculations 
while Pts(1|n) is dependent on all model parameters. The use of latter one would 
necessitate a cumbersome iteration. The approximation has only small influence 
by side of overall uncertainties of CCF modeling. It has to be also emphasized 
that the other model parameters are primary for the probability of multiple 
failures. 
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When developing the described extension to localized CCFs a more sophisticated 
alternative was considered. The variance of resistance was increased for outer 
shell components in addition to shifting the mean of resistance distribution to 
right. This makes sense in the light of generic insights from CCF mechanisms. 
But the alternative would require two new model parameters: specific probability 
parameter and specific correlation coefficient for extreme load part of outer shell 
components. Because of difficulty in estimating parameters the alternative was 
left pending time of more abundant data. The specific probability parameter for 
extreme load part of outer shell components was chosen as the only new model 
parameter because of its generally higher importance. 
 

A2-3 Minimal Cut Sets and Probability 
Reduction 

This section explains handling of failure combinations for localized CCFs of 
control rods, exemplified by a practical case. 
 

A2-3.1 Minimal Cut Set presentation 
Generic acronym MCS is used here for Minimal Cut Set. It is linked to different 
placements of Minimal Critical Shape, representing corresponding failure event 
combinations which are denoted by using rod positions. 
 
Minimal Critical Shape of 3x2 rods and band correlation type are used here as an 
example owing to possibility of easy manual reduction of MCS presentation. 
Figure A2-3 shows one MCS, i.e. one possible placement of Minimal Critical 
Shape, compare to shell layout description in Report Section 6.4 and Figure 6-2. 
There are three possible placements of Minimal Critical Shape (confined in inner 
and outer shells) differing by linear translation. Correspondingly, MCSs are 
following: 
 

M1	 �	 X0X1X2X3X4X5	
M2	 �	 X0X1X2X5Y1Y2	 �A2�11�	
M3	 �	 X0X3X4X5Y3Y4	

It is convenient to present the total failure probability in terms of Psg entities by 
using so called combination matrix, because then the condition of other rods 
beyond each combination and especially beyond the defined outer shell need not 
be considered. This unburdens the quantification substantially. It should be 
emphasized, that Psg entities are defined as the probability of specific 
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components failing irrespective of the condition of other components (they may 
either operate or fail). 
 

Figure A2-3 Example with Minimal Critical Shape of 3x2 rods and band correlated 
CCFs. 

 

A2-3.2 Derivation of combination matrix 
The derivation of combination matrix starts from the probability expression based 
on MCS presentation: 
 

PTOP		�	 P�M1		‐		M2		�		..		�		MN�	 �A2‐12�	
where Mi denotes an individual MCS. The exact reduction is given by the 
following formula of alternate positive and negative terms. i.e. by so called 
Inclusion-Exclusion Principle [Henley&Kumamoto, p.320]: 
 

PTOP		 �	 S1		‐		S2		�		..		�		�‐1�N‐1	.	SN	 �A2‐1��	
where 
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The reduced presentation is a list of probability terms with positive or negative 
sign. Each term constitutes of the probability of a set of basic events with a 
specific number of inner shell components kis and outer shell components kos plus 
failure of Rod  that is contained in every MCS. When the probability terms are 
sorted and summed according to multiplicity indexes, the total failure probability 
can be expressed in the following way: 

Rod Ø
4 4 5 2 2 Inner shell rods X1 .. X5
3 3 0 1 1 Outer shell rods Y1 .. Y4

Example MCS for Shape6: X0.X1.X2.X3.X4.X5
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���� � ∑ ∑ �������, ���� � �������, ����������

�������� 	 �A2����	
where	
�m��kis,	kos�	 �	 �om�ination	matrix	
�sg�kis,	kos�	 �	 �ro�a�ilit�	of	specific	kis	inner	shell	components	and	

specific	outer	shell	components	kos	and	Rod		failing	
It is worthwhile to notice that no truncations or other approximations are involved 
in this stage of quantification. The precision of the results is limited only by the 
numerical accuracy of practical calculation. 

 

A2-3.3 Example reduction 
The reduction of MCS presentation is shown in Table A2-1 for the example. Only 
three levels S1, S2 and S3 are relevant. The derived combination matrix is rather 
simple: it is presented on the calculation sheet, Figure A2-4. Elements (5,4) 
cancel each other.  
 
Table A2-1 Reduction of MCS presentation for Minimal Critical Shape of 3x2 rods, 

band correlated case. 

 
It should be noticed that the number of MCSs is generally distributed along 
diagonal of combination matrix with kis + kos = kcri, size of Minimal Critical 
Shape. The overall sum of the elements shall equal to one, which also provides an 
important check. 
 
In cases as simple as the example, the reduction can well be managed manually. 
In more complex cases a computerized reduction algorithm can be used. The 
reduction work rapidly escalates as the function MCS complexity. For example, 
in Olkiluoto 1 and 2 case, five adjacent rods being critical and radial correlation 

Level M1 M2 M3 0 1 2 3 4 5 1 2 3 4 Kis Kos Sign
S1 1 1 1 1 1 1 1 5 0 +

1 1 1 1 1 1 1 3 2 +
1 1 1 1 1 1 1 3 2 +

S2 1 1 1 1 1 1 1 1 1 1 5 2 ‐
1 1 1 1 1 1 1 1 1 1 5 2 ‐

1 1 1 1 1 1 1 1 1 1 1 1 5 4 ‐
S3 1 1 1 1 1 1 1 1 1 1 1 1 1 5 4 +

Psg
elementInner shell Outer shell

Minimal
Cut Set

Basic events
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type with of 8 inner shell and 12 outer shell components, the reduction of 
probability function of 40 MCSs took 15 minutes by a PC with i486/66 in the 
beginning of the 90’ies. The corresponding execution time with nowadays’ 
desktop computer is less than one second, i.e. speed increase of three orders of 
magnitude. 
 
The example case is quantified by using the data of reference application to 
Forsmark 1 and 2 [SKI Report 2006:05]. The calculations are presented in Figure 
A2-4. It is of interest to show the quantitative contributions according to S# level: 
 
Table A2-2 S# level contributions in the example case. 

Level Term sum Cumulative Relative 
S1 4.95E-4 4.95E-4 102.7% 

S2 -1.53E-5 4.80E-4 99.5% 

S3 2.42E-6 4.82E-4 100.0% 

TOP 4.82E-4   
 
The result is dominated by first MCS because it is totally contained in inner shell 
while the other two MCSs contain two outer shell components. Compare to 
Psg(5, 0) = 4.82E-4 (coincidentally very close to PTOP) in the results array shown 
in Figure A2-4. Usually in practical cases either the first order approximation S1 
(generally valid upper limit) would be overly conservative and second order 
approximation S1 - S2 (generally valid lower limit) is overly optimistic. Exact 
probability derivation is thus crucial.  
 
  



SSM 2017:11

  Appendix	2	

A2-11 

Figure A2-4 Quantification results in the example case, Minimal Critical Shape of 3x2 
rods, band correlated CCFs. 

HiDep Version 2.5
Extended Common Load Model/Ultra high redundant systems
Avaplan Oy, March 2006

DI F1/F2 - CRDAs, screw insertion exclusively, band correlated CCFs, Shape 6 example
4

CCF group size CLM parameters
KisMax 5 p_tot 9.02E-2 c_co 0.28
KosMax 4 p_xti 2.0E-4 c_cx 0.70

Kcri 6 p_xto 2.0E-5 u_out 3.46

Cmb
Inner Outer shell components Kos=
shell 0 1 2 3 4

Kis=0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 2 0 0 Element
4 0 0 0 0 0 sum
5 1 0 -2 0 0 1

Psg
Inner Outer shell components Kos=
shell 0 1 2 3 4

Not X0 1.00E+0 3.27E-4 8.84E-6 3.80E-6 2.48E-6
Kis=0 9.01E-2 1.33E-4 7.96E-6 3.76E-6 2.47E-6

1 1.75E-2 7.00E-5 7.43E-6 3.73E-6 2.46E-6
2 5.17E-3 4.41E-5 7.07E-6 3.69E-6 2.45E-6
3 1.98E-3 3.17E-5 6.82E-6 3.66E-6 2.44E-6
4 9.11E-4 2.49E-5 6.62E-6 3.64E-6 2.43E-6
5 4.82E-4 2.09E-5 6.46E-6 3.61E-6 2.42E-6 PTOP 4.82E-4
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54321Kis=0

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

0 1 2 3 4 5 6 7 8 9 10

Fa
ilu

re
 p

ro
ba

bi
lit

y

Failure multiplicity Kis + Kos



SSM 2017:11

  Appendix	2	

A2-12 

A2-3.4 Presentation of quantification results 
The quantification results as presented for the example case in Figure A2-4 show 
the calculated Psg array, and functional failure probability PTOP = 4.82E-4. Row 
‘Not X0’ shows PsgLocZ(-1, kos) values, representing virtual cases where no inner 
shell component fails neither Rod , compare to the discussion in 
Section A2-2.1. 
 
The thick curve in the diagram shows the failure probability of inner shell 
components, and thin lines the mixed cases where a specific number of inner 
shell components fail together with one or more outer shell components. 
 
The result of the example is not sensitive with respect to new parameter p_xto, 
because dominated by first MCS as already discussed. In many practical cases the 
results use to be crudely linearly dependent of p_xto. 
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