SKI Report 2008:57

Discrete Feature Model (DFM)
User Documentation

Joel Geier

June 2008

o
ISSN 1104-1374 I
ISRN SKI-R-08,/57-SE

SKI Perspective

Background

SKI engages consultants to perform scientific and technical assessments in order to obtain a good
scientific and technical basis for monitoring the Swedish nuclear fuel and waste management
company’s (SKB) site investigations and reviewing SKB’s long term safety analyses for a spent
nuclear fuel repository. The hydrogeologic conditions at the investigated candidate repository sites
are a part of the site descriptive modelling and an input to the long term safety analyses. Due to the
importance and complexity of the hydrogeolocical conditions and models SKI aims at establishing
independent hydrogeological modelling capabilities. SKI has therefore funded Clearwater Hardrock
Consulting to develop a code for discrete feature modelling (DFM) that can calculate site specific
water flow and particle transport in fractured rock. This code has been and will be used in several
projects. For instance was flow and particle transport modelled for the Forsmark and Laxemar sites
as part of SKI’s and SSI’s review of SKB’s long term safety analysis SR-Can (SKI report 2008:11).

Objective

The objective of this SKI report is to provide a documentation and comprehensive user manual for
the DFM code developed by Clearwater Hardrock Consulting. The manual refers to the version
used in the review of the SR-Can assessment.

Future work

It is planned to use the DFM code in several projects to support the review of SKB’s site
characterisation programme and license application for a spent nuclear fuel repository. One
ongoing project, in which the DFM code is used, is an independent analysis of SKB’s single well
injection withdrawal tests performed at the Forsmark and Laxemar sites. Further code development
may be part of the future modelling projects.

Project information

Project manager: Georg Lindgren
Project reference: SKI2007/92
Project number: 200710205

SKI Report 2008:57

Discrete Feature Model (DFM)
User Documentation

Joel Geier
Clearwater Hardrock Consulting
Corvallis, Oregon, USA

June 2008

This report concerns a study which has
been conducted for the Swedish Nuclear
Power Inspectorate (SKI). The conclusions
and viewpoints presented in the report are
those of the author/authors and do not
necessarily coincide with those of the SKI.

Table of Contents

I INEEOAUCTION. ...eeiiiieeciie ettt et e ettt e et e e et e e s bt e e eba e e sabeeeesbeeesaseeessnssaeeeeeennnssseeas 3
1.1 Geometrical representation of discrete features..........cveeeveerieeiiierieeciierieeie e 5
1.2 SOftWare MOAUIES........cccueiiiiiiieie et 6
1.3 Sequence of steps in a DFM modelling application............ccccceevueerieeiiienieeieeeeieee e, 7
1.4 Conventions used in this manual..........cc.ccoooiiiiiiiiiiii e 10

2 fracgen module for fracture statistical SIMUIAtION.........ccceriiriiiiiniiiiiiee e 11
2.1 fracgen fractures and fraCture SEtS...........cccuierieriiierieeiieiie ettt e e e e e eaaee s 13
2.2 fracgen thinning Of fraCtUIES..........cccuiieiiie et 15
2.3 fracgen block-scale representation of fractures..........ceeevveriieriieniieenieeiiee e 18

2.3.1 GIid SPECITICAION.uviiiiiieeeiieeciee ettt e et et e et e e e ae e e ssbae e abeeessaeeesneeeaeeas 18
2.3.2 Calculation of block-scale properties...........coevueevuienieeiienieeieeniie e 19
2.3.3 Representation by block-scale discrete features..........cceevveeeiveeeeiciiieeeeeeniiieeen. 20
2.4 fracgen fracture set defiNItioNS.........coouiiiiiiiieiiieie e 23
2.4.1 Scalar MOAEIS.......coueiiiiiiiieieeee ettt e s 25
2.4.2 Directional MOdelS...........ooiuiiiiiiiiiiiiee e 28
2.4.3 LLOCAtION PIOCESSES. ..cuveeereeuriereeareenseesseesseesseenseesseesseesseenseessseenseessseesssseessnsseeens 30
2.4.4 INtENSIEY INECASUTES. . eeevvreeerreeereeetreeeereeasseeeasseeessseesssseesssseesssseesssseesssseessseessssseeeens 32
2.5 fracgen generation dOMAINS.ccueeruieriiierieeiierie ettt ettt et estte bt e siteenbeesaeeeeenneeeeas 33
2.6 fracgen ZENETATION STLES.....ccccuuieriieeeieeeiieeeriteeestreeertteeeteeesteeessseeessseeessnnssseeeeeesnnnssneeens 37
2.7 fracgen generation ShellS..........cooiiiiiiiiiiiiii e 38

3 repository module for simulation of tunnels...........ccccoecieiiiiiiiniiiiiieeee e 39
3.1 repository tUNNEl EDZ........cccviiiiiiiieeee ettt a e e 40
3.2 repository deposition-hole CIIteTIa........c.eeiuiiriieiiieriieeiierie ettt et saee e 41
3.3 repository tunnel parameters flles........ccvuivviiiiriiieiiiiieiie e 43
3.4 repository tunnel aXes flleS........ooriiiiiiiiiiieie e 50

4 meshgenx module for mesh generation..............ccueeevieriieiiieiieeiiee e 53
4.1 meshgenx diSCretiZation OPLIONS.ccuveeerieeeiirreeiieeeitieeeieeesreeesreeesseeesereeesseesnsseeesnnnns 55
4.2 tripost module and associated Shell SCIIPLS........ccceiriierieriiiiieie e 56

4.2.1 tripost: Shell SCIIPE tIIPOSTX.ceuvreirrieeriieeeiieeeieeeereeetee ettt eere e e e e eearreeeeeeseeraaeeens 56
4.2.2 tripost: shell script consolidate triangulation............coceeveriireenienieniennieenieeeen 57

5 dfm module for flow and solute transport SIMUIAtioN............cccveerieeiierieniieieciiee e 59

5.1 dfm SIMUIAtION SEQUENICES.eccuiiieiiieeiieeeieeeeiee ettt e et e etreeetaeeereeesbeeesebeeesaseeensaeaaeeas 60

5.1.1 dfm file general TUIES........cceeviieiieie e 61
5.2 dfmM MESh fIlES.....eoueiiiiii e 63
5.3 dfm boundary CONAItIONS.eevuiiiiiiriieiiierie ettt ettt ettt ee e seee st e e e earaeeeenes 67
5.3.1 dfm boUNAATY GIOUPS...c.vviieiiieeiiieeiie ettt et et e s e e st e e e saaeeeeeeeenens 67
5.3.2 Types of hydraulic boundary conditions..............cccceeruierieriiienieniieie e 68
5.4 dfM KEYWOTAS....couiiiiieiiiieiiee ettt ettt e e sb e e taeebeesaaeesessaeeeennsaeaennes 69
5.4.1 dfm sequence-level KEYWOrds...........cccuiiiiiieiriieeeiie e e 70
5.4.2 dfm simulation-stage level KeywWords...........cccocveviieriiiniiniieiee e 74
5.4.2.1 dfim SOIVET SEtHNGS 11STS...eeeeviieeiiieeiieeeiie et e 77
5.4.2.2 dfm tracker Settings liSt.......ccueeviiiiiiiiiiiiierie et 78
5.4.2.3 dfm boundary condition Specifications...........cccecverveerieerieerieennieeeeireee e 79

5.4.3 dfm temporal/spatial fUNCHIONS..........c.eeeiiiiiiiieeciee e e 81
5.4.3.1 dfm tTUNCHON SYNEAX......eeiuiieiiiiiieeiierie et eiee ettt eteeree e e ereeeseaaeeeensaeeeenens 81
5.4.3.2 dfm tfunction usage and resStriCtionS.........cceeeeveeeriieeerieeeiieeeeiireeeeeeevveeeaes 82
5.4.3.2 dfm table tfunctions (disabled feature)............ccceevveeeiiieeciiecieeeee e 83

6 meshtrkr particle-tracking module...........ccooeriiieiiiieiiicceece e 84

6.1 meshtrkr particle-tracking algorithm..............ccoooieriiiiiiiiiie e 85
6.2 Calculation of pathway parameters...........cceeeeeeeeiieeriieeriieeeieeeriee e e e e e e e saaaeeee s 87
6.3 meshtrkr particle file format............cccoooiiiiiiiiii e 89
6.4 meshtrkr dispersivity file format............ccoooiiiiiiiiiiiiie e 90
T REIETEIICES.eeeieieeeiie ettt ettt e e e st e e st e e e tbeeesbeeebaeesssaeesssaeesnsnsaseaaeeannnssaeens 92
Appendix 1: Supplementary UtHIIES.cccuierieeiiieiieeie ettt e e 93
Appendix 2: DFM Panel Files.........ccouiiiiiiiiiiecieceeee ettt e 97
Appendix 3: DFM-DXF FileS.......cccuiiiiiiiieiiiie ettt ettt s e e 102
Appendix 4: PhySical UNILS.......ccueiiiiiiiriiiieiiie ettt evee et eeeestee e e e saaeesnseeennenees 104
Appendix 5: DCX Mesh File FOrmat..........ccccociiiiiiiniiniiiiniiinicccececesese e 108

1 Introduction

This manual describes the Discrete-Feature Model (DFM) software package for modelling
groundwater flow and solute transport in networks of discrete features.

A discrete-feature conceptual model represents fractures and other water-conducting
features around a repository as discrete conductors surrounded by a rock matrix which is
usually treated as impermeable. This approximation may be valid for crystalline rocks such
as granite or basalt, which have very low permeability if macroscopic fractures are excluded.

A discrete feature is any entity that can conduct water and permit solute transport through
bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of
such entities may include individual natural fractures (joints or faults), fracture zones, and
disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration
induced "onion skin" fractures around underground openings).

In a more abstract sense, the effectively discontinuous nature of pathways through fractured
crystalline bedrock may be idealized as discrete, equivalent transmissive features that
reproduce large-scale observations, even if the details of connective paths (and unconnected
domains) are not precisely known.

A discrete-feature model explicitly represents the fundamentally discontinuous and
irregularly connected nature of systems of such systems, by constraining flow and transport
to occur only within such features and their intersections. Pathways for flow and solute
transport in this conceptualization are a consequence not just of the boundary conditions and
hydrologic properties (as with continuum models), but also the irregularity of connections
between conductive/transmissive features.

The DFM software package described here is an extensible code for investigating problems
of flow and transport in geological (natural or human-altered) systems that can be
characterized effectively in terms of discrete features.

With this software, the geometry of discrete features and their hydrologic properties are
defined as a mesh composed of triangular, finite elements. Hydrologic boundary conditions
are prescribed as a simulation sequence, which permits specification of conditions ranging
from simple, steady-state flow to complex situations where both the magnitude and type of
boundary conditions may vary over time.

The essential components of a discrete-feature model (DFM) are:

(1) the geometry of the features, which determines their interconnections,
(2) the hydrologic (hydraulic and transport) properties of the features, and
(3) the boundary conditions.

In the DFM package, a discrete feature is represented as a planar or piecewise-planar
surface, described at each point & on its surface by effective 2-D parameters of transmissivity
T(§), storativity S(€), and transport aperture b(€). Typically these parameters are taken to be
uniform over all segments of a given feature, although variable properties may also be
modeled.

The boundaries of a discrete-fracture network model are in the form of polyhedra. In general
the boundaries may include an external boundary, which bounds the domain to be modelled,
and an arbitrary number of internal boundaries which represent tunnels, segments of
boreholes, efc. Boundary conditions are imposed at intersections between discrete features
and the external or internal boundaries.

Groundwater flow and transport through the discrete-fracture network are specified by 2-D
equations that apply locally within each planar segment, by conditions of continuity which
apply at the intersections between segments, and by the external and internal boundary
conditions. The groundwater flow field is defined only on this network, and boundary
conditions are specified only along the intersections between the network and the internal and
external boundaries.

1.1 Geometrical representation of discrete features

The geometry of a discrete-feature model is represented in terms of triangular elements which
approximate the (possibly curviplanar and/or tabular) geometry of the features in terms of
piecewise-planar conductors. Each planar section in this representation is modelled as one or
more triangular elements, often referred to simply as “elements.” The vertices of the
triangular elements, which can be common to two or more elements, are referred to as
"nodes." The line segments connecting pairs of nodes in a given element are often referred to
as "edges" since these are the edges of the element.

Connections between different features and between adjoining planar sections of a given
feature are represented by the fact that nodes (and edges) are shared in common between
elements. Thus an element representing a portion of one feature, say "Fracture Zone X" may
share nodes with elements representing a single, smaller-scale fracture. Hydrologic
connections between different features are represented by requiring continuity of state
variables (hydraulic head and/or concentration) at the nodes, or (in the case of transport
modelling by the method of particle tracking) by allowing particles to move between
elements belonging to different features, across shared edges.

The geometry and hydrologic connectivity of a discrete-feature model is thus represented in
terms of triangular elements and the nodes which are at the vertices of (possibly one or more)
elements. Edges are implicitly defined, given a list of nodal coordinates and the nodes
belonging to each element. For the DFM program, this information is provided as a mesh
file, the contents and format of which are described later in this manual.

Hydrologic properties are also defined in the mesh file, as properties (transmissivity,
storativity, and transport aperture) assigned to each of the individual elements.

1.2 Software modules

The DFM software includes the following main modules (presented in the order in which

they might be applied in a typical modelling project for repository safety assessment):

Jracgen: generates stochastic (random) realizations of a fracture population, based on a
statistical description, with option to represent parts of the model domain as a regular
grid of features with equivalent block-scale continuum properties;

repository: produces discrete features to represent the excavation-disturbed zone (EDZ)
around transport tunnels, deposition tunnels, and deposition holes within a repository,
based on a specified tunnel layout and (optionally) conditional upon a realization of the
fracture population, applying the full-perimeter intersection criterion and other criteria
for deposition-hole acceptance or rejection as have been defined for the Swedish spent-
fuel repository program (Munier, 2006);

meshgenx: produces a triangular finite-element mesh for a model consisting of discrete
features that represent surface topography, large-scale deformation zones, smaller-scale
discrete fractures, and EDZ within a repository;

dfm: solves steady-state and/or transient finite-element flow equations for a given mesh
geometry and set of boundary conditions; and

meshtrkr: tracks advective-dispersive or advective-diffusive motion of discrete
particles through a flow field defined on a discrete-feature network, and calculates
integral properties for transport paths originating from a given source location (e.g.,
spent-fuel canister position).

These modules are described in sequence in Chapters 2 through 6. Supplementary utilities

are described in Appendix 1.

1.3 Sequence of steps in a DFM modelling application

In a typical application of the DFM package, the different modules and supplementary
utilities are applied in sequence. The exact sequence may vary depending on the modelling
application, but a specific example may help to illustrate how the different modules can be
used together.

Table 1.1 lists the main steps for an application of the DFM package to repository safety
assessment as an illustrative example. See Geier (2008) for a full description of this
application. Very briefly, flow and solute transport simulations were carried out for a model
of a hypothetical, spent-nuclear-fuel repository at a coastal site in Sweden. Water-conducting
features that were represented in the model included deformation zones on scales of 1 to 10
km (treated as deterministic features), discrete fractures on smaller scales down to 1 m radius
(treated stochastically), topography and conductive strata at the ground surface (represented
deterministically as a single transmissive layer), tunnels and associated disturbed-rock zones
within the repository (treated as deterministic based on a design layout), and deposition holes
for waste emplacement (based on the tunnel layout, and conditioned on the stochastic fracture
population). The DFM package was used to calculate groundwater flows through the model,
including flows around the deposition holes, and to characterize pathways for radionuclide
transport from the deposition holes, by calculating integrals of the transport properties along
paths traversed by particles representing conservative (nonreactive, non-sorbing) solute.

Table 1.1 Example of the main steps in application of the DFM package to calculate
groundwater flows and characterize pathways for radionuclide transport from deposition
holes in a hypothetical radioactive waste repository in Sweden (see Geier, 2008 for a full
description of the application).

Operation DFM module Refer to
used Section(s)
Prepare panel file to define the geometry of large-scale deterministic other' Appendix 2

features (deformation zones).

Prepare panel file to define the geometry of the external boundary of the other' Appendix 2

model domain.

Prepare domain files to define the geometry of rock domains, within each other' 2.5
of which the fracture population is considered to be statistically

homogeneous.

Prepare generation sites file to define portions of the model within which other' 2.6

more small and/or low-transmissivity fractures should be retained during
stochastic simulations.

Prepare shells file to define portions of the model within which more small ~ other' 2.7
and/or low-transmissivity fractures should be retained during stochastic

simulations.

Prepare grid file to define geometry for block-scale representation of the other' 23.1

relatively small and low-transmissivity fractures.
Prepare fracture set definition files for each domain. other' 2.4

Generate a realization of the stochastic fracture population in the rock Jfracgen 2
around the repository, with smaller and lower-transmissivity fractures
treated in aggregate as equivalent block-scale features.”

Parse the panel data representing retained fractures and block-scale features parsepanels Appendix 1
from the fracgen output, into two separate panel files.’

Prepare tunnel parameters file to specify geometric parameters of the other' 33

repository tunnel system and criteria for deposition-hole placement.

Prepare tunnel axes file with plan-view coordinates of access tunnels and other' 34

deposition tunnels within the repository.

Generate discrete features to represent conductive pathways due to repository 3
excavation-damaged rock along the repository tunnels and deposition holes,
conditioned on the realization of the stochastic fracture population.’

Reduce size contrast among fractures prior to mesh generation. presplit_fracs Appendix 1

Combine panel files for model boundary, deterministic deformation zones, other'
stochastic fractures, block-scale features and repository elements into a
single panel file.

Table 1.1, ctd.

Operation DFM module Refer to
used Section(s)
Perform first stage of mesh generation to find all intersections among meshgenx 4

features (using the meshgen -s option).”

Perform second stage of mesh generation by triangulating all features.” tripostx 421

Consolidate output from trinagulation to produce a single mesh file.” consolidate _ 422
triangulation

Prepare a simulation sequence file to define hydraulic boundary conditions other' 5.1

and method for solving the flow equations, for a given calculation case.’

Apply edits to feature hydraulic properties depending on calculation case.>” other'

Solve the flow problem as defined on the mesh.*’ dfm 5
Post-process dfm output to extract flows to deposition holes. other'

Prepare particle file for particle-tracking. other' 6.3

Prepare dispersivity file for particle-tracking.’ other' 6.4

Prepare DCX mesh file for partcle-tracking. other' Appendix 5
Perform advective-dispersive particle tracking in the calculated flow fields. meshtrkr 6

Postprocess output of particle-tracking to characterize transport pathways. extractarrivals, 7
processarrivals,

formattracks

" Input files for DFM modules were prepared with a variety of digitization software, text editors, and special-
purpose scripts.

* These steps were performed for each realization of the stochastic fracture population.

* These steps were performed for each calculation case considered (e.g. for different hydraulic boundary
conditions).

1.4 Conventions used in this manual

Each module of the DFM software package is designed to be executed from a Unix-style
command line (i.e., terminal emulator), within a shell such as tcsh or bash (which are
supported by Linux as well as Unix operating systems). This permits the use of shell scripts
to automate steps in the modeling process.

Names of executable codes or commands mentioned within the text are given in bold italic
serif font, for example bash, fracgen, dfm, or grep.

Commands to be typed on the command line (or in a shell script) are indicated by a # sign
which represents the shell prompt, and are shown in sans serif font. For example:

fracgen -h

runs the fracgen module (in this case, with command-line argument -h to indicate "help," so
that an explanation of fracgen command-line options will be printed, as explained further in
Section 2.1).

The following conventions are used in descriptions of the syntax for text that should be typed
either on the command line or in an input file to one of the DFM modules:

roman sans serif font indicates text that should be typed as shown.
italic sans serif font indicates variable options that are defined later in the text.
[...] bracket a list of optional arguments
N separates different options
bold roman serif font indicates specific file formats which are described later in the
document (note that this font is also used to highlight key words, when
used within the main text).

As is conventional for Linux/Unix shells, the standard output stream (stdout) from a given
command may be redirected to a file by use of the > sign. For example:

fracgen -h > help.log

will print the fracgen information to a file named help.log.

10

2 fracgen modaule for fracture statistical simulation

The fracgen module is used to generate stochastic realizations of a fracture population
comprising one or more fracture sets, in one or several "generation domains." A generation
domain can be a rectangular box, a right circular cylinder, or an arbitrary polyhedron. As an
option, fractures in parts of the model domain can be represented as a regular grid of features
with equivalent block-scale continuum properties; this can be used to reduce the numerical
complexity of flow and transport simulations.

The fracgen module is run with the command-line syntax:

fracgen [OPTIONS] nsides seed domains fsets filel domains filel [...]
where:
nsides Number of sides for fracture polygons;
seed Seed value for random number generator (any positive integer);
domains Number of fracture generation domains;

fsets filel Name of file containing fracture set definitions for Fracture Set 1;

domains filel Name of file defining the generation domain for Fracture Set 1;
(and optionally for domains 2 through N = nsides):

fsets file2 Name of file containing fracture set definitions for Fracture Set 2;

domains file2 Name of file defining the generation domain for Fracture Set 2;

fsets fileN Name of file containing fracture set definitions for Fracture Set N;

domains fileN Name of file defining the generation domain for Fracture Set NV;

and where OPTIONS may be any of the following:

-s sites file shells file
where:
sites file Name of file listing (x,y,z) coordinates for sites with
higher resolution;
shells file Name of file defining nested shells;

-np No panels (suppress output of panel data); usually
used with -K option;

11

-lp panfile Load deterministic/prior panel definitions from panfile
(the name of a fracgen panel definitions file) before
generating fractures;

-Kf gridfile Calculate K tensor values for 3-D grid points that are
defined in a fracgen grid file named gridfile.

-K dx dy dz Calculate K tensor values for 3-D grid of points:

{X, + i*dx, Y, + j*dy, Z,+ k*dz}
where:
{X,, Y, Z,} = the center of the domain specified in
domains_file,
{i,j, k} = integers (positive or negative) spanning
the domain.
and where the grid spacings (dx, dy, dz) are in meters.

-Ksh Add only fractures excluded from fracgen generation shells to
the K tensors (other fractures are retained as distinct features).

-KT Convert K tensor values to an equivalent network of orthogonal
panels.

The last four options involve calculation of equivalent hydraulic conductivity (K) tensors
from the fractures that are generated by the stochastic model (either all of the fractures or a
subset, if the -Ksh option is invoked). Note that the -Kf option and the -K option are
exclusive. Thus only one of them, not both, may be invoked in a given run. The -Ksh and -KT
options are effective only when either the -Kf option or the -K option has been invoked.

Modeling Tip: The command:
fracgen -h

will yield a reminder of the command-line syntax for fracgen.

Output from fracgen is written to the stream stdout, and thus should be redirected to a file
that saves the results, e.g.

fracgen 6 1 1 test.fset test.domain > test.panels

Output is in the form of a DFM panel file which gives a list of vertex coordinates, followed
by a list of indices to the vertices that form the panel for each fracture. The format of panel
files is described in Appendix 2. When the fracgen option -KT is used to produce orthogonal
features to represent the equivalent K tensors, the list of vertices and panels corresponding to
these features is appended to the list of vertices and panels for any retained fractures.

12

2.1 fracgen fractures and fracture sets

Each individual fracture is idealized as a circular disc characterized by the following
attributes (see Figure 2.1):

X, location (3-D coordinates of the disc center),

r radius of disc,

n orientation (unit vector normal to the plane of the disc),

T transmissivity,

S storativity, and

br transport aperture (effective aperture for solute transport).

Note that the transport aperture bris not necessarily equivalent to the hydraulic aperture

b, which is related to the fracture's transmissivity by the cubic law (see Section 2.4).

Transmissivity 7,
Storativity .S

Figure 2.1 Attributes of an idealized disc-shaped fracture and its representation as an n-

sided regular polygon of equal area (in this case, n = 6).

13

For practical purposes in modeling, the idealized disc-shaped fractures are represented by n-
sided regular polygons with side lengths chosen such that each polygon has the same area as
the disc that it represents (see Figure 2.1). The value n = 6 (yielding hexagons) is
recommended as practical for most cases. Lower values of n (yielding triangles, squares or
pentagons) give poorer approximations to the disc shape, while higher values of n (e.g.
octagons or higher-order polygons) tend to increase the complexity of the mesh-discretization
problem.

A fracture set is a portion of the fracture population which have similar properties, in a
statistical sense. For a given fracture set, fracture locations are determined by a 3-D
stochastic process, the simplest of which is the Poisson process (uniformly random location
in three dimensions). Orientation is described by a directional probability distribution (for
example, a Fisher distribution). The other attributes are described either by univariate
probability distributions (if treated as independent attributes) or by correlation functions (if
treated as dependent attributes). The number of fractures in a given 3-D volume is limited by
an intensity measure. Options for stochastic processes, probability distributions, correlation
functions, and intensity measures are described below.

14

2.2 fracgen thinning of fractures

A DFN submodel could potentially contain many millions of fractures if it were explicitly
represented over the entire domain of the kilometer-scale model. This would lead to an
intractably large network problem for numerical solution.

In order to reduce the complexity of the problem, block-scale features are used to represent
the contribution of smaller-scale fractures to large-scale flow. Fractures are selectively
thinned from the population, depending on their properties and their distance from areas
where higher resolution is needed, such as around tunnels or sources of solute. These
fractures may in some circumstances simply be ignored, or (preferably) represented in a
simplified fashion by block-scale discrete features (as described in Sections 2.3).

The way that this is done is based on the concepts of fracgen generation sites and
generation shells. A generation site may be either a point or a 3-D polygon; multiple sites of
either type may be defined in a generation site file as described in Section 2.6.

A generation shell is the volume bounded by two surfaces, each of which is at a uniform
distance from the nearest generation site (Figure 2.2). In mathematical terms, define G as the
set of all points y belonging to the generation sites that are defined either as single points or
as polygons, and for any given point x, let R(x) be the distance from x to the nearest point

¥ € G . Then a set of N generation shells {S,, S, ..., Sy} may be defined in terms of a
monotonically increasing set of values Ry< R, < R, < Ry with Ry =0, such that:

R

- < R(x] <R, x € S.

i
Fractures are associated with a given shell S; based on the distance from the fracture to the
nearest generation sites. Specifically, this distance is evaluated as the minimum three-
dimensional distance d,.;, from the nearest point in the set of generation sites G to the nearest
point x on the fracture. This is illustrated in Figure 2.3, for an example in which G comprises

a single polygonal site that outlines the deposition tunnels in a repository. A fracture is
assigned to the shell S;if R,_; < d,, < R, .

Each shell §; of shell radius R; is associated with a threshold transmissivity 7; and a threshold
fracture size (disc radius) r; as assigned in the generation shell file (see Section 2.7). These
are used to determine which fractures should be retained explicitly, versus which should be
represented in aggregate form as block-scale hydraulic conductivity.

15

Shell 3

Polygonal site Shell 2
(edge view) _ Shell 1

Point site

Figure 2.2 Concept of generation shells as used in the fracgen module to define volumes at a
given range of distances from generation sites (either points or polygons), as indicated in

blue in the figure.

16

dmm(Fracture 1)

dmh(Fracture 3)

Polygon enclosing repository panel.
dmm(Fracture 2)

Figure 2.3 Minimum distance d,.;, from three different fractures to a single polygonal

generation site that outlines the deposition tunnels in a section of a repository.

17

2.3 fracgen block-scale representation of fractures

When fracgen is run using either the -K or -Kf option, an effective 3-D hydraulic
conductivity tensor K in calculated for each block in the grid (as defined by the arguments
that follow these options), to represent the potential contribution of the fractures to large-scale
flow. Effective block-scale porosity and specific storage values are also calculated.

When either the -K or -Kf option is used, by default the block-scale hydrologic properties are
calculated based on all of the fractures (including both stochastically generated fractures and
any deterministic features that were loaded with the - 1p option). However, if the -Ksh option
is used together with one of these options, the block-scale properties are calculated based
only on the subset of fractures that are not retained explicitly (based on rules specified by the
arguments of the - s option).

The following subsections describe how these grids are defined, and how the block-scale
properties are calculated and (optionally) represented by a set of orthogonal discrete features.

2.3.1 Grid specification

The 3-D grid used to define the blocks can be specified as a regular grid by using the -K
option with parameters as documented above. Alternatively, the grid may be defined by a
grid file by using the -Kf option. The latter option is more generally useful as it permits
variable spacing of the grid (although in either case, the grid needs to be orthogonal). A grid
file consists of a series of lines, each of which lists the (x,y) coordinates of a vertical column
of grid points:

Xo Yo :Z0Z%1%32.-- 2N

X1Yo: 202122+ 2N

XLYo: 202122 -.- 2N
XoV1:Z202122.-- AN

XLY1:202122-.- 2N
XoYm 202122 -.- 2N

XLYm 202122 ... AN
where L, M, and N are the number of grid points in the x, y, and z directions, respectively.

18

2.3.2 Calculation of block-scale properties

The contribution of a single fracture i to the block-scale tensor K is calculated from Snow's

law (Snow, 1969) which can be written in matrix form as:
T.
—I-n®n]

S

K. =

1

where:

T;= fracture transmissivity

s; = effective fracture spacing

I = the identity matrix with components I; = 1; I; =0 for i # j; i,j = 1,2,3..

n = unit normal vector to fracture plane
and where 7 ® n denotes the outer (tensor) product with components n;n;, for i, j = 1, 2, 3.
The effective fracture spacing s; is taken as V/A; where A; is the area of the fracture that lies
within the volume V of the rock block (the entire area of the fracture, if the fracture is entirely
within the rock block).

The block-scale hydraulic conductivity tensor is then approximated as the sum of the
contributions of each fracture that has some portion within the block volume V:

K =) K,

i€V
Note that this approximation generally overestimates the block-scale hydraulic conductivity
that would be obtained by an explicit block-scale DFEN calculation, since not all fractures
within a given volume will form part of the conductive "backbone" of the through-flowing
network, and the effects of network tortuosity are neglected. The approximation is used to
reduce the computational burden.

Block-scale porosity is calculated as a scalar property:
0= b
iev Si
where b; is the effective transport aperture of the ith fracture. Note that this does not take into
account possible directional dependence of block-scale porosity, which would require further
development of the algorithms to evaluate.

Block-scale specific storage is calculated by an analogous formula:

S
5= %

iev Si
where S; is the storativity of the ith fracture.

19

2.3.3 Representation by block-scale discrete features

In some modeling circumstances the block-scale properties themselves are of interest, for
example, for export to an equivalent-continuum model to simulate large-scale groundwater
flow. In other cases it may desirable to represent these block-scale properties as large-scale,
equivalent discrete features, for a multi-scale discrete-feature model. The remainder of this
section concerns the case where equivalent, block-scale discrete features are required.

Each rock block can be represented in a discrete-feature model by a set of three orthogonal
features, which are divided into rectangular patches (panels) with different transmissivities 77,
T, and T, as illustrated in Figure 2.4. The coordinate axes x;, x», and x; are chosen to be
parallel to the diagonal components of the hydraulic conductivity tensor K, K», and K33,
ordered such that K, = K» = K.

For this configuration of orthogonal features and transmissivities, it may easily be shown that
the directional conductivities K, K», and K; (parallel to the directions x;, x,, and x3,
respectively) are related to the panel transmissivities 7', 7>, and T as:

X :T1+T3 L_Fi
! 2 W, Ws
I+T, I\ T,

+
2w, (T1+T3)W3

I\ T, T,T,
K, = +
(T1+T3)W1 (T2+T3)W1

where w; is the width of the block in the ith dimension, i=1,2,3. The transmissivities of the
panels on the features are calculated by Newton-Raphson iteration to obtain K, = K, K, =
Kzz, and K3 = K33.

Note that the off-diagonal components of the tensor K are not reproduced, so this
representation results in some under-representation of anisotropy and reduction of the overall
conductivity. These effects are counter to the effects of the Snow's law approximation which
is used to estimate K, so to some degree these are offsetting effects, but the net consequences
have not been investigated.

20

Note also that equivalent features may influence the connectivity of the model, when these
are used to represent “background” fracturing (fractures with size and/or transmissivity below
some threshold values) in combination with explicit representations of the more “significant”
fractures that have transmissivities and/or sizes above the threshold values. As discussed
above, the use of the Snow’s law approximation for finite fractures results in an exaggeration
of the component of hydraulic conductivity due to background fractures, and this
conductivity is concentrated in the equivalent features.

Hence the connections between the “significant” fractures and the equivalent features
representing background fractures are less broadly distributed than in the actual fracture
network. These effects of the representation should be kept in mind when constructing
models, just as the effects of an equivalent continuum representation also need to be kept in
mind when combined with a discrete-fracture-network representation, in alternative
modelling approaches.

21

K x || K

11

N

Panel Transmissivities:
T
ur
.o

Figure 2.4 Representation of a rock block by three orthogonal features, each comprising
sixteen rectangular panels of equal dimensions, to represent block-scale hydrologic
properties in the discrete-feature conceptual model. The rock block has dimensions w; X w; X
w;. Transmissivities assigned to the individual panels are indicated by the color of the
panels, with T\ =2 T, 2 Ts. Note that in this illustration the block is approximately
equidimensional (w; = w, = w;3), but in general the block may be any rectangular

parallelepiped with w; # w; or w, # w;.

22

2.4 fracgen fracture set definitions

A fracture set definitions file defines a stochastic model for each fracture set in a fracgen
simulation. This type of file should list the fracture set definitions in sequence, using the
following syntax for each set:

Set N

Transmissivity scalarmodel
Storativity scalarmodel
Aperture [scalarmodel|cubiclaw]
Radius scalarmodel

Orientation dirmodel

Location locprocess

Intensity intensity measure

where the last five definitions for properties of the set can be in any order, and where:

N = Unique integer to identify set (1,2,3,...)

scalarmodel = Scalar model (i.e., univariate statistical model).

dirmodel = Directional model (i.e., vector statistical model) for the vector
normal to fractures in the set.

locproc = [Poisson]|...|help] [parameter list]

intensity measure = [P32]...|help] [parameter list]

parameter list List of parameters (depends on type of submodel, see below).

Modeling Tip: Information on the syntax for these submodels is described in the Sections
2.4.1 through 2.4.4. A condensed version of this information can also be
obtained by giving the word "help" in place of the key word for the type of
submodel.

The keyword cubiclaw (one of the options that can follow the keyword Aperture) is used to
impose a cubic-law relationship between transport aperture br (dependent variable) and
transmissivity 7T (treated as independent variable). In this case, bris treated as equivalent to

the hydraulic aperture b, which is related to the transmissivity as:
1/3

_ 12p, T
S
where:
o = density of water (taken to be 1000 kg/m’);
H,, = viscosity of water (taken to be 0.01 kg/me®s);
g = gravitational acceleration (9.81 m?/s).

Note that this is a special case of the loglinear form of scalar model, which is described
below.

23

The # character is used to demarcate comments in the file which will be ignored, for example:

Set 1 # This is a comment and can contain any information that we want.

The following is an example of a fracture set definitions file for a fracture set with power-
law distributed size (disc radius), Fisher-distributed orientation (fracture poles), and
transmissivity loglinearly correlated to fracture radius (see below for further explanation):

Set 1 # NE

Transmissivity Loglinear r 1.791 8.55e-12

Radius Powerlaw 3.97 5 limits 5 500

Location Poisson

Orientation Fisher trend 319.9 plunge 1.3 kappa 19.7
Intensity P32 0.0040364 # 0.04 scaled

24

2.4.1 Scalar models

A scalar model is either a loglinear correlation model or a scalar probability distribution.
Loglinear correlations

A loglinear correlation specifies a loglinear correlation y = f{x) between an independent
variable x and a dependent variable y:

log,,y = W, + mlogyx + o, N (0,1)
or equivalently:

y =
where N(0,1) signifies the standardized normal distribution with zero mean and unit standard

Xm 1 O“lugy*a'logyN (0,1)

deviation. The parameter 0, signifies the standard deviation of the "random noise" with
respect to a log-linear correlation, if values of the dependent variable y are plotted vs. the
independent variable x on a log-log graph. If 0,, =0 the loglinear correlation is perfect
(i.e., no random "noise").

The syntax used to specify a loglinear model is:

loglinear x ybar m ysdev

where:
X = the name of the independent variable:
T for transmissivity,
r for fracture radius, or

b for fracture transport aperture;
ybar = Mg, is the mean value of log, y for x = 0;
m = the log-slope of the correlation;
ysdev = O, is the standard deviation of the random "noise" on a log-log plot.

Currently the choice of independent variable is not flexible. The following are allowed:
Transmissivity 7' = f(r)

Storativity S = AT)
Aperture br = f(T)

25

Scalar probability distributions

A scalar probability distribution used as a scalar model may take any of the following forms:

» Constant y=y
1
. Uniform U(ymin’ymax)'. p()’) = ﬁ; Y min < y = Yomax
_ 1
- Exponential E(y): ply) = 56'/)7
1 ~(y-3F120°

« Normal N(.)_/’O-y) P(J’) =

« Lognormal L(Hlogy: Ulogy)-' y =10
where x is normally distributed as N (Hlog v Olog y)
. Powerlaw P(yu.b): p(y) = Oy =y,
where C is a normalization constant.

Any of these except the constant or uniform model can be modified by imposing limits (i,
Vmax) tO give a truncated distribution:

).

C ’ min
trunc

= y = ymax
p trunc (y) =

0 otherwise

The syntax for specifying one of these scalar models is (respectively):

Constant ybar

Uniform Ynin Ymax

Normal ybar ysdev [limits Vmin Yiax]
Lognormal ylogbar ylogsdev [limits Ynin Ynax]

Exponential ybar [1imits Vmin Viex]

Powerlaw yexp Ymin [1iMits Vamin Ynax]
where:

ybar =y

ysdev = 0,

ylogbar = Hiyg,

26

ylogsdev

o logy
yexp = b y
as used in the foregoing mathematical definitions of the scalar distributions.

Note: If a truncated power-law distribution is specified, the first instance of ypi, is ignored.

27

2.4.2 Directional models

A directional model is based on a directional probability distribution (i.e. a vector distribution

constrained to the unit sphere). Expressed in terms of spherical polar coordinates (0, ¢)

(see Figure 2.5), the directional probability distribution may take any of the following forms:

Constant

Uniform

Fisher

Bingham

Bootstrap

1
p(0,¢) = P
plw,y;k,0,¢p) = s Swe

where W is the polar angle of the direction vector measured from
the mean direction (0,) and v is a uniformly random angular
rotation from O to 27w about an axis through the mean direction
(0.)
p(w,qj;K,é,JJ) = msinwe
where (w,y) are angles measured relative to a reference direction

2 22 .2
(k,cos“ @ + kK,sin“y)sin”w

(6,¢) as above and the normalizing factor is given by:
1 & T(i+1/2)T(j+1/2) K\ K3

A L e RN
(0,¢) = randomsample from {(6, ¢,),(0,¢,),...,(0, by}

The Fisher and Bingham distributions are further explained by Mardia (1972) and by Mardia

etal. (1979).

The syntax for specifying a directional model is:

[discrete] model

where the optional keyword discrete is used to specify a discrete distribution (see below)

and model may be any of the following (corresponding to the directional distributions defined

above):

Constant
Uniform
Fisher
Bingham

Bootstrap

where:

trend mean tr plunge mean pl

trend mean tr plunge mean pl kappa k

trend mean tr plunge mean pl kappa k1 k2

bootstrap file

28

mean tr = trend of mean direction (in degrees)

mean pl = plunge of mean direction (in degrees)
k = Kk (Fisher concentration parameter)
k1 = K; (Bingham distribution parameter)
k2 = K, (Bingham distribution parameter)

as used in the foregoing mathematical definitions of the directional distributions. For the
Constant, Fisher, and Bingham cases, the order of the phrases trend (value), plunge
(value), and kappa (value(s)) is arbitrary.

If the optional keyword discrete is prepended to a directional distribution, the simulated
directions are constrained to a discrete, icosahedral set of 20 directions which are uniformly
spaced on the unit sphere. This can help to constrain the range of angles at which
intersections among fractures occur, and thus lead to better-conditioned meshes for flow and
transport calculations, although at the cost of resolution of the fracture orientation
distribution.

z(Up)
North

trend
West -
y (East)

gc

4

x (South)

29

2.4.3 Location processes

A location process is a statistical process by which points (generally fracture centers, in the
context of fracgen) are generated within the region of 3-D space delimited by a generation
domain. Two options are supported:

+ Poisson process

« Lévy process

Poisson process

A 3-D isotropic Poisson process generates points that are uniformly random in three
dimensions, with no correlation between successive points. For the simplest case of a domain
defined as a rectangular box aligned with the coordinate axes:

Xmin S X S Xmax
ymin S y S ymux
Zmin S Z S Zmax

each point x; generated by a Poisson process has coordinates (x;, y;, z;) drawn from
independent, uniform distributions on these intervals:

X ~ U(Xmin xmax)
y-= U(ymin,ymax)
z~ U(Zmin s Zmax)

For a domain of arbitrary shape, points are in effect generated from the same 3-D distribution
as above, but restricted to the volume of the domain.

The syntax used to specify a Poisson process is simply the keyword:

Poisson

since no additional parameters are needed to define an isotropic Poisson process (anisotropic
Poisson processes are not supported in the present version of fracgen).

30

Lévy process

A 3-D Lévy process (also known as Lévy-Lee process by correspondence to the Lévy-Lee
model, as implemented in the FracMan code described by Dershowitz et al., 1996) generates
a sequence of points as a type of random walk in 3-D space. For the case of an isotropic Lévy
process (the anisotropic case is not supported in this version of fracgen), each step in the
random walk has a random direction (i.e., uniformly distributed on the unit sphere), and the
probability of a step of length / decreases with [/ as:

where:
D, = fractal dimension of the Lévy process.

The syntax used to specify a Lévy process is:

Levy-Lee D D, lambda 4

where:
D, = the fractal dimension.
A = scale factor.

For a 3-D Lévy process, the fractal dimension should be in the range 0 < D, < 3. A value of 3
results in a distribution of points equivalent to a Poisson process. Values closer to zero imply
stronger clustering. Values outside this range may lead to unpredictable results.

31

2.4.4 Intensity measures

Intensity measures are used to limit the number of fractures that are generated for a particular
fracture set and generation domain. Fractures are generated one at a time until the intensity
measure reaches or exceeds the specified value.

Two types of intensity measure are supported:

« Number of fractures in the generation region.

- Total area of fractures per unit volume,

+ To use the first type of measure, the syntax is simply:
N n

where:
n = the number of fractures to simulate.

To use the second type of measure, the syntax is:
P32 Pi, [unscaled]
where:
P;, = threshold value for total area of fractures per unit volume,

following the nomenclature of Dershowitz (1985). The optional keyword unscaled is used to
indicate if this measure should be scaled to compensate for truncation of the fracture size

and/or transmissivity distribution..

The measure is calculated by fracgen as:

where:
n = the number of fractures,
V, = the volume of the generation domain €,

A; =the area of the part of the ith fracture that is inside Q.

For example, if the ith fracture is a square fracture 1 m on a side, entirely inside the domain
Q, the area used in this calculation is A; = 1 m®* If only half of the fracture is inside Q, the
area would be A; = 0.5 m°.

Note that the definition of fracture area used for intensity calculations is different from the

definition of fracture surface area as used for transport calculations. The fracture surface area
for transport is potentially twice as much, since both faces of the fracture are counted.

32

2.5 fracgen generation domains

This file defines a generation domain for the fracture population using the syntax:

Domain [gendomain [parameters]|help]

where gendomain is one of the following:

Box
Cylinder
Polyhedron
help

and where the list of parameters depends on the type of generation domain, as described
below. The types of generation domains are illustrated in Figure 2.6.

a) Box b) Cylinder
z, z' , , ,
(X max’ y max’ < mar) (xf’ y r Z}‘)
' r
y []
. (X, Yy Z)
%) x'
X

c¢) Polyhedron (example with 26

xl" r Zl" .
it Y i Z i) vertices and 18 faces).

Figure 2.6 Types of fracgen generation domains: a) box; b) cylinder; c) polyhedron.

33

If multiple domains are listed in sequence, the domains are treated together as subdomains of
a compound domain, with identical fracture statistics in each volume. Note that fracgen does
not check for overlaps between subdomains, so this must be done by the modeler.

Modeling Tip: The syntax for generation regions can be obtained by giving the word "help"
in place of the key word for the type of region.

Box domains

A box domain is defined by minimum and maximum coordinates in three dimensions, and a
rotation angle which (if non-zero), specifies a rotation of the box in the horizontal plane. The
syntax is:

Domain Box Xmin ymin Znin Xmax ymax Zmax theta

where:
theta rotation angle 6 from reference coordinates (x,y,z) to a rotated
coordinate system (x',y’,z").
(Xnin, Ymin, Znin) minimum coordinates (X', min,Z min) 0 the rotated system.
(Xmax, Ymaxs Zmax) maximum coordinates (X'yax,Y max,Z mar) 0 the rotated system.

If 6 =0 the box is aligned with the reference coordinates (x,y,z). For non-zero 6, the box is
rotated around the z-axis using the transformation:

X cosO —sinf 0| x'
y| = |sin@ cos@ 0]y’
z 0 0 1|z

Modeling Tip: It is generally easier and more transparent to use polyhedral domains to
model box-shaped domains that are not aligned with the reference coordinates. The
possibility for a box domains with rotation angle 6 # 0 is a fracgen feature that was
developed before polyhedral domains were implemented. This feature is potentially
confusing to use, since the rotation is about the origin in the (x,y) plane which might be well
outside the modeling area. Furthermore, in some cases where the box is far from the origin,
round-off errors in box corner coordinates may result if not enough digits are specified on
input. When a polyhedral domain is used to specify a box-shaped generation region, the
coordinates of the corners can be input directly.

34

Cylindrical domains

A cylindrical domain (properly a right, circular cylinder) is defined by the endpoints of the
cylinder and the radius of the cylinder. The syntax is:

Domain Cylinder radius Xe Yo Ze X1 Y1 Zi

where:
radius radius of the cylinder;
(X0, Y0, Zo) coordinates of one end of the cylinder's axis;

(x1,y1,z1) coordinates of the other end of the cylinder's axis.

Polyhedral domains

A polyhedral domain is defined by a series of V vertices and F faces with the following
syntax:

Domain Polyhedron V F
1 X1 y1 Z1

Vv Xy Yv 2Zv

face;

face;

facer

Each face of the polyhedron is defined as a list starting with the number of vertices on the
face (this number must be 3 or more), followed by the vertex indices, on a single line of the
file. The vertex indices should appear in clockwise order if viewed from inside the
polyhedron.

Examples of polyhedral domains for the cases of a simple cube and a tetrahedron are given in
Tables 2.1 and 2.2, respectively.

35

Table 2.1 Example of the syntax for a polyhedral domain in the shape of a simple cube.

Domain Po
150
200
150
100
150
200
150
100

~ A A b0 N O U B~ WDN PP
U = B W NN b
O N P B~ W W
N O U 0 NN
0 U1 00 N O B

lyhedron 8 6 # Simple cube with faces toward NW, NE, SE, and SW
50 -200
100 -200
150 -200
100 -200
50 -129
100 -129
150 -129
100 -129
Bottom

Southeast face (x axis is toward east; y axis toward north)
Northeast face

Northwest face

Southwest face

Top

Table 2.2 Example of the syntax for a polyhedral domain in the shape of a tetrahedron .

Domain Po
50
250
150
150
32
12
31
23

w w w w s wnNN R

A b b R

lyhedron 4 4 # Tetrahedron
50 -200
50 -200
150 -200
100 -200
Base
South face (x axis is toward east; y axis toward north)
Northwest face
Northeast face

36

2.6 fracgen generation sites

This file defines generation sites (used with generation shells) for reduced level of detail in
nested models. Each line in the file defines one site, which may be either a single point or a

polygon.

For a point site, the syntax is:
ID xy z

where:

ID = Integer to identify the site.
(x,y,z) =3-D coordinates of the point (assumed to be in meters).

For a polygonal site, the syntax is:

ID X1 y1 Z1 X2 Y2 Z2 .o Xn Yn Zn
where:
D = Integer to identify the site.

(xi,Y1,2:) = 3-D coordinates of the ith vertex of the polygon (assumed to be in meters).

In the current version of fracgen, points and polygons are distinguished only by the number
of parameters on each line. Comments are not supported.

Example

The following lines define two sites. Site 1 is a triangle at 500 m depth; Site 2 is a single
point:

1 9204.4 5604.9 -500 9618.5 5994.7 -500 9829.7 6417.0 -500 9521.1 7017.9
2 7409.7 6205.9 -500

37

2.7 fracgen generation shells

This file defines shells for reduced level of detail in nested models, using the syntax:

Shell 1 shellrad rmin Tmin

Sf\ell N shellrad rmin Tmin

where:

shellrad = shell radius (radius within which rules for this shell are applied),

rmin = minimum fracture radius (smaller fractures will be discarded from the
given shell),

Tmin = minimum fracture transmissivity (tighter fractures will be discarded from
the given shell).

Note shells must be in decreasing size, i.e. shellrad[l] > ... > shellrad[N]

A fracture is considered to be within the ith "shell radius" R; if any part of the fracture is
within distance R; of one of the sites defined in the sites file. See Section 2.2 for a
mathematical definition of shell radii.

Modelling Tip: Due to a quirk in the current version of fracgen, fractures that are entirely
outside of the largest-radius shell (Shell N) are considered to belong to the "null" shell, and
are not discarded regardless of fracture radius or transmissivity. This can be avoided by
making the Nth shell large enough to encompass the entire modeling region.

38

3 repository module for simulation of tunnels

The DFM module repository produces discrete features to represent the transmissive
excavation-disturbed zone (EDZ) around transport tunnels, deposition tunnels, and deposition
holes within a KBS-3 type repository. This is done based on a specified tunnel layout, and
conditional upon a realization of the fracture population, by applying geologic and/or
hydrogeologic criteria for deposition-hole acceptance or rejection.

The command-line syntax for repository is:

repository [OPTIONS] parfname tunfname nsides tol seed

where:
parfname Tunnel parameters file;
tunfname Tunnel axes file;
tol Tolerance for checking if two lines are colinear (in meters);
seed Seed value for random number generator;

and where OPTIONS may be any of the following:

-1p panfile Load deterministic/prior panel definitions from panfile (in DFM
panel file format) before generating fractures;

-h Print this message with additional info on file formats.

Output is printed to stdout, in the form of a DFM panel file. The format of panel files is
described in Appendix 2.

Modeling Tip: Typing repository -h on the command line will yield a summary of the
syntax.

The current version of repository only handles tunnels that are within the repository's
deposition horizon, so all must have the same elevation for tunnel floor. Hence features to
represent vertical shafts or inclined access ramps need to be developed by other means (e.g.
piecing together the coordinates by hand or with commercial computer-aided design
software).

39

3.1 repository tunnel EDZ

The hydraulic conductivity of backfilled tunnels and the transmissive excavation-damaged
zone (EDZ) in the wall rock along repository tunnels are represented by a group of
transmissive features configured as a tube of rectangular cross-section - one feature for each
of the four sides of the tube - along the length of each tunnel segment (Figure 3.1).
Repository access tunnels (main tunnels and transport tunnels) as well as deposition tunnels
are represented in this fashion.

These tubes are slightly larger than the actual tunnels (by 1 m on each side), to account for
the extent of the excavation-disturbed zone (EDZ) into the wall rock. Transmissivity and
aperture values are assigned to the features on each side of the tube, such that the total
conductance and porosity, respectively, of the tunnel cross section are reproduced.

L EDZ thickness

Figure 3.1 lllustration of discrete-feature representation of tunnel in terms of a rectangular

tube of features representing the excavation-disturbed zone (EDZ) around the tunnels.

40

3.2 repository deposition-hole criteria

Canister positions along the deposition tunnels are chosen for each realization of the discrete-
fracture network, according to the full-perimeter intersection criterion (FPC) as described in
the SR-Can Main Report (SKB, 2006) and by Munier (2006). This is done with the program

repository which is part of the dfm toolkit.

For each deposition tunnel, full-perimeter intersections (FPIs) are identified as the simulated
fractures that cross all surfaces (top, bottom, and sides) of the tunnel. Deposition hole
positions are then chosen sequentially by the following procedure, avoiding positions in
which the canister would be intersected by an FPI fracture:

Starting from the entrance of the deposition tunnel, the first part of length /,,, is avoided (see
Figure 3.2) in order to allow room for a sealing plug, such as specified in repository designs
for the Swedish repository programme (Janson et al., 2006; Brantberger et al., 2006).

A trial position is tested to see if:

- It meets respect-distance criteria for any nearby deterministic deformation zones,

+ It meets the FPC criterion (i.e., no intersections with a FPI fracture) and,

- (optionally) the total transmissivity of fractures intersected by a pilot hole would be less
than the allowable transmissivity.

If the trial position is acceptable, a deposition hole is created at the position and a new trial
position is chosen a distance /.., further along the tunnel, where /..., 1s the design spacing

between canisters, based on thermal criteria.

If the trial position is rejected, a new trial position is chosen by advancing a small distance
L., along the tunnel and repeating the tests, until an acceptable position is found.

41

. .) Rejected hole positions
Full-perimeter intersection /

N /

.

hole spadng

N7
N\ /

Plug space

Vo -

‘Accepted holes

|
bl
Accepted holes U

VL S ry

Discriminating feature (projected)

42

3.3 repository tunnel parameters files

A repository tunnel parameters file consists of a series of lines with the basic format:

parameter name value(s) [units]

where:
parameter name is the name of the parameter (see Table 3.1);
value(s) is the value to be assigned to the parameter (or values in some
cases as specified below);
units is an optional string to indicate the units of the assigned value

(see note below).

Lines beginning with the character # are ignored and thus can be used as "comment lines" to
document the choices of parameters.

Note: The current version of repository does not make use of the units specifier. Values of
parameters therefore need to be given in SI units as indicated in the list of parameters in
Table 3.1. Units may be indicated for the sake of documentation, but the user should be
aware that these currently have no effect.

The deposition holes for accepted positions are represented by vertical, internal boundaries of

polygonal (usually hexagonal) cross-section, starting from the floor of the tunnel and
extending to the depth specified in the design.

43

Table 3.1 List of repository parameters used in tunnel parameters files.

Number

Parameter name

Scale 1
Origin o)
Tunnel parameters:

Tunnel sides 1
Tunnel floor 1
Deposition tunnel height 1
Deposition tunnel width 1

SI
of values units Definition of parameter

m

m

Scaling factor s for tunnel axes.

Location of origin (x,,y,) for scaling
tunnel axis coordinates on input, using

formulae:
x' = s(x—xo)
y'=sly=y

Scaling of tunnel axis coordinates can
be convenient for combining input files
based on different coordinate systems
(for example if the tunnel coordinates
are given in a regional system in
kilometers while the rest of the problem
is formulated in terms of a local system
in meters).

Number of sides for tunnels. Specify a
value of 4 for a rectangular tunnel cross-
section. (Note: In the current version of
repository, algorithms have not been
tested for other numbers of sides).
Deposition tunnels and access tunnels
are required to have the same number of
sides.

Vertical coordinate zj,,, of the floor of
the tunnels (typically the elevation
above sea level or other regional datum,
with z negative for tunnels that are
below sea level).

Height H, of each deposition tunnel (see
Figure 3.3).

Width W, of each deposition tunnel (see
Figure 3.3).

44

Number SI
Parameter name of values units Definition of parameter

Deposition tunnel spacing 1 m Spacing S, between deposition tunnels

(see Figure 3.3). Note this has no effect
in the present version of repository.

Access tunnel height 1 m Height H, of each access tunnel (see
Figure 3.3).

Access tunnel width 1 m Width W, of each access tunnel (see
Figure 3.3).

DRZ thickness 1 m Thickness Wsp; of disturbed-rock zone
(DRZ , also called EDZ) around
deposition and access tunnels (see
Figure 3.4).

DRZ transmissivity 1 m’/s Transmissivity of DRZ (EDZ) features
around tunnels.

DRZ storativity 1 - Storativity of DRZ (EDZ) features
around tunnels.

DRZ aperture 1 m Effective transport aperture of DRZ

(EDZ) features around tunnels.

Deposition hole parameters:

Deposition hole sides 1 - Number of sides on deposition holes (a
value of 6, for hexagonal deposition
holes, gives a reasonable approximation
to a circular hole for most purposes).

Deposition hole radius 1 m Radius r,, of deposition hole ((see
Figure 3.4).

Deposition hole depth 1 m Depth L, of each deposition hole (see
Figure 3.4).

Canister radius 1 m Radius 7., of waste-containment
canister (see Figure 3.4).

Canister length 1 m Length L., of waste-containment

canister (see Figure 3.4).

45

Parameter name

Canister top

Deposition hole criteria:

Utilization fraction

Pilot

Pilot

Pilot

Pilot

Pilot

hole

hole

hole

hole

hole

diameter

transmissivity

Seepage

bradius

bhead

Distance between holes

Number

SI

of values units Definition of parameter

1

m

2
m/s

46

Distance H.,, from floor of deposition
tunnels to top of waste-containment
canister (see Figure 3.4).

Fraction of deposition hole sites in the
layout that should be utilized. This is set
to a value less than one if a simplified,
random rejection criterion is to be used;
if set to one, more sophisticated criteria
are used instead.

Diameter of pilot hole for trial
deposition holes (not utilized in current
version).

Maximum total transmissivity of
fractures that intersect a trial deposition
hole position. Position will be rejected
if this value is exceeded.

Maximum allowable rate of seepage
into a pilot hole for a deposition hole
(not utilized in current version).

Effective constant-pressure boundary
radius for calculating flows to pilot
holes (not utilized in current version).

Assumed head at boundary radius for
calculating flows to pilot holes (not
utilized in current version).

Minimum allowable distance between
deposition holes (Note: The current
version of repository supports just a
single value; future versions may allow
for adapting this distance to the thermal
properties of the rock type).

Number SI
Parameter name of values units Definition of parameter

Distance from drift end 1 m Minimum allowable distance from the
edge of a deposition hole to the blind
end of a deposition tunnel (drift).

Distance from drift start 1 m Minimum allowable distance 1, from

the edge of a deposition hole to where a
deposition tunnel (drift) starts at the
access tunnel.

Minimum step distance 1 m Distance /,, to move between trial

positions for a deposition hole, if a
given trial position is found to be
unsuitable.

Maximum intersected holes 1 - Maximum number of deposition holes
that can be intersected by a feature,
without rejecting those deposition holes
according to the extended full-perimeter
intersection criterion (EFPC). This
parameter is not used in the present

version of repository, so it has no effect.

47

Deposition tunnels Access tunnel

Fy
3

Figure 3.3 Definition of tunnel layout parameters for deposition and access tunnels. Refer to

Table 3.1 for explanation of parameters.

48

can
|=

H

Zﬂ’oor

i
dep

Figure 3.4 Definition of parameters for canister, deposition-hole and excavation-disturbed-
zone (EDZ) geometry in a KBS-3 type repository. Refer to Table 3.1 for explanation of
parameters.

Table 3.2 Example of tunnel parameters file.

Tunnel system parameters:

Scale 1 m

Origin 0 0

Tunnel sides 4

Tunnel floor -500 m

Deposition tunnel height 4.2 m

Deposition tunnel width 3.5 m

Deposition tunnel spacing 40 m

Access tunnel height 5 m

Access tunnel width 5 m

49

3.4 repository tunnel axes files

Tunnel axes are specified in terms of the plan-view coordinates of their endpoints, using a
DFM-DXF file format. See Appendix 3 for an explanation of this format.

A tunnel axes file consists of two sections: The first section contains DXF header information
(as explained in the appendix) which is simply scanned over by repository. This header
information may be useful for other programs (e.g. plotting software) but is not used by
repository. The second section gives the tunnel axis coordinates, as a series of labeled
polylines.

An access tunnel is introduced by a label statement of the form:

LABEL Access Tunnel [name]

where name is an optional text string that describes the deposition tunnel. This is followed by
a polyline:

BEGIN POLYLINE

Xo Yo

X1 Y1

Xn Yn

END POLYLINE

where N is the number of segments in this access tunnel, and {(xo, ¥s), (X1, ¥1),...(Xn, yn)} are
the coordinates of successive vertices (segment endpoints).

A deposition tunnel (or deposition drift) is introduced by a label statement of the form:

LABEL Deposition Tunnel [name]

where name is an optional text string. This is followed by a polyline with just one segment:

BEGIN POLYLINE
Xo Yo

X1 Y1

END POLYLINE

where (xo, o) and (x;, y1) are the coordinates of the two endpoints. The first point (xe, yo)

should be the starting point of the drift (where it starts from an access tunnel), while the
second point (x;, y1) should be at the end of the drift.

50

Note: All tunnels are assumed to have the same floor elevation, as specified by the "tunnel
floor" parameter as defined in Table 3.1. Thus the current version of repository only handles
tunnels that are within the repository's deposition horizon. The input format may be revised in
future versions, in order to represent vertical shafts or inclined access tunnels which are likely
to be part of a complete repository design.

51

Table 3.3 Example of tunnel axes file.

BEGIN SECTION

BEGIN HEADER

$EXTMIN -143.5000 2772.5000

$EXTMAX 3026.1250 4801.0000

$LIMMIN -143.5000 2772.5000

$LIMMAX 3026.1250 4801.0000

END HEADER

END SECTION

BEGIN SECTION

LABEL Access Tunnel 1

BEGIN POLYLINE

2436.0000 4200.5000
2199.6250 4514.0000
2173.8750 4540.0000
1921.3750 4585.5000
716.3750 4382.5000
393.2500 4127.5000
379.3750 4058.5000
507.5000 3822.0000
547.0000 3805.5000
583.7500 3810.5000
851.5000 4016.0000
945.1250 3961.5000

END POLYLINE

LABEL Deposition Tunnel 1-01

BEGIN POLYLINE
419.0000 4149.0000
562.0000 3938.0000

END POLYLINE

LABEL Deposition Tunnel 1-02

BEGIN POLYLINE
454.8750 4173.0000
595.1250 3960.5000

END POLYLINE

LABEL Deposition Tunnel 1-03

BEGIN POLYLINE
482.6250 4204.0000
627.2500 3990.0000

END POLYLINE

END SECTION

4 meshgenx module for mesh generation

The meshgenx module is used to produces a triangular finite-element mesh from one or more
files listing the panels that define discrete features which may include any of the following:

surface topography,

+ large-scale deformation zones,

- smaller-scale discrete fractures,

« EDZ within a repository,

- external boundary (limits of model domain),

- internal boundaries (e.g. boreholes or underground openings).

The command-line syntax for meshgenx is:
meshgenx [-h] tinylen panelfile [-r][-s trifile][-m meshfile][-f maxangle]

where:
tinylen Tolerance for nodes to be regarded as identical (assumed to be in meters).
panelfile Input file in panel format.

Options:
-r Add random points within panels to improve triangulations (recommended).
-s Save pre-triangulation panel data to trifile and skip triangulation.
-m Save mesh to meshfile (default is stdout).
-f Set maximum allowable obtuse angle on elements.

Note: The flag for this option will be changed in future versions of meshgenx.

Modeling Tip: Typing "meshgenx -h" on the command line will yield a summary of the

syntax.

When the -s option is used, an intermediate file is saved that defines the intersections among
all panels. This simplifies the global mesh-generation problem to a series of smaller,
independent problems, one for each of the panels. The stand-alone triangulation program
tripost (see Section 4.2) can then be used to discretize the lines for each panel one at a time,
in batch mode.

Modeling Tip: The -s option is recommended when discretizing large files for complicated

network geometry. A bug in the triangulation software can occasionally lead to infinite loops
that cause the program to "hang." This tends to happen for about one out of every thousand

53

panels, depending on the geometric complexity as well as the raw number of panels.
Normally these cases can be solved simply by choosing a different random number seed, but
if the -s is not used, the entire run can be lost. Hence it is strongly recommended to use this
option for large network problems.

54

4.1 meshgenx discretization options

The primary meshgenx option that can be used to control panel discretization and the quality
of the resulting mesh is the command-line option - r, which results in random points being
added to each panel before forming triangles. The effect of choosing this option is illustrated
in Figure 4.1.

Modeling Tip: The random-point algorithm can be very slow in some cases, particularly
when a single panel has several hundred or more vertices. If very slow run-times are
encountered for a given model, this option might need to be skipped. The next version of

meshgenx is expected to have a significantly more efficient algorithm.

a) Default algorithm b) Random-point algorithm

— Original boundaries of this panel.

— Intersections with other panels.
e Nodes added to reduce edge contrast.

¢ Random nodes added to improve
triangulation.

Figure 4.1 Example of discretization of a single hexagonal panel (representing one fracture)
into triangular finite elements, using (a) the default meshgenx algorithm, or (b) the random-
point algorithm which yields a more well-conditioned mesh. Note that in either case, a few
nodes (vertices) may added deterministically, to reduce contrast in length between adjoining
line segments that are formed either by the original panel boundaries, or by intersections
with other panels.

55

4.2 tripost module and associated shell scripts

The stand-alone triangulation program #fripost is used in conjunction with partial
discretizations as produced by the meshgenx -s option. Normally this program is used in

batch mode, via the shell scripts tripostx and consolidate_triangulation as described below.

The shell script tripostx (located in the directory ~/bin/dfmscripts, see Appendix 1) is used to
automate this process of running fripost, by trying up to 20 different random number seeds in
the rare cases where the triangulation algorithm gets stuck on a particular panel. Occasionally

manual intervention may occasionally be needed if one of the fripost runs stalls.
4.2.1 tripost: shell script tripostx

The shell script tripostx is used to post-process triangulation data produced by meshgenx (if
-s option is specified) to produce a triangulation file. This script is installed in
~/bin/dfmscripts. The command-line syntax is:

tripostx trifile

where:
trifile name of the triangulation input file in the form casename. suffix, usually
casename.tri.

The triangulation output file will be named casenamesuffix.triangulation, and must be
consolidated using the shell script consolidate_triangulation to produce a dfm mesh file.

The script tripostx triangulates the points and line segments that are defined in trifile,
parsing the data for one panel one at a time and then running #ripost (automatically). Progress
is indicated as a list of panel numbers that have been processed, which are printed to the
terminal.

If a tripost run fails, tripostx will print a warning message, then attempt to run tripost with a
different random number seed. In some cases more than two attempts are needed; a parameter
in tripostx sets the maximum number of attempts to 20.

Modeling Tip: Each fripost run executed by the fripostx script normally takes just one to
several seconds to either succeed or fail, so the monitor should show a nearly continuous
progression of panel numbers. In a few cases, a tripost run may "hang" (this apparently

results from infinite loops in an algorithm that steps through adjoining simplexes that are

56

formed in the trial triangulation, resulting from finite numerical precision), so no progress is
seen after 5 or 10 seconds. In such cases, it is advisable to terminate the #ripost run. In a

Linux or Unix shell, the command:

ps -f -a

will list the process identities of all processes belonging to the user. The tripost run can then
be terminated with the command:

kill -9 PID

where PID is the process identity number for the #ripost run. Once tripost is terminated, the
tripostx script will automatically attempt a restart with a different value of the random

number seed. It is seldom necessary to terminate fripost more than once for a given panel.

4.2.2 tripost: shell script consolidate_triangulation

The shell script consolidate_triangulation is used to consolidate the triangulation file
produced by tripostx, into a mesh file that is in a suitable format for dfm input. This script is
installed to the directory ~/bin/dfmscripts. The command-line syntax for running this script
is:

consolidate triangulation casename suffix

where:
casename name of the calculation case (should correspond to a case file named
casename . case which contains header information for the mesh, see
below);
suffix suffix to identify a unique run for the calculation case (should correspond to
an input file casenamesuffix.triangulation; the output file will be
named casenamesuffix.msh).

A case file consists of a mesh title and a list of names for the enumerated boundaries. The

syntax should conform to that for dfm mesh files as described in Chapter 5. An example is
given in Table 4.1. See Section 5.3.1 for further explanation of this file.

57

Table 4.1 Example of a case file for consolidate_triangulation
Mesh title: Laxemar SR-Can Base Case

Boundary 1: Top

Boundary 2: Bottom

Boundary 3: South side

Boundary 4: East side

Boundary 5: North side

Boundary 6: West side

Boundary 7: Surface

58

5 dfm module for flow and solute transport
simulation

The main module of the DFM software package, dfm, solves steady-state and/or transient
finite-element flow equations for a given mesh geometry and set of boundary conditions. This
module is also designed for solute transport calculations. However, for many applications it is
more practical to use the stand-alone particle-tracking module, meshtrkr, as described in the
following chapter.

The command-line syntax for running dfm is:

dfm simseqfile

where:
simseqfile dfm simulation sequence definitions file

A dfm simulation sequence definitions file (which customarily has the suffix .dfm) entirely
specifies the simulation sequence of modeling operations to be performed by the dfm
module. The structure of this type of file is described in Section 5.1. It includes a designation
of the mesh file which defines the geometry and properties of the discrete-feature network for
a particular calculation case (see Section 5.2). The most important aspect of a simulation
sequence is the specification of boundary conditions which determine flow (and optionally
solute transport) in the discrete-feature network. Section 5.3 describes the types of boundary
conditions that can be specified. Section 5.4 gives a detailed list of dfm keywords that are

used to define simulation sequences.

Output from the dfm code is printed to the stream stdout. This should be redirected to a file in

order to save the output, i.e.:

dfm simseqfile > output file

While running, the dfim module also prints a series of status messages (and possibly error
messages or warning messages) to the terminal, which in general are self-explanatory.

59

5.1 dfm simulation sequences

The set of modeling operations to be performed by the DFM code in a given run are specified
in terms of a simulation sequence which is defined as the sequence of operations that the

program should apply for a given physical representation (i.e., a given mesh file).

A simulation sequence is defined in a dfin simulation sequence definition file, which for
brevity is referred to as a dfm file (since by convention its file name has suffix .dfm). A dfm
file consists of an arbitrary number of simulation stages, which ordinarily correspond to
changes in the types of boundary conditions that are imposed. Time-varying boundary
conditions (for example, time-varying meteoric flux to the surface, or time-varying head
imposed in a borehole during a well test) can be accomodated within a single simulation
stage, but changes in the type of boundary condition (for example, switching from no-net-
flow to specified head in a borehole) must be treated in separate simulation stages.

The overall structure of a dfm file is shown in Table 5.1. It consists of a series of statements
to set options that apply to either:

« the simulation sequence as a whole, or

- specific simulation stages which are to be performed in sequence.

The geometry for a simulation sequence is constant throughout the simulation sequence. This
geometry, and associated hydrologic properties, are defined in a mesh file which is specified
for the simulation sequence as a whole (see Section 5.2). The hydrologic properties may
under certain circumstances be modified between simulation stages, but the geometry is kept
constant. As a realistic example, Table 5.2 shows the overall structure of a dfm file for

simulation of a constant-head well test, including equilibration and recovery stages.

60

Table 5.1 Overall structure of simulation sequence definitions (dfm) file.

Simulation Sequence Definitions
Simulation Stage 1
Simulation Stage 2

Simulation Stage N

Table 5.2 Example of the structure of a dfm file for simulation of a fixed-head injection test,
including equilibration and recovery stages. Note that this is just to illustrate the overall
structure, and does not exemplify the actual detailed syntax that would be used. The detailed

syntax is documented in the remainder of this chapter.

Mesh File

Initial head

Simulation Stage 1: Equilibration stage, Net flux = 0
Simulation Stage 2: Injection stage, head = H
Simulation Stage 3: Recovery stage, Net flux = 0

5.1.1 dfm file general rules

Each simulation stage involves solving a flow and/or transport problem for a specific mesh
geometry, with a particular set of steady-state or time-dependent boundary conditions.

Within a simulation stage, values of particular boundary conditions (for example, the head in
a borehole) may vary with time, but the type of boundary condition (e.g. specified head vs.
specified net flux) cannot change. Hydrological properties of the features must also remain
constant. Complex problems involving changing types of boundary conditions and/or
changing feature properties can handled by simulation sequences consisting of multiple
simulation stages.

In multi-stage simulations, by default it is assumed that the boundary conditions at the end of
the previous stage apply as constant boundary conditions through the following stage, if
boundary conditions are not otherwise specified.

The statements in a DFM file can be in a quite flexible order, as they are recognized by
keywords rather than position in the file. A list of the keywords that are recognized is given

in Section 5.4.

61

The following conventions affect the interpretation of these statements:

+ Any line beginning with a pound sign (#) is ignored. This allows inclusion of
explanatory text (comments) in the dfm file.

« An ampersand (&) at the end of a line means that the next line is to be read as a
continuation of the current line.

+ Continued lines can be up to 1000 characters total length, which amounts to
approximately 20 lines for an average line length of 50 characters. Note: This limit
is set by the compile-time parameter MAXLONGLINE in the dfm source code, and
could easily be increased, though at the cost of increased memory usage.

« Certain characters (including spaces, tabs, colons, and equality signs) are ignored,
but may be included to make files more readable.

The following restrictions must be observed regarding the order of statements:

1. The number of simulation stages should be specified using the keyword simulation
stages before defining the individual stages (This requirement may be removed in
future versions of dfm).

2. Statements beginning with a sequence level keyword (see Section 5.4) can appear
anywhere in the dfm file, and affect the simulation sequence as a whole, regardless of
where they appear in the dfm file.

3. Statements beginning with a stage level keyword (see Section 5.4) affect the
simulation stage identified by the most recent simulation stage id statement to
appear in the dfm file. Thus the influence of these statements depends on their position
relative to simulation stage id statements in the DFM file. However, within a given
block of statements between two simulation stage id statements, the ordering of
stage level keyword statements is arbitrary.

4. Certain keywords require additional lines of input. These additional lines must be
given sequentially as a single block within the dfm file. For example, the time steps
keyword is used to indicate the number of time steps in a simulation stage. The data for
the specified number of time steps needs to follow on the lines immediately after this
statement.

62

5.2 dfm mesh files

Mesh files are ordinarily created by the meshgenx module, rather than by typing by hand.
However, it may be useful to understand the format of these files, in case there is a need to
make minor modifications. The syntax for mesh files is shown in Table 5.3, with variables
explained in Table 5.4, and other terms explained in the text below.

Table 5.3 Format for mesh files. Variables (indicated by italic text) are explained in Table
5.4. Square braces [] enclose lists of optional arguments which are separated by vertical
pipe (1) characters. An ampersand (&) represents a line that is continued on the next line of

the file; the use of ampersands as shown here is optional but serves to improve readability.

Mesh title: mesh title

Coordinates in L
Aperture values in L
Transmissivity values in L2/T

[Initial heads specified]
[Initial fluxes specified]

Element type: [constant|variable] transmissivity &
[constant|variable] storativity &
[constant|variable] aperture

Boundary 1: boundary ID;,

Boundary B: boundary IDg

Number of nodes n
Number of elements e
Number of features f

List of nodes:
ID x(m) y(m) z(m) NdGrp [head] [flux]
1 X Y1 z; 9: [h:] [q:]

n Xn Yn Zy gn [hs] [gn]

List of elements:

ID N(1) N(2) N(3) T S A Feature Set
1 N11 N21 N31 T1 51 b1 F1 S1
e Nle NZe N3e Te Se be Fe Se

63

Table 5.4 Definition of variables used to define mesh file syntax in Table 5.3.

mesh title
L
T

boundary ID;

Xi
Yi
Zj

gi

qi
N1;
N2;

N3;

A text string to describe this mesh (up to 100 characters long).
Units of length (normally m for meters; see Appendix 4 for other options).
Units of time (normally s for seconds; see Appendix 4 for other options).

Name of ith boundary segment, i = 1, 2, ..., B where B is the number of

boundary segments that are represented in the mesh file.
Number of nodes in mesh.
Number of elements in mesh.

ID of the highest-numbered feature in the mesh. This will be equal to the
number of features in the mesh, if the features are numbered in sequence
as 1,2,3,...

x-coordinate of ith node (units should be as specified at top of file).
y-coordinate of ith node.
z-coordinate of ith node.

Nodal-group number of ith node. Each nodal group must correspond to a
named boundary segment with the same identification number, as

described above.

Initial head value for ith node (units assumed to be in meters).

Initial flux value for ith node (units assumed to be in m’/s).

Node number of 1st node in ith element.

Node number of 2nd node in ith element.

Node number of 3rd node in ith element.

Transmissivity of ith element (units should be as specified at top of file).
Storativity of ith element (note this is dimensionless).

Transport aperture of ith element (units should be as specified at top of
file).

Identification number of the feature to which the ith element belongs.

Feature set number to which the ith element belongs.

64

In Table 5.3, the portion of the mesh file that precedes the line:

Number of nodes n

is referred to below as the mesh file header. In simulations of discrete-feature networks that
include a stochastic component, the header will generally be identical between mesh files for
different realizations.

In the list of nodes, the columns labels head and flux and the corresponding values h; and g
,1=1,2, ..., n)are optional. The head column (to specify initial values of head at each node,
for transient simulations) should be included only if the line:

Initial heads specified

1s included in the mesh file header. Similarly the flux column (to specify initial values of
flux at each node) should be included only if the line:

Initial fluxes specified

1s included in the mesh file header.

The dfm solver includes mathematical functions to work with finite elements that have either
constant (uniform) or linearly varying element properties (transmissivity, storativity, and/or
transport aperture). The type (constant or variable) for each of these properties can be
specified in the element type: statement in the mesh file header. The following paragraphs
give mathematical background and describe modifications to the mesh file which are required
if one or more variable element properties are specified.

Important Note: The current version of the dfm module has not been tested for cases with
variable element properties. Also, other modules of the DFM package do not support this
feature. Therefore this option is not recommended, and should be used, if at all, with caution.
This feature is documented here, mainly with the expectation that further development and
testing will be performed for future versions of the DFM package.

Following the mathematical development given by Geier (2005), for a linearly varying
element, the transmissivity 7 is defined at each point x on a given triangular element e as:

T,x| = Z Teiwel.(x)

where:
T.: = element transmissivity at the ith node belonging to element e.

w.i(x) = linear weighting function as a function of the 3-D coordinates x.

65

The weighting function w,(x) is defined for points on the element e as:
1 forx = x,
alx] = 0 forx = x,, i#j
w with 0<w<1 varying linearly for other x one
Note that the transmissivity does not need to be continuous between adjoining elements,
although one possible application of this option could be to examine the consequences of
continuously varying aperture within single, variable-aperture fractures (as an alternative to

discrete, stepwise variation which is commonly used to represent such cases in the literature).

The cases of linearly varying storativity S and transport aperture br are defined analogously:

3
Se(x) = ZSe,Wei(x)
=1 !

3
bTe(x) = Z bTe.Wei('x)
i=1 !

If a given element property is specified as variable rather than constant, then three values
should be given in place of the single value for T;, S;, or b; for the ith element, in Table 5.3.
For example, if transmissivity is specified as variable but storativity and aperture are
specified as constant, then the following data are needed for each node i:

i N1; N2; N3; TI; T2; T3; S; bi Fi Si
where:
T1; Transmissivity value at the 1st node of the ith element,

T2; Transmissivity value at the 2nd node of the ith element,
T3; Transmissivity value at the 3rd node of the ith element,

Or, if all three element properties (transmissivity, storativity and aperture) are specified as
variable the following data are needed for each node i:

i N1; N2; N3; TI1; T2, T3; S1; S2; S3; bl; b2; b3; F; S;
where S1;, S2;, and S3; and b1, b2;, and b3; are defined analogously as the point values

as each node, which are then used to determine the values of each property over the
remainder of the element, by linear interpolation.

66

5.3 dfm boundary conditions

Boundary conditions describe the far-field driving forces and processes (hydraulic heads and
fluxes of groundwater and/or solute) that affect the directions and magnitudes of flow and
transport through the discrete-feature network. This section describes the way that boundary
conditions are specified with the DFM package.

5.3.1 dfm boundary groups

Boundary conditions (BCs) are applied to named boundary groups. A boundary group is a
group of nodes (and by implication, the discrete-feature element edges connecting between
pairs of those nodes). Ordinarily a boundary group is a set of nodes that belong either to a
given physical boundary (for example, a section of a borehole, a portion of the ground
surface), or to a modeling boundary (usually the lateral and/or lower boundary of the modeled
region).

Boundary groups are given text names which can be chosen for mnemonic purpose, e.g.
"Borehole KLX 01" or "East Face" or "Deposition Hole 39." This avoids the need to refer to
boundaries by numerical codes which have the potential to be confusing, particularly if
particular boundaries are used in simulations representing certain scenarios or discrete-feature
network geometries, but not others.

The dfm module requires only that the name, i.e. the boundary ID, be the same in the
simulation sequence definitions (dfm) file that defines the boundary conditions, as in the

mesh file which defines the problem geometry and the hydrologic properties of the features.

Boundary groups with no specified boundary conditions

Named boundary groups for which conditions are not specified in a simulation sequence (by
the start of a given simulation stage) are treated as no-flow (zero-flux) boundaries. The
program will print an informational message, indicating that the boundary is being treated as
a no-flow boundary because the boundary condition is not otherwise specified.

Quirk: In the current version of dfm, nodes belonging to such boundary groups will lose

their boundary segment IDs on output. This should be corrected in future versions.

67

Boundary groups with boundary conditions specified but no corresponding nodes

A warning message will be printed if a named boundary group has a boundary condition
specified, but no nodes belonging to this boundary are present in the mesh file for the given
simulation. In this case, the specified boundary condition has no effect on the simulation.
Sometimes this may occur due to an error by the modeler. However, it can also occur if the
discrete-feature network has no intersections with the physical boundary for which the
simulation sequence defines boundary conditions. This may arise, for example, if only
stochastically generated fractures have a chance of intersecting a given boundary, such as a
borehole or tunnel segment.

5.3.2 Types of hydraulic boundary conditions

The major types of hydraulic boundary conditions that can be applied are specified head,
specified flux, and specified net flowrate. A topographically constrained
infiltration boundary condition is expected to be implemented in a future version and is
under development, but not available at present. Boundary conditions for solute transport can
be either specified concentration or specified solute flux.

For a given type of boundary condition, the values as a function of time and spatial
coordinates are specified in terms of functions referred to here as temporal/spatial
functions, or tfuncs for short. These may be simple functions of one to three parameters, or
compound functions which are more complex. The syntax for specifying tfuncs is described
in detail in Section 5.4.4.

68

5.4 dfm keywords

This section lists the syntax for the keywords that may be used in dfm files. There are two
main categories of keywords:

- sequence-level keywords which affect the simulation sequence as a whole, and can
appear anywhere in the dfm file.

- stage-level keywords which affect the simulation stage identified by the most recent
simulation stage id statement to appear in the dfm file, and thus affect
simulations differently depending on their position in the dfm file; however, within a
given block of statements between two simulation stage id statements, the
ordering of stage-level keywords is arbitrary.

These two categories of keywords are presented in Sections 5.4.1 and 5.4.2, respectively.

Temporal/spatial functions, used as arguments to some stage-level keywords affecting

boundary conditions, are described in Section 5.4.3.

69

5.4.1 dfm sequence-level keywords
The following is a list of sequence-level keywords, with a brief description of their syntax.

Keyword: mesh file
Purpose: Specify name of mesh data file.
Syntax: mesh file[:] filename
Arguments:
filename path and name of file containing mesh data.
Example:
Mesh file: testl.msh
Default: null string (will cause error)

Keyword: simulation title
Purpose: Specity title for the simulation.
Syntax: simulation title[:] title
Arguments:
title Text of title.
Example:
simulation title: Test problem to illustrate simple case.
Default: null string (no title for simulation).

Keyword: simulation stages

Purpose: Specify number of stages in this simulation.

Syntax: simulation stages n
Arguments:

n Number of simulation stages in this problem.
Example:

simulation stages: 2
Default: 0 (no simulation stages so run will terminate).

Keyword: fluid compressibility
Purpose: Specify fluid compressibility constant Cy.
Syntax: fluid compressibility[:] Cs
Arguments:

Cs Fluid compressibility in units of T2L/M (inverse pressure).
Example:

fluid compressibility: 1.4e-12 1/Pa
Default: C;= 0 (incompressible fluid)

70

Note: This parameter currently has no effect, but is reserved for future use.

Keyword: fluid density

Purpose: Specify fluid density parameter py.
Syntax: fluid density[:] rho
Arguments:

rho fluid density in units of M/L3
Example:
fluid density: 1000 kg/m3
Default: p, = 1000 kg/m’ (density of standard water)
Note: This parameter currently has no effect, but is reserved for future use.

Keyword: molecular diffusion coefficient
Purpose: Specify molecular diffusion coefficient D,,, for use in calculating diffusion of

solute in stagnant fractures, and for calculation of dispersion coefficients in pore
space of features with nonzero fluid velocity (although effect of D, typically

becomes negligible with increasing fluid velocities).

Syntax:

molecular diffusion coefficient Dp
Arguments:

Dp molecular dispersion coefficient in units of L/T2
Example:

Molecular dispersion coefficient: 3.0e-6 m/s2
Default: Dy, = 10° m/s’

Keyword: longitudinal dispersivity

Purpose: Specify longitudinal dispersivity o, for calculation of dispersion coefficients for
solutes in features.

Syntax: longitudinal dispersivity alpha L

Arguments:
alpha L longitudinal dispersivity in units of L.

Example:
Longitudinal dispersivity: 1 m

Default: o, =1m

Keyword: transverse dispersivity

Purpose: Specify transverse dispersivity oy for calculation of dispersion coefficients for
solutes in features.

71

Syntax: transverse dispersivity alpha T
Arguments:

alpha T transverse dispersivity in units of L.
Example:

Transverse dispersivity: 0.1 m
Default: o7;=0.1 m

Keyword: simulation stage id
Purpose: Heading for simulation stage. Assigns name to simulation stage and indicates

start of a block of statements that apply to this simulation stage.

Syntax: simulation stage id name
{simulation stage definitions}
Arguments:
name Name of simulation stage (single word or phrase).

{simulation stage definitions}
Block of lines following the line on which this keyword appears, up
until the next sequence-level keyword, are treated as applying to this
simulation stage.
Example:

Simulation Stage ID: Equilibration prior to pumping test
{additional statements to define equilibration BCs etc.}

Keyword: random aperture model
Purpose: Define a stochastic model for assigning variable aperture to fractures. Intended
for use in particle-tracking simulations where effects of fracture aperture variation
on a fine scale are to be considered. Not fully implemented in this version of dfm.
Syntax: Not fully defined in this version.
Example:
Random Aperture Model
Fracture Sets: All
Mean value: Use initial value
Grid resolution: Scm
Covariance Model: Exponential &
Isotropic &
Variance 0.0001 &
Range 0.1
Default: Random apertures not assigned.

72

Keyword:

Purpose:

Syntax:
Options:

Example:

Default:

Keyword:

Purpose:
Syntax:
Options:

Default:

node renumbering

Specify whether or not to perform automatic renumbering of nodes to optimize
bandwidth.

node renumbering [on]|off]

off Node renumbering turned off, i.e. no automatic renumbering of nodes.

on Currently has no effect, reserved for addition of renumbering algorithm in
future version.

Node renumbering OFF

off (node renumbering turned off).

matrix storage type
Defines type of computer storage to use for finite-element matrices.
matrix storage type [full matrix|banded|skyline|compact]

full matrix Full matrix is stored (least efficient, only used for small
problems, primarily debugging matrix solvers).

banded Banded storage
skyline Skyline matrix storage
compact Compact (Yale) storage for sparse matrices (most efficient).

full matrix

73

5.4.2 dfm simulation-stage level keywords

The following is a list of stage-level keywords, with a brief description of their syntax.

Keyword:
Purpose:
Syntax:
Argument:

method.
Default:

Keyword:
Purpose:

Syntax:
Argument:

Default:

Keyword:
Purpose:

Syntax:

Argument:

Example:

flow solution mode
Defines mode for flow solution.
flow solution mode option

option may take one of the following values:

off No flow solution will be computed for this stage.
steady-state Steady-state flow solution.
transient Transient flow solution.

laplace-galerkin Transient solution using Laplace-Galerkin method.
backward-difference Transient solution using backward-difference

off (no flow solution will be computed for this stage).

transport solution mode
Defines mode for flow solution.
flow solution mode option

option may take one of the following values:

off No flow solution will be computed for this stage.
particle tracking Transport solution by particle-tracking.
laplace-galerkin Transport solution by Laplace-Galerkin method.
off (no transport solution will be computed for this stage).

boundary id
Specifies name for boundary group corresponding to the boundary condition
definition statement that follows.

boundary id name
{boundary condition specification}

name Name of boundary group (must match a boundary group in mesh file).
(see Section 5.4.3 for a list of possible boundary-condition specifications)

Boundary ID: Bottom
Specified flux ~ Constant(O m3/s)

74

Keyword: boundary type
Syntax: boundary type btype
Argument:
btype Type of boundary
Note: This keyword is not used in the present version, and is ignored.

Keyword: matrix solver
Syntax: matrix solver solver type

Argument:
solver type may take one of the following values:
gauss-jordan Gauss-Jordan solver
lu decomposition LU decomposition
conjugate-gradient "Naive" conjugate-gradient

modified conjugate-gradient Modified conjugate-gradient solver

complex gaussian Gaussian solver for complex matrices (used with
Laplace-Galerkin method).

biconjugate-gradient Biconjugate-gradient solver for complex matrices
(not currently implemented).

orthomin ORTHOMIN solver (not currently implemented).

Keyword: solver settings

Syntax: solver settings solver type [{solver settings}|{tracker-
settings}]

Arguments:
solver type See keyword matrix solver (above) for list of options.
{solver settings} See topic "solver settings list" below.
{tracker settings} See topic "tracker settings list" below.

Example:
Solver settings: Modified conjugate-gradient &
Precondition diagonal &
Maximum iterations 100000 &
Convergence tolerance le-8

Defaults: No method defined for flow or transport solution.

Keyword: time step

Purpose: Identifies a single time step. Not needed if time steps follow sequentially after
the keyword time steps.

Note: This keyword does not have a practical use and is potentially confusing. It should

be eliminated in future dfm versions.

75

Keyword: time steps

Purpose: Initiates a block of timesteps to specify the steps, substeps, and output options for
a transient flow simulation.

Syntax: time steps N
t; [substeps n;] [output option;]
t, [substeps n.] [output option;]

ty [substeps ny] [output optiony]

Arguments:
N number of time steps.
t; time of ith time step, in units of T.
n; (optional) number of substeps for intermediate calculations (see

note below);
output option; [full output|summary output|no output]

Example:
Time steps = 6
5s
10 s
20 s
1 min
2 min
10 min : full output
Notes: The optional substeps are used to improve accuracy of backward-difference
solution schemes, by using a finer discretization in time than is desired for output.
The optional flags [full output], [summary output] and [no output] are used to

specify type of output to be printed for each (full) time step.

76

5.4.2.1 dfm solver settings lists

The following keywords are used only within solver settings lists:

Keyword:
Purpose:

Syntax:
Options:

Default:

Keyword:
Purpose:

Syntax:
Argument:

Default:

Keyword:
Purpose:

Syntax:
Argument:

Default:

Keyword:
Purpose:

Syntax:
Argument:

Default:

precondition

Used for conjugate-gradient solvers only. Specifies the type of matrix
preconditioning method that will be used.

precondition [diagonal|choleski [1]|2]]

diagonal Simple diagonal scaling.

choleski Incomplete Choleski preconditioning (first-order or second-order
depending on optional argument 1 or 2).

Preconditioner not specified.

maximum iterations

Used for iterative solvers only. Specifies the maximum number of iterations that
are allowed to achieve convergence, before giving up and terminating the solver.
maximum iterations n

n Number of iterations to allow for convergence
n=1

convergence tolerance

Used for iterative solvers only. Specifies the absolute tolerance for testing
convergence.

convergence tolerance epsilon

epsilon Maximum allowed change in absolute error measure in units of head
(L) for flow solution, or units of concentration (M/L3) for transport
solution.

epsilon = 10" in SI units (m or kg/m’ depending on context)

projection factor

Used for transient forward difference solvers only. Specifies projection factor to
use as initial guess for next time step.

projection factor proj

proj Factor for projection of heads as an initial guess for next time step.
proj =1

77

5.4.2.2 dfm tracker settings list

The following keywords are used only within tracker-settings lists:

Keyword:
Purpose:
Syntax:
Argument:

Default:

Keyword:
Purpose:

Syntax:
Argument:

Default:

Keyword:
Purpose:

Syntax:
Argument:

Default:

random seed
Specifies seed value for random number generator.
random seed seed

seed Integer seed for random-number generator (used in particle-tracking).
An arbitrary random seed value will be used.

particle mass

Specifies mass that is represented by each discrete particle, for the discrete-
particle random-walk (DPRW) algorithm.

particle mass m,

m, Mass of solute represented by each tracked particle, in units of M.
No value set.

sink radius
Sets the capture radius for solute sink nodes in particle-tracking simulations (i.e.
the radius within which a particle is assumed to have reached the sink).

sink radius rsink

rsink Capture radius, in units of L.
No value set.

78

5.4.2.3 dfm boundary condition specifications

The following keywords are used only in boundary-condition specifications, which follow a

boundary id statement in a stage-level block. Boundary conditions are specified using

temporal/spatial functions (tfunctions), the syntax of which is explained in Section 5.4.3.

Keyword:
Purpose:

Syntax:
Argument:

Examples:

Keyword:
Purpose:

Syntax:
Argument:

Examples:

Keyword:

Purpose:

Syntax:
Argument:

Note:

specified head

Prescribes head values for the specified nodal group, as a function of time and/or
space.

specified head[:] head function

head function tfunction in units of head (L)

Specified Head: Constant(20 m)
Specified Head: Constant(20 m) + Step(1 m, 5 min)
Specified Head: Constant 10 m + &

Ramp(1 cm/min, 5 min) - Ramp(1 cm/min, 10 min)

specified flux

Prescribes flux values for the specified nodal group, as a function of time and/or
space.

specified flux[:] flux function

flux function tfunction in units of L3/T
Specified flux: Constant(le-5 m3/s)

specified net flux

Prescribes the net flux to the specified nodal group, as a function of time and/or
space.

specified net flux[:] net flux function

net flux function tfunction in units of L3/T

Using tfunctions with a spatial component is not recommended for net-flux
groups, since the net flux will be calculated using the mean coordinates of the
nodes in the group (which might not necessarily represent the centroid of the
physical boundary).

79

Keyword: specified concentration

Purpose: Prescribes the concentration for inflows to the specified nodal group, as a
function of time and/or space.

Syntax: specified concentration[:] conc_function

Argument:

conc function tfunction in units of M/L3

Keyword: infiltration

Purpose: Intended to support topographically constrained infiltration. This keyword is
disabled in the present version.

Syntax: infiltration[:] infilt function

Argument:
infilt function tfunction in units of L3/(TL2)

80

5.4.3 dfm temporal/spatial functions

A temporal/spatial function (referred to as tfunction or tfunc for short) is used to specify

constant or time-varying boundary conditions.
5.4.3.1 dfm tfunction syntax
The syntax of a tfunction is defined as follows:

tfunc : one of the following:
tfunction + tfprod
tfunction - tfprod
tfprod - tfunction
tfprod

tfprod : one of the following:
tfprod * tfelem
tfelem * tfprod
tfprod / tfelem
tfelem

tfelem : one of the following elementary function types with meanings as indicated:

constant(v) f(t) =y
0, t<0

step(v, t tl = vH\|t—t,| where Hlt|=]"

p(v, te) fltl (0) | 1 >0

0, <0

ramp(r,t \t] = rR|t—t,| where R[t| = |V

p(0) f) (0) (L 10
exponential(v, tau) flt] = ve'" wheret = tau.

_ _ 2m(t+t)
sinusoidal(v, tau, ts) flt] = vsin %/ where Tt = tau.
T
_ _ 2m|t+t, |
sinusoidal(v, tau, t;) flt) = vsin S| where t = tau.
T
plane(ao, ax, a,, a:) flxyzl = ay + ax +ayy + az
where:
t time at a given timestep in the simulation.
(x,y,2) coordinates of a given node.
and where the units of the tfelem arguments are as follows:

Vv, aoe boundary-condition units V (see below).
t,te, ts, T units of time (T).
r units of V/T (see below).
ax, ay, a, units of V/L (see below).

81

The boundary-condition units V depend on the type of boundary condition:
V=L for specified head,
V=LT for specified net flux,
V=L/T for specified flux (note this is a flux density),
V=M/L® for specified concentration.

5.4.3.2 dfm tfunction usage and restrictions

The elementary tfunctions as defined above can be assembled additively to make compound

functions of the form:

fle) = 2 fle]

For example the tfunc:
Constant(1 m) + Ramp(10 cm/min, 5 min) - Ramp(10 cm/min, 10 min)

describes a time-varying function (in units of head) which begins at the level h = 1 m, then
beginning at t = 5 min increases linearly at the rate of 10 cm/min (as specified in the first
ramp function), then levels off ath = 1.5 m from t = 10 min onward (at which point the
second ramp function goes into effect, offsetting the continuing effect of the first ramp
function).

Ramp, exponential, and sinusoidal tfuncs are not permitted as boundary-condition specifiers
for steady-state simulation stages, since these tfuncs do not unconditionally approach a finite
value as time approaches infinity (ramp and exponential functions can increase/decrease
indefinitely, while sinusoidal functions fluctuate indefinitely). In special cases (for example,
exponential functions with <0, or offsetting ramp functions used as part of compound tfuncs)
these tfuncs could yield finite results which would be permissible in steady-state stages.
However, more sophisticated logic would be needed to recognize these special cases. This
may be possible in future versions, but for the present, these tfuncs are permitted only in
transient simulation stages.

Support for tfuncs in Laplace-Galerkin simulations is limited to linear combinations of
elementary tfuncs for which Laplace transforms can be calculated in a straighforward manner
by the dfm tfunc parsing algorithm. Error messages may sometimes be generated for tfuncs
for which the parser cannot resolve the Laplace transform, even in some cases where the
Laplace transform could be obtained by mathematical manipulations. Sometimes such cases
can be resolved by re-writing the tfunc in a simpler form.

82

5.4.3.2 dfm table tfunctions (disabled feature)

An alternative table tfunction for specifying time-varying boundary conditions has also been
implemented on the mathematical side of the program, but lacks full input/output support so
is disabled in the current version of the code. It is presented here to maintain continuity of
documentation, for when it can be reintroduced in a future version.

The syntax for a table tfunction is:
Tab-LE[:] (tl, Vl/ t2[VZ, ey tn/ Vn)

or making use of ampersands (&'s) for continuation lines:

Tab-l.e: (tl, Vll &
t2; V2, &

tnl Vn)

The time-dependent value of the specified boundary condition is:

v, t<t, -
_ _ _ i
fle) = vi(l—si)JrvH]si, t,<t,.,, i=1,..n—1} where s, = —
Vn, tZtn i+1 i

Note that this would be equivalent to (but more compact than) a series of tfuncs, e.g.:

Constant(v;) - Step(vi;, t;1) + &
Ramp(ri, t;) - Ramp(ri,t2) + &

Ramp(rp.1, th-:) - Ramp(rn.1,t,) + Constant(v,)

83

6 meshtrkr particle-tracking module

The meshtrkr module of the DFM toolkit tracks advective-dispersive or advective-diffusive
motion of discrete particles representing solute.

The command for running meshtrkr is of the form:

meshtrkr [-h] partfile dispfile meshfile t [T dt|L dl] zmax [> logfile]

where:
-h Prints a summary of the command syntax.
partfile Particle file listing the boundary groups to launch particles from.
dispfile Dispersivity file defining dispersivity values for different classes of

features.

meshfile Mesh file in DCX format (see Appendix 5).

t Maximum time [s] to track a given particle.

T Specifies option to report particle positions at fixed time intervals dt.

dt Time interval [s] between reports of a particle's position (used with option
T).

L Specifies option to report particle positions at fixed distance intervals dl.

dl Distance interval [m] between reports of a particle's position (used with
option L).

zmax z coordinate [m] above which particles are assumed to have discharged to

the surface environment.
logfile Log file to record output of the particle tracker (otherwise this will be
printed to stdout.

84

6.1 meshtrkr particle-tracking algorithm

Advective-dispersive transport of nonsorbing solute in the 3-D network (for the case of no
matrix diffusion) is modeled by the discrete-parcel random walk (DPRW) method (Ahlstrom
et al., 1977). This approach represents local, 2-D advective-dispersive transport within each
fracture plane. 3-D network dispersion, due to the interconnectivity among discrete features,
arises as the result of local dispersion in combination with mixing across fracture
intersections.

Particles are initiated at source locations, which are typically internal boundaries to the mesh.
Particles are initiated along the line segments where fractures intersect the holes, at randomly
distributed locations along the segments.

Once inside the mesh, the motion of a particle within a fracture element (triangular finite
element) is modeled as a random walk within the fracture plane. In the random walk, each
step Ax consists of a deterministic, advective component plus a random, dispersive
component:

Ax = vdAt + r

T
where At is a locally-specified time step, V = — b VI s the (local) fluid velocity within
T

the plane of the element, 7 is the local transmissivity, b7 is the local effective transport
aperture, Vh is the 2-D head gradient within the plane of the element, and r is the vector sum

of random components representing longitudinal and transverse dispersion:

ro=ru; + roug

where %, = V/||[v|| is the unit vector parallel to the local velocity and ¥; = nXu; (where
n is the unit normal to the element plane) is a unit vector transverse to the local velocity,
within the plane of the element. The random scalars r; and rr (with dimensions of length) are
drawn from normal distributions with zero mean:

r, ~ N|0,2D, 41|
r, ~ N|0,\2D, 41|
where D, is the longitudinal dispersion coefficient and D, is the transverse dispersion

coefficient.

85

The local dispersion coefficients depend on the magnitude of the local velocity as:

D, = a, lv| + D,
D, = o, lv| + D,

where @; and ¢ are the longitudinal and transverse dispersivities, respectively, within a
given fracture.

Application of the DPRW model in a network requires an assumption regarding the degree of
mixing within each fracture intersection, due to molecular diffusion across streamlines as
water passes through the intersection. The degree of mixing in an intersection is governed by
the Peclet number for flow through the intersection:

where b is the fracture aperture, v is the mean fluid velocity and D is the coefficient of

molecular diffusion. Berkowitz et al. (1994) showed that for an idealized intersection, mixing
is negligible for Pe > 0.1, but significant for Pe = 0.0001, which corresponds to v = 3 cm/yr
in a 0.1 mm fracture. For natural gradients that are expected within a radioactive-waste
repository, v can be on the order of 1 m/yr or less, and substantial mixing will occur at most
fracture intersections.

Hence complete mixing is assumed as a reasonable approximation for repository time scales.
When a particle arrives at an intersection edge, the particle is randomly assigned to one of the
elements sharing that edge. The probability of assignment to the ith connected element is:

Plil=0,12 0,

where Q, is the inflow to the eth connected element along the edge (zero if there is outflow),
and the summation is taken over all elements connected to the edge. This reassignment
technique does not allow for particles to move between adjacent elements in the absence of
net advection. Hence the model may under-represent the actual diffusion and/or transverse
dispersion (due to small-scale heterogeneity within fracture planes) that takes place in the
physical system.

86

6.2 Calculation of pathway parameters

Advective-dispersive particle trajectories are traced for multiple particles for each deposition
hole in the repository. For each release-path trajectory 7 consisting of discrete segments
{T 1T } the following quantities are calculated by summing over the segments 7; :

~
Q
Il
M
L
=
=
N
~
I
M
SIS
RIS

~

S
Il

S
=

S

NN

~

where Al and At are the increments of distance and time for each step, a,, = 2/br is the local
wetted surface per unit volume water, 7 is the local transmissivity, and v = Al/At is the

magnitude of the local advective velocity.

The equivalent quantities are also calculated for each feature set @ (as defined in the mesh

file) along each path, where:

24t
F.p =
e 7,€D bT(T,')
Lrtp = z AZ
7,€D
tr@ = Z At
T,€ED
241
I, = 2 ——
“@ 7,€P bT(T,')
I = Z bT(Ti)Al
7,€D
I = D, Tl |4l
1,€D

The location local fluid velocity, and aperture at the source are also recorded, along with the
exit location which can subsequently be related to the biosphere receptor (lake, sea, mire etc.)
in the landscape for risk calculations. For detailed models of transport along streamlines, the

properties of features traversed by each particle are also recorded.

87

In some calculation cases the excavation-disturbed zone (EDZ) around the deposition tunnels
forms an important path for transport. Hence particles released from a source S; at one
deposition hole may travel along the tunnel and arrive another deposition hole S; before they
continue along the way to the surface. The properties of the release paths represented by such
particles can be found by convolution of the distributions of properties for paths from S; to S;
with the distributions of paths S; from to the surface.

88

6.3 meshtrkr particle file format

A meshtrkr particle file is simply a list of boundary groups from which particles should be
launched. By convention, the names for particle files have suffix "part".

A particle file has the following format:
Particles N,
Source Group G;
éou rce Group G,
where:
N, Number of particles to launch from each group.
G: Boundary ID for the ith boundary group to track particles from.
n Number of groups to track particles from.

Example:
Particles 100
Source Group 310
Source Group 450
Source Group 12

This will track 100 particles from each of the three specified source groups (with boundary
ID numbers 310, 450, 12). Note that the source groups need not be in sequence.

The current version of meshtrkr does not allow referencing source groups by the text-string

names of the corresponding boundaries (e.g. "Deposition Hole A-120"). This limitation can
be an inconvenience, and will hopefully be alleviated in future versions of meshtrkr.

89

6.4 meshtrkr dispersivity file format

A meshtrkr dispersivity file defines dispersivities and other transport-specific values for
different classes of features. By convention, the names for dispersivity files have suffix
"disp". An example of the meshtrkr dispersivity file format is given in Table 6.1.

A dispersivity file contains statements of the following form:

Molecular diffusion Dy,
Taylor dispersion [on]|off]
Transverse dispersion ratio ror
Dispersivity range s; ai:

where:
D, Molecular diffusion coefficient [units of L/T 2] .
ror Ratio of transverse dispersivity to longitudinal dispersivity [dimensionless].
s; Maximum feature set number for the ith class of features.

a.; Longitudinal dispersivity o, for the ith class of features [units of L].

The current version of meshtrkr does not check units, so all parameters should be in the
default SI units.

The dispersivity range lines specify dispersivity values for feature classes which are
groups of feature sets (the latter are defined in the mesh file). The specified value of
dispersivity will be assigned to all of the features that belong to a feature set which in turn
belongs to the feature class. The feature classes must be defined in order of increasing feature

set numbers s;:

Feature Class 1: 0<s<sy;

Feature Class 2: s, <s<s;

Feature Class N: sy.; <5 < sy
where s is the feature set number and N is the total number of feature classes defined.
If Taylor dispersion is set to off, (the default), then the DPRW algorithm described in
Section 6.1 is used to model advective dispersion. If Taylor dispersion is set to on, then

the explicit Taylor dispersion (advection-diffusion) algorithm described by Geier (2005) is
used instead.

90

Table 6.1 Example of a dispersivity file for a calculation case in which major deformation

zones belong to Feature Set 1, features representing a surficial layer of Quaternary deposits

belong to Feature Set 2, features representing the disturbed-rock zone around repository

tunnels belong to Feature Set 3, and 5 sets of stochastically defined fractures make up the

remainder of the feature sets.

Molecular diffusion 2.0e-9

Taylor dispersion of f

Transverse dispersion ratio 0.1

Dispersivity range 1 10.0 # Major deformation zones

Dispersivity range 2 1.0 # Quaternary deposits

Dispersivity range 3 1.0 # Repository tunnels
8

Dispersivity range 1.0 # Single fractures

91

7 References

Ahlstrom, S. W., Foote, H. P., Arnett, R. C., Cole, C. R., and Serne, R.J., 1977.
Multicomponent mass transport model. Theory and numerical implementation (discrete
parcel random walk version), Battelle report BNWL for ERDA, Columbus, Ohio.

Berkowitz, B., Nauman, C., and Smith, L., 1994. Mass transfer at fracture intersections: An
evaluation of mixing models. Water Resources Research, v. 30, p. 1765-1773.

Brantberger, M., Zetterqvist, A., Anbjerg-Nielsen, Olsson, T., Outters, N., and Syrjinen, P.,
2006. Final repository for spent nuclear fuel: Underground design Forsmark, Layout D1.
SKB Report R-06-34, Swedish Nuclear Fuel and Waste Management Co., Stockholm.

Dershowitz, 1984. Rock Joint Systems. Ph.D. dissertation, Massachusetts Institute of
Technnology, Cambridge, Massachusetts.

Dershowitz, W. S., Lee, G., Geier, J., Foxford, T., LaPointe, P., and Thomas, A., 1996.
FracMan™ : Interactive discrete feature data analysis, geometric modeling, and exploration
simulation: User Documentation, Version 2.5, Golder Associates Inc., Redmond,
Washington.

Geier, J.E., 2005. Groundwater flow and radionuclide transport in fault zones in granitic
rock. Ph. D. dissertation, Geosciences Department, Oregon State University, Corvallis,
Oregon. Published as SKI Report 05:33, Swedish Nuclear Power Inspectorate, Stockholm.

Geier, J., 2008. Discrete-Feature Modelling of Groundwater Flow and Solute Transport for
SR-Can Review. SKI Report 2008:11, Swedish Nuclear Power Inspectorate, Stockholm.

Janson, T., Magnusson, J., Bergvall, M., Olsson, R., Cuisiat, F., and Skurtveit, E., 2006. Final
repository for spent nuclear fuel: Underground design Laxemar, Layout D1. SKB Report
R-06-36, Swedish Nuclear Fuel and Waste Management Co., Stockholm.

Mardia, K.V., 1972. Statistics of Directional Data, Academic Press, London, 339 p.

Mardia, K.V., Kent, J.T., and Bibby, J.M., 1979. Multivariate Analysis, Academic Press,
London, 521 p.

Munier, R., 2006. Using observations in deposition tunnels to avoid intersections with critical
fractures in deposition holes. SKB Report R-06-54, Swedish Nuclear Fuel and Waste
Management Co., Stockholm.

SKB, 2006. Long-term safety for KBS-3 repositories at Forsmark and Laxemar — a first
evaluation. Main report of the SR-Can project, SKB report TR-06-09, Swedish Nuclear Fuel
and Waste Management Co., Stockholm.

Snow, D. T., 1969. Anisotropic permeability of fractured media. Water Resources Research
v.5,no 6, p. 1273-1289.

92

Appendix 1: Supplementary utilities

This appendix gives brief descriptions of supplementary utilities that are included with this
version of the DFM package.

Two of these utilities are provided as C-language source code, which must be compiled in
order to produce executable programs:

showxpm Simple digitization program that works with XPM images
(useful for digitization of fracture traces from images).

splinter Program for analysis of fracture maps (see Geier, 2005 for
details).

Both programs make use of the open-source gtk toolkit, which is provided as part of most
Linux releases. However, these codes make use of several older features of gtk that have been
deprecated in newer versions of g¢zk. Hence difficulties may be encountered, in trying to
compile these codes using more recent Linux releases.

The remaining utilities are provided as Linux/Unix-compatible scripts. These scripts should
be copied into a subdirectory named ~/bin/dfmscripts, where ~ signifies the user's home
directory. This directory should be appended to the Linux/Unix environment variable PATH.

Some of these scripts have been developed for specific applications of the dfm package in a
particular modelling project, and may not necessarily be directly useful for other projects.
Others have been developed primarily for debugging and checking of code functionality.

In general these scripts have not been designed for the general user of the DFM package.
However, they may still serve as useful templates for customized scripts that the user might
wish to develop for other modelling projects. Knowledge of C-shell (esh or tcsh) and AWK
language programming techniques will be required. This is beyond the scope of the current
document. However, resources on C-shell and AWK programming can readily be found on
the Internet.

The following pages contain a list of these scripts with brief descriptions.

93

General-purpose utility scripts

cleanup

lines
pop

postscript

Mesh assembly scripts

rectify_topography.awk

parsepanels

presplit_fracs

presplit_fracs.awk
tripostx

tripostx_finish

consolidate_triangulation

consolidate_triangulation.awk

C-shell script to clean up carriage-return and line-feed
characters which sometimes cause problems in text (data)
files transferred from DOS/Windows to Linux operating
systems.

C-shell script to extract a range of lines from output.
C-shell script used to print the first line a text file into
stdout, and then delete this line from the file. This script is
utilized by tripostx and used by numerous other scripts.
C-shell script to parse a file in DFM-DXF format into

postscript-viewer format.

AWK script used to enforce sign convention on ordering
of topographic nodes (used in preparing topography files
prior to mesh assembly).

C-shell script used to parse panel data from fracgen
output.

C-shell script used to reduce size contrast among features
in a panel file, by subdividing features larger than a
specified radius, prior to mesh generation.

AWK script used by presplit_fracs.

C-shell script to post-process triangulation data (see
Section 4.2.1).

C-shell script to post-process triangulation data, used in
cases where it is necessary to terminate a fripostx run
prematurely (for example if a run is terminated to free up
CPU capacity for other processes running on the same
computer).

C-shell script used to consolidate triangulations produced
by tripostx.

AWK script used by consolidate_triangulation.

94

Particle-tracker pre- and post-processing scripts

getpartgrps.awk

extractarrivals

extractarrivals.awk

Jormattracks

formattracks.awk

processarrivals

processarrivals.awk

AWK script to create source-group input for meshtrkr.
C-shell script to extract data on particle arrivals at the
geosphere/biosphere interface, from a meshtrkr log file.
AWK script used by extractarrivals.

C-shell script to format particle-tracking data after
extracting arrival data.

AWK script used by formattracks.

C-shell script to post-process particle arrival data
produced by meshtrkr.

AWK script used by processarrivals.

Miscellaneous scripts for debugging and mesh diagnosis

countpanels.awk

dcxelement

dcxelement.awk

dcxelemneighbors

dcxnodeneighbors

dcxnodeneighbors.awk

dxfmeshplot.awk
extractpanel
extractpanel.awk
getpanel

memchk

meshcomplexity.awk

nodes_used.awk

AWK script to count the number of panels in a panel
definition file.

C-shell script used to extract information on the nodes
belonging to a specified finite element in a dcx file.

AWK script used by dexelement.

C-shell script used to extract information on the neighbors
of a specified finite element in a dcx file.

C-shell script used to extract information on the neighbors
of a specified node in a dcx file.

AWK script used by dexnodeneighbors.

AWK script used to produce color plots representing head
and flux values from a dfm simulation.

C-shell script to extract panel vertex data for a single
numbered panel, from a panel file.

AWK script used by extractpanel.

C-shell script to plot the triangulation of a panel.

C-shell script used to check memory allocation and
deallocation (debugging only).

AWK script used to characterize the complexity of a mesh
in terms of the maximum number of nodes connected to a
given node.

AWK script used to check for nodes in a mesh file that are
not referenced for any elements.

95

parse_restart_mesh

parse_restart_mesh.awk

plotmesh

plotmesh.awk

C-shell script used to parse dfin input file from dfm output
when convergence of the flow solution is judged to be
inadequate.

AWK script used by parse_restart_mesh.

C-shell script used to produce a postscript-format plot
from a triangulation file.

AWK script used by plotmesh.

96

Appendix 2: DFM Panel Files

Panel files are the primary way to represent the geometry and properties of discrete-features,
prior to discretization into finite-element mesh files. They are the main form of output from
the fracgen and repository modules, and the main form of input to the meshgenx module.

A panel file consists of two principal sections:
+ Vertex list
+ Panel list
The vertex list is simply a list of vertex coordinates headed by the keyword Vertices. The
syntax is:

Vertices

1 x: y1 21

2 X2 Y2 25

n .Xn Yn Zn
where (x;, yi, z:), 1 =1, 2, ..., n are the three-dimensional coordinates of the n vertices in the
list, listed in order of their vertex ID (the number in the first column). White space (space or
tab characters) between these numbers are ignored. A pound sign (#) can be used to append a
comment to one of the lines, but is not strictly necessary for that purpose, provided that the
comment comes after the expected number of fields on a line.

The panel list consists of a list of panels (polygons) which, depending on the context, may
represent portions of boundary segments, features, or boundary faces (a special class of

boundary segments which also are treated as features). The basic structure of a panel list is:
Panels
[boundary definition(s)]
[feature definition(s)]

where the boundary definition(s) and feature definition(s) may be interchanged in
order, or even interspersed.

A single panel panel; is represented by a list of vertex IDs on a single line:
Vi Vo ... Vpi

where v; is the vertex ID of the jth vertex belonging to this panel (in cyclic order), and N; is
the number of vertices in the panel. The number N; must be at least 3 (since a panel with
fewer vertices than a triangle would be degenerate), but otherwise can be arbitrarily large.

The cyclic order of the vertices (clockwise or counterclockwise) is arbitrary if the panel is
part of (or an entire) discrete feature. If the panel is part of a boundary segment or boundary

face, the order is significant as described below.

A feature definition has the form:

97

Feature f T T S S¢ b by [# label]

panel;

[panel;]

[;.Jane 1]
where each panel; is a list of vertex IDs on a single line, as indicated above, and where:

f feature ID

T feature transmissivity [L¥/T]

S¢ feature storativity [-]

brr feature transport aperture [L]

label optional text string to describe feature
Note that a feature may consist of just one panel, or more than one. If the feature consists of
multiple panels, these need not have any vertices in common. However, in practice multiple-
panel features (representing e.g. piecewise planar segments of curved features, or large
features which have been prediscretized as multiple panels) will commonly share vertices
along the edges where they join.

The feature properties defined on the line that begins with the keyword feature (i.e.,
transmissivity, storativity, and transport aperture) are assigned to each of the panels that
follow this statement, until another feature or boundary statement is encountered. These
properties may appear in any order, provided that the values of these properties are paired
with their respective labels (T, S, and b). This format is designed to allow for extension of
panel files to account for other feature properties that may be needed in some models (e.g.
rock mechanics properties).

If a feature definition is preceded by the keyword Topography, it is treated as a topographic
feature forming an upper boundary to the model. In this case, the ordering of vertices for
panels belonging to this feature should follow the rules for boundary segments/faces, as
described below.

A boundary definition has the form:
Boundary B
boundary [segment|face] definition(s)

where B is a unique positive integer to identify the boundary and each boundary [segment |
face] definition is either a boundary segment definition or a boundary face
definition.

A boundary segment definition has the form:
Boundary Segment s
panel;
[panel;]

[;.Janeln]

98

where s is a segment identifier, and each each panel; is a list of vertex IDs on a single line,
as indicated above.

A boundary face definition has the same form:

Boundary Face s

panel;

[panel;]

[;.)ane 1]
Both boundary faces and boundary segments are used (in meshgenx) to clip the portions of
intersecting features that are "outside" the boundary that they represent, and to assign
boundary group IDs to the resulting nodes in the mesh file. The convention used to determine
which side of a boundary panel (whether part of a boundary face or segment) is as follows:

If viewed from the "inside" of the boundary (the domain within which features should be
retained), the panel vertices are ordered in a counterclockwise direction (Figure A2.1).
Another way to think of this is in terms of the "right-hand rule": If your right hand is oriented
so that your fingers curl in the same direction as which the vertices on a panel are ordered,
then your right thumb points toward the "inside" of this boundary.

The difference between boundary faces and boundary segments is that the polygon
representing a boundary face is preserved as a transmissive feature (in meshgenx), whereas

the polygon representing a boundary segment is discarded after mesh generation.

99

a) Ordering of vertices on a b) Ordering of vertices on an internal
single boundary panel. boundary (smaller cube) within an
external boundary (larger cube).

AN

“Inside” of model domain

Ordering of vertices

Figure A2.1 Ordering of vertices on boundary panels

100

Table A2.1 Example of a panel list.
Panels

Topography

Feature 1 T 1le-5 S le-6 b 0.2
Boundary Segment 1

11 50 17

60 66 43

66 78 43

104 98 12

Boundary 1

Boundary Segment 1 # Top

4 39 43 42

Boundary Segment 2 # Bottom
5 59 63 62

59 14 60 63

Boundary 2 # Deposition Hole
Boundary Face 8

7383 7382 7381 7380 7379 7378
7384 7385 7386 7387 7388 7389
7378 7379 7385 7384

7379 7380 7386 7385

7380 7381 7387 7386

7381 7382 7388 7387

7382 7383 7389 7388

7383 7378 7384 7389

Feature Set 1

Feature 2 T 1e-05 S 1e-06 b 0.2 # ZFMNEGOG61
1676 2 1677 1680

1677 634 1678 1680

1678 637 1679 1680

1679 633 1676 1680

101

Appendix 3: DFM-DXF Files

DFM-DXF files used in the DFM package are a modified form of the DXF format that was
developed for older versions of the commercial AutoCAD ™ program. With the DFM
package, these are used principally for defining tunnel layouts for the repository module.

A DFM-DXEF file as used here ordinarily consists of two main sections: a header (which
specifies the x-y limits of the data as well as various line styles etc.), and a data section which
defines a series of polylines (polygons, not necessarily closed, consisting of one or more line

segments). Polylines are defined in just two dimensions. The basic format of a DFM-DXF
file is illustrated in Table A3.1.

102

Table A3.1 Abbreviated example of a DFM-DXF file used to define access tunnels and

deposition tunnels for a repository model.

BEGIN SECTION

BEGIN HEADER

$EXTMIN -143.5000 2772.5000

$EXTMAX 3026.1250 4801.0000

$LIMMIN -143.5000 2772.5000

$LIMMAX 3026.1250 4801.0000

FILLMODE

END HEADER

END SECTION

BEGIN SECTION

LABEL Access Tunnel 1

BEGIN POLYLINE

2436.0000 4200.5000
2199.6250 4514.0000
2173.8750 4540.0000
1921.3750 4585.5000
716.3750 4382.5000
393.2500 4127.5000
379.3750 40658.5000
507.5000 3822.0000
547.0000 3805.5000
583.7500 3810.5000
851.5000 4016.0000
945.1250 3961.5000

END POLYLINE

LABEL Deposition Tunnel 1-01

BEGIN POLYLINE
419.0000 4149.0000
562.0000 3938.0000

END POLYLINE

LABEL Deposition Tunnel 1-02

BEGIN POLYLINE
454.8750 4173.0000
595.1250 3960.5000

END POLYLINE

LABEL Deposition Tunnel 1-03

BEGIN POLYLINE
482.6250 4204.0000
627.2500 3990.0000

END POLYLINE

END SECTION

103

Appendix 4: Physical Units

The dfm module of the DFM package requires that physical parameters be specified in
dimensionally consistent units. Input in non-SI units is automatically converted to SI units.
This helps to avoid common errors from use of incompatible units.

Note: Other modules in the package are less consistent in this regard, but more explicit

checking of units is planned for future versions.

In their most simple form, units may be expressed as one of the basic unit identifiers u
recognized by the program, such as u = Pa, ft or mm (see below for a full list).

A positive integer i immediately following a basic unit identifer, in the form ui, indicates
exponentiation of the unit to the indicated power. For example, s2 indicates seconds squared,
and km3 indicates cubic kilometers.

Unit identifiers with or without exponents can be combined in more complex expressions, by
using an asterisk (*) or a space between identifiers to indicate multiplication or a slash (/) to
indicate division. For example, either N*m or N m indicates units of Newtons times meters,
and kg m/s2 indicates kilograms-meters per second squared.

Parentheses can also be used to define subexpressions which are interpreted by the usual rules
of algebra. For example, a flux could be specified as (m3/s)/m2 which is equivalent to units
of m/s.

Indeterminate expressions arising from use of multiple slashes, or multiplication signs
following a slash, without clarifying parentheses, are resolved by treating everything after the
first slash as part of the divisor. For example ft/min/kg and ft/min*kg would both be
interpreted as meaning ft/(min*kg).

Output by default is in SI units. Conversions from user-specified units to the SI units used in

calculations can thus be checked by inspecting the input parameters which are recorded as
part of the output.

104

Table A4.1 List of basic unit identifiers. For each category, the SI units are indicated.

Time
S seconds SI
min minutes
hr hours
day days
week weeks
year years (365.25-day solar year)
yr years (365.25-day solar year)
Mass
kg kilograms SI
g grams
slug slugs
Lbm pounds mass
Length
m meters SI
mm millimeters
cm centimeters
km kilometers
in inches
ft feet
yards yards
yard yards
miles miles
mile miles
Area
m2 square meters SI

hectare hectares

acre acres

105

Table A4.1 List of basic unit identifiers. For each category, the SI units are indicated.

sqft square feet
Volume
m3 cubic meters ST
L liters
ml milliliters
cc cubic centimeters (= ml)
gal U.S. gallons
Force
N newtons SI
lbs pounds (force)
1bf pounds (force)
Energy
J joules SI
kWhr kilowatt-hours
Btu British thermal units
Power
W watts SI
KW kilowatts
hp horsepower
Pressure
Pa pascals SI
kPa kilopascals
MPa megapascals
psi pounds per square inch
ksi kilopounds per square inch
Viscosity
Ns/m2 SI
P Poise

106

Table A4.1 List of basic unit identifiers. For each category, the SI units are indicated.

cP centiPoise

Flowrate
m3/s cubic meters per second SI
gpm U.S. gallons per minute

Velocity or volumetric flux

m/s meters per second SI
kph kilometers per hour

mph miles per hour

fps feet per second

107

Appendix 5: DCX Mesh File Format

The meshtrkr module of the DFM package requires that mesh data be provided in an older
format known as DCX format, rather than the dfm mesh file format (as described in Section
5.2). The DCX format is defined as three header lines (the contents of which are ignored in
meshtrkr) followed by a list of node data, then two more header lines followed by the
element data, as follows:

31.0

hokokokokkokkokkokkokokokokokokokkok ok ks NODE COORDINATES keskokskokskokskok ok ok ok ok ok ok ok ok

Node # x 'y z type h q grp
1 X1 yi oz bper hi q g

M Xy Yu Zm typem hw qu 8um

Sk >k 3k 5k >k 3k 5k >k 5k >k 3k 5k >k >k ok >k 5k >k >k ok >k 5k >k >k 5k >k >k ok FRACTURES Sk >k 3k 5k >k 3k 5k >k 5k >k 3k 5k >k >k ok >k 5k >k >k ok >k 5k >k >k 5k >k >k ok
Elem # n1 n2 n3 Set T S b

1 n;g; ny ny set; T, S b;
N ny noy nzy sety Ty Sy by
where:

M =number of nodes;
X; = x coordinate of ith node [m],i=1, 2, ..., M;
y; =y coordinate of ith node [m];
Z = z coordinate of ith node [m];
type; =nodal type for ith node;
h; =head value at ith node [m];
q; =nodal flux at ith node [m/s];
g =nodal group identification number for the ith node;
N =number of elements;

n; = first node of jth element, j =1, 2, ..., N;
ny; = second node of jth element;

ny = third node of jth element;

set; = feature set to which jth element belongs;
T, = transmissivity of jth element [m?/s];

S; = storativity of jth element [-];

b; = transport aperture of jth element [m];

108

In practice, the DCX mesh file for meshtrkr input is typically parsed from the dfm mesh file
that was used as input for flow calculations, plus the head and nodal flux values from dfm
output, using scripts that the user writes for the specific application. The method is
cumbersome and difficult to document for the general user. Therefore in future versions of
the DFM package, the DCX format for meshtrkr input is planned to be replaced by an

extended version of the dfm mesh file format.

109

www.ski.se

STATENS KARNKRAFTINSPEKTION
Swedish Nuclear Power Inspectorate

posT/POSTAL ADDRESS SE-106 58 Stockholm
sesdk/ofrice Klarabergsviadukten 90
TELEFON/TELEPHONE +46 (0)8 698 84 00
TELEFAX +46 (0)8 661 90 86
E-POST/E-MAIL ski@ski.se

WEBBPLATS/WEB SITE www.ski.se

	1 Introduction
	1.1 Geometrical representation of discrete features
	1.2 Software modules
	1.3 Sequence of steps in a DFM modelling application
	1.4 Conventions used in this manual

	2 fracgen module for fracture statistical simulation
	2.1 fracgen fractures and fracture sets
	2.2 fracgen thinning of fractures
	2.3 fracgen block-scale representation of fractures
	2.3.1 Grid specification
	2.3.2 Calculation of block-scale properties
	2.3.3 Representation by block-scale discrete features

	2.4 fracgen fracture set definitions
	2.4.1 Scalar models
	2.4.2	Directional models
	2.4.3	Location processes
	2.4.4	Intensity measures

	2.5 fracgen generation domains
	2.6 fracgen generation sites
	2.7 fracgen generation shells

	3 repository module for simulation of tunnels
	3.1 repository tunnel EDZ
	3.2 repository deposition-hole criteria
	3.3 repository tunnel parameters files
	3.4 repository tunnel axes files

	4 meshgenx module for mesh generation
	4.1 meshgenx discretization options
	4.2 tripost module and associated shell scripts
	4.2.1 tripost: shell script tripostx
	4.2.2 tripost: shell script consolidate_triangulation

	5 dfm module for flow and solute transport simulation
	5.1 dfm simulation sequences
	5.1.1 dfm file general rules

	5.2 dfm mesh files
	5.3 dfm boundary conditions
	5.3.1 dfm boundary groups
	5.3.2 Types of hydraulic boundary conditions

	5.4 dfm keywords
	5.4.1 dfm sequence-level keywords
	5.4.2 dfm simulation-stage level keywords
	5.4.2.1 dfm solver settings lists
	5.4.2.2 dfm tracker settings list
	5.4.2.3 dfm boundary condition specifications

	5.4.3 dfm temporal/spatial functions
	5.4.3.1 dfm tfunction syntax
	5.4.3.2 dfm tfunction usage and restrictions
	5.4.3.2 dfm table tfunctions (disabled feature)

	6 meshtrkr particle-tracking module
	6.1 meshtrkr particle-tracking algorithm
	6.2 Calculation of pathway parameters
	6.3 meshtrkr particle file format
	6.4 meshtrkr dispersivity file format

	7 References
	Appendix 1: Supplementary utilities
	Appendix 2: DFM Panel Files
	Appendix 3: DFM-DXF Files
	Appendix 4: Physical Units
	dfmmanual_v2.1_2008-jun-30_gl.pdf
	1 Introduction
	1.1 Geometrical representation of discrete features
	1.2 Software modules
	1.3 Sequence of steps in a DFM modelling application
	1.4 Conventions used in this manual

	2 fracgen module for fracture statistical simulation
	2.1 fracgen fractures and fracture sets
	2.2 fracgen thinning of fractures
	2.3 fracgen block-scale representation of fractures
	2.3.1 Grid specification
	2.3.2 Calculation of block-scale properties
	2.3.3 Representation by block-scale discrete features

	2.4 fracgen fracture set definitions
	2.4.1 Scalar models
	2.4.2	Directional models
	2.4.3	Location processes
	2.4.4	Intensity measures

	2.5 fracgen generation domains
	2.6 fracgen generation sites
	2.7 fracgen generation shells

	3 repository module for simulation of tunnels
	3.1 repository tunnel EDZ
	3.2 repository deposition-hole criteria
	3.3 repository tunnel parameters files
	3.4 repository tunnel axes files

	4 meshgenx module for mesh generation
	4.1 meshgenx discretization options
	4.2 tripost module and associated shell scripts
	4.2.1 tripost: shell script tripostx
	4.2.2 tripost: shell script consolidate_triangulation

	5 dfm module for flow and solute transport simulation
	5.1 dfm simulation sequences
	5.1.1 dfm file general rules

	5.2 dfm mesh files
	5.3 dfm boundary conditions
	5.3.1 dfm boundary groups
	5.3.2 Types of hydraulic boundary conditions

	5.4 dfm keywords
	5.4.1 dfm sequence-level keywords
	5.4.2 dfm simulation-stage level keywords
	5.4.2.1 dfm solver settings lists
	5.4.2.2 dfm tracker settings list
	5.4.2.3 dfm boundary condition specifications

	5.4.3 dfm temporal/spatial functions
	5.4.3.1 dfm tfunction syntax
	5.4.3.2 dfm tfunction usage and restrictions
	5.4.3.2 dfm table tfunctions (disabled feature)

	6 meshtrkr particle-tracking module
	6.1 meshtrkr particle-tracking algorithm
	6.2 Calculation of pathway parameters
	6.3 meshtrkr particle file format
	6.4 meshtrkr dispersivity file format

	7 References
	Appendix 1: Supplementary utilities
	Appendix 2: DFM Panel Files
	Appendix 3: DFM-DXF Files
	Appendix 4: Physical Units
	Appendix 5: DCX Mesh File Format

