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Background 

The conceptual design of the disposal of spent nuclear fuel in Sweden is based on a multi-
barrier system. In the KBS-3 concept, the bentonite buffer is a barrier with the primary 
purpose of surrounding and protecting the canister. The bentonite buffer is expected to 
prevent or minimise the water exchange with the surrounding rock and protect the canister 
against mechanical damages caused by possible shear movements in the immediate 
surroundings.  
 
For a number of years, the researchers at Chalmers University of Technology have studied the 
buffer, with special emphasis on the drying and saturation phases of the buffer evolution. As a 
complement to the detailed numerical models for coupled thermal-hydrological-mechanical-
chemical (THMC) processes, simplified models have been developed within the current 
project in order to improve the conceptual understanding of relevant physical processes and 
their interactions. 
 
 
Purpose 

The main purpose of this project is to: 1) develop new tools to quantify the drying and the 
resaturation stages, 2) study parameter sensitivity and identify key parameters, and 3) provide 
independent methods to test other numerical models. The study is restricted to the moisture 
flow in the bentonite annulus. The project is a complementary study with focus on 
understanding and an endeavour to provide handy models.  
 
 
Results 

A compact formula for the temperature level and gradient in the bentonite is presented. The 
key radial moisture flow process at a canister is shown to be governed by two flow coefficient 
functions. These depend on water and bentonite properties in a rather complicated way, but 
they are determined quite handily by one of the models. 
 
The main results of this work are new complete analytical solutions for the linearized wet-
rock and dry-rock cases. The solutions involve two key parameters only, a time scale and a 
thermo-diffusive parameter a. The largest drying at the canister wall and the resaturation in 
the wet-rock case are obtained from a single set of curves with a dimensionless time and a as 
the only parameter. Explicit formulas for the largest drying and for the resaturation process 
are presented. 
 
The studies of parameter sensitivity show that the hydraulic conductivity at full saturation is a 
key parameter. Other important parameters are the temperature level and the intensity of the 
heat release from the canister. The initial degree of saturation is important, in particular in the 
dry-rock case with no water supply from the rock. The ratio between dry vapour conductivity 
and saturated liquid conductivity is important. These results are summarized as two rules of 
thumb. 
 



 
Effect on SKI work  
 
This work will be used in the SKI evaluation of the SKB work on drying and resaturation of 
bentonite. The report will also be used as one basis in SKI’s forthcoming reviews of SKB’s 
safety assessments of long-term safety and RD&D programmes. 
 
 
Project information 

Responsible for the project at SKI has been Christina Lilja and Anna Cato.  
SKI reference: SKI 2006/698/200710223  
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Summary
   The bentonite, which surrounds and protects the canisters in a nuclear waste repository deep 
down in rock, experiences a complex, coupled heat and moisture flow process. The emitted 
heat from the canisters will cause an initial drying from the warmer canister side. The water in 
cracks and fractures in the rock will on the other hand cause successive saturation of the 
bentonite from the outer rock side. These processes will interact and one key question is the 
degree of initial drying and the time it takes to saturate the bentonite. 
   This paper studies this problem and presents new handy tools of analysis. A compact 
formula for the temperature level and gradient in the bentonite is presented. The key radial 
moisture flow process around a canister is shown to be governed by two flow coefficient 
functions. These depend on water and bentonite properties in a rather complicated way, but 
they are determined quite handily by one of the models.  
     The moisture flow may have a time scale of a few years, while the canister heat emission 
and temperature process involve a time scale of decades. Steady-state solutions are therefore 
of interest. One model solves the general case of coupled nonlinear differential equations for 
water saturation ( )S r  and temperature ( )T r . An analysis of the equations shows that there is 
a direct relation between S and T, with the initial degree of saturation as a parameter. We get a 
set of curves that gives the (steady-state) drying for any temperature level, canister heat 
emission, and water saturation level. These very instructive diagrams are generated for any set 
of data in a few seconds. 
     The second part of the analysis concerns the transient moisture flow process. There are two 
limits. In the wet-rock case, full saturation ( 1S � ) is maintained at the rock boundary. The 
moisture flux is zero at the rock boundary in the dry-rock case. The equation for the water 
saturation ( , )S r t  involves two free flow coefficient functions which are functions of S and T.  
It is shown that the highly non-linear equation may, when formulated in a special way, be 
linearized with a loss of accuracy of some 10% only. The paper presents new complete 
analytical solutions for the linearized wet-rock and dry-rock cases. The solutions involve two 
key parameters only, a time scale and a thermo-diffusive parameter a. The largest drying at 
the canister wall and the resaturation in the wet-rock case are obtained from a single set of 
curves with a dimensionless time and a as the only parameter. Explicit formulas for the 
largest drying and for the resaturation process are presented. 
     The steady-state equation may also be linearized with a modest loss of accuracy. A 
compact explicit formula for the saturation as function of radius is obtained. The largest 
drying, which occurs at the canister boundary, is given by a handy formula that involves the 
initial degree of water saturation and the parameter a only 
    All mathematical programs are implemented in Mathcad. They involve each a few pages. 
The computer time is typically a few seconds up to a minute only. The models are easy to 
understand, implement and use. 
     The studies of parameter sensitivity show that the hydraulic conductivity at full saturation 
is a key parameter. Other important parameters are the temperature level and the intensity of 
the heat release from the canister. The initial degree of saturation is important, in particular in 
the dry-rock case with no water supply from the rock. The ratio between dry vapor 
conductivity and saturated liquid conductivity is important. These results are summarized as 
two rules of thumb. 
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1 Nuclear waste repository 
Figure 1.1 shows a nuclear waste repository, where the canisters with nuclear waste are buried 
deep down in rock. The canisters with the radius cr  and height cH  are placed in boreholes 
with the radius rr  (rock) along parallel tunnels. The canisters are imbedded in bentonite, Fig. 
1.2. Each canister emits heat at a rate c ( )Q t  (W), which decays slowly with time. The emitted 
heat will cause a temperature increase in the repository and surrounding rock. The canisters 
are evenly spread out over a large rectangular area so that too high temperatures are avoided 
at the canisters.   
 
 
 

 
 
 

Figure 1.1. SKB concept for nuclear waste repository. 
 
 
 
 

 
 

Figure 1.2. Canister imbedded in bentonite in a borehole from a tunnel. 
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2 Heat and moisture flow problem  
  The bentonite, which surrounds and protects the canisters in a nuclear waste repository deep 
down in rock, experiences a complex coupled heat and moisture flow process. The emitted 
heat from the canisters will cause an initial drying from the warmer canister side. The water in 
cracks and fractures in the rock will on the other hand cause successive saturation of the 
bentonite from the outer rock side. These processes will interact and a key question is the 
degree of initial drying and the time it takes to saturate the bentonite under various scenarios. 
Too much drying of the bentonite may damage its swelling and sealing capacity. The worst 
case with the strongest drying will occur for a canister in completely dry rock without any 
water supply from the adjacent rock.  
    The goal of this study for the moisture flow processes in the bentonite are: (1) find methods 
to quantify the drying and resaturation, (2) study parameter sensitivity and identify key 
parameters, and (3) provide independent methods to test other numerical models. These 
coupled heat and mass processes have been studied with large numerical codes. This is a 
complementary study with a focus on understanding and with an endeavor to provide handy
models.   
    The paper gives a survey of our studies and results from the last few years. Formulas, 
models and other tools of analysis are presented without derivations. The details of 
derivations are presented in other reports and, to some extent, in appendices. 
    The canisters of the repository shown in Fig. 1.1 lie in large a rectangular area, L x L� � � , 

B y B� � � , 0z � , deep down in rock. The horizontal x-axis lies perpendicular to the tunnels, 
and the y-axis lies along the central tunnel The ground surface lies at grz D� . The canisters 
are placed along tunnels with the spacing cD . The distance between the parallel tunnels is tD . 
See Figure 2.1. 
 
 
 

                     
 

Figure 2.1. Canisters in a rectangular grid along parallel tunnels. 
 
 
    We will use a reference case, from which parameters are varied in the sensitivity analyses. 
The following data are used in the reference case use: 
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� � � � � � �
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 Here, we consider a homogeneous rock with the thermal conductivity r�  W/(m,K)), the 
density r�  (kg/m3), the heat capacity rc  (J/(kg,K)), and the thermal diffusivity r r r r/( )a c� ��  
(m2/s). The undisturbed ground temperature (without heat emitting canisters) at the repository 
depth is repT . The heat release c ( )Q t  may be any function of time. It may as indicated in (2.1)  
consist of a number of exponentials, where the smallest decline time is 1 46t �  years.  
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3 Outline of the study and the analyses 
    The largest drying occurs in the center of the repository with the highest temperatures. We 
consider in particular the central canister. The drying is driven by water vapor diffusion. The 
highest drying occurs for the largest temperature gradient in the bentonite around the canister. 
This largest gradient from the warm canister will occur at the mid level of the canister, since 
heat may “escape” more easily from top and bottom of the canister. At the mid level of the 
canister, the heat and moisture flow process in the bentonite annulus is radial without any 
vertical component. We have only to consider a radial, one-dimensional process in the 
bentonite.  This is an important simplification.  
    The first step in the analysis is to determine the temperature distribution over the bentonite 
annulus c r( , 0)r r r z� � �  as function of time. The temperature depends on the heat release 

c ( )Q t  from the central canister and from neighboring canisters. More and more canisters must 
be accounted for as time goes. The heat release decays exponentially with a time scale of 
some thirty years. The time scale to approach steady-state temperature conditions over the 
bentonite annulus is below 24 hours. This means that the temperature distribution over the 
annulus is virtually a steady-state one with a slow change on a time scale of years.  A 
remarkably simple explicit formula for the temperature r ( )T t  in the bentonite at the rock 
boundary r( )r r�  is presented in next section. The quasi steady-state temperature distribution 
in the bentonite is determined by r ( )T t  and c ( )Q t .  The thermal process is essentially 
decoupled from the moisture flow process. 
    The equations for moisture flow in the bentonite annulus are discussed in Section 6. The 
total moisture flux has a liquid and a vapor component. The description of the flow involves 
data and functions for water and bentonite, and in particular for liquid and vapor flow in the 
bentonite. The moisture flux is determined by gradients in moisture state variables and 
temperature. We will choose the degree of water saturation in the bentonite S, 0 1S	 	 , as 
our basic moisture state variable. The flow coefficients before the gradients in S and T 
become functions of S and T.  
    We will restrict this study to the moisture flow in the bentonite annulus. The inner 
boundary against the canister is certainly watertight with zero moisture flux at cr r� . At the 
outer boundary rr r� , there are two limits. The rock may be sufficiently wet to maintain full 
saturation at the surface of the bentonite: r 1S � . We will call this the wet-rock case. The other 
limit, which is the worst possible case, is that the water inflow from the rock is zero: r 0G � . 
We will call this the dry-rock case. (The possibility that the rock sucks water from the 
bentonite is ruled out, since the suction pressures are so high in bentonite.) The case with high 
water pressure at the outer bentonite boundary from a water table well above the repository is 
not discussed here, since it is a more favorable case, which will occur after a longer period of 
water recovery on repository scale. 
    With the reference data (2.1), we will find that the time scale to approach (exponentially) 
steady-state moisture conditions is around 4 years in the wet-rock case, and around 1 year in 
the dry-rock case. The temperature and the heat release from the canisters have, except for the 
first few years, a distinctly longer time scale. This means that the steady-state solutions for 
the moisture distribution over the bentonite annulus are quite interesting to us.  
    The steady-state solutions for the moisture distribution are studied in Section 7. One model 
deals with the general solution for ( )S r  and ( )T r  from two coupled, highly nonlinear, 
ordinary differential equations. The model that has been implemented in Mathcad is given in 
full in Appendix 4. From the structure of the coupled differential equations we find that there 
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is an intrinsic relation between S and T that is independent of the radius r. We get a set of 
curves for r( ; )S S T S�  for different degree of water saturation rS  at the rock boundary rr r� . 
These diagrams give directly the drying and moisture distribution over the bentonite annulus 
in steady state for any moisture level and any temperature interval over the bentonite. The 
program in Appendix 5 generates a new diagram for any particular set of assumptions and 
data in a few seconds. 
    The time-dependent moisture process in the bentonite is studied in Section 8. The basic 
equation for ( , )S r t  has a convective-diffusive character with a diffusivity function ( , )D S T  
and a convective-diffusive or thermo-diffusive coefficient function ( , )A S T . The model that 
calculates these functions for any particular set of assumptions and data shows that the 
variations of these functions are rather moderate.  In a process within a temperature span of 
10oC and a degree of saturation from 0.75 to 1, the two coefficient functions vary some 20%. 
We may use constant mean values with an error below 10%. The model that has been 
implemented in Mathcad is given in full in Appendix 6. 
    These constant mean values depend on the saturation and temperature levels in the 
bentonite for the considered process. We have two basic parameters: the mean diffusivity 0D  
(m2/s) for moisture flow and a dimensionless thermo-diffusive parameter a. The diffusivity 
determines the time scale to attain steady-state conditions. The time scale is inversely 
proportional to the diffusivity. The second basic parameter a depends on the ratio between 
vapor and liquid diffusion coefficients. It is also proportional to the heat flux c ( )Q t . It 
increases with the temperature level. 
     We have in this approximation obtained a linear partial differential equation for ( , )S r t . 
The general solutions of this equation have been derived for the dry-rock and wet-rock cases. 
From these solutions, explicit expressions for the maximum drying at the canister and the 
subsequent resaturation in the wet-rock case are derived. From these solutions, we have 
formulas and diagrams that give the complete transient process for any parameter values and 
initial degree of saturation 0 0 in( or t , , )D a S . The two solutions have been implemented in 
Mathcad. They are given in full in Appendix 7 and 8. 
     The linear approximation may also be used as a quite good approximation for the steady-
state moisture profiles. In steady state, full saturation 1S �  prevails through the bentonite 
annulus in the wet-rock case. In steady state for the dry-rock case, we get, in the linear 
approximation, a neat explicit formula for the degree of saturation as function of the radius. 
The only parameters are a and inS  (and the ratio of radii c r/r r ). The largest possible drying in 
the bentonite occurs in steady state at the canister boundary for the dry-rock case. We get a 
single, very handy formula and diagram for the largest possible drying under any 
circumstances with a and inS  as parameters. 
     Section 11 presents briefly a particular so-called Boltzmann solution for the key case of a 
step change of boundary values at 0x � . The coupled highly nonlinear partial differential 
equations for moisture and heat are reduced to ordinary differential equations with /x t  as 
variable. These equations may be solved with very high and controlled accuracy. 
    Section 10 gives a survey of the new models and tools of analysis. All models involve a 
number of explicit formulas. They have been implements in Mathcad, and they are given in 
full detail in the Appendices 4 to 8. It should be straightforward to implement the formulas in 
any other program such as Matlab or Maple. 
    Any calculation with the models require a few seconds only, except for the full solution of 
the linearized equations for ( , )S r t , which may require a few minutes to determine the 
complete transient moisture flow process. 
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     All models may easily be changed for other assumptions about flow coefficients, data, etc.   
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4 Formula for the bentonite temperature level  
The temperature field in the ground consists of an undisturbed ground temperature undist ( )T z  
with temperature undist rep(0)T T�  at the repository level and a temperature contribution from 
some 6 000 heat-emitting canisters as indicated in Fig. 2.1. We are in particular interested in 
the temperature r ( )T t  at the mid-level of the central canister, i.e. for rr r�  and 0z � . The 
formulas for the rock temperatures are discussed further in Appendix 1. Further analyses and 
full derivations of the formulas are presented Claesson and Probert (1996), Probert and 
Claesson (1997), and Hökmark and Claesson (2005).  
    After the first year (or two), we may use the following remarkably simple formula:  
 
 r rep gl c local( ) ( ) ( ) .T t T T t Q t R
 � � �  (4.1) 
 
Here, we have a global temperature field obtained from a surface heat source over the 
repository rectangle 0z � , L x L� � � , B y B� � �  with the strength � �c c t( ) /Q t D D  (W/m2):  
 

 � � � �2 2
gr4 /c c t

gl r
0 r r

( ) / L( ) erf erf 1 , 4 ( ) .
t

D sQ t D D BT t e dt s a t t
s sc s� 


�� � � � � � �� � � � � � �� � � �� � � � ��  (4.2) 

 
We have replaced the array of line sources by smearing out the heat source c ( )Q t  evenly over 
the corresponding rectangle with the area c tD D . See Fig.2.1. The error function erf(x) is 
defined in (5.5). The last exponential involving grD  accounts for the effect of the ground 
surface. The integral (4.2) in time is easily solved numerically for any time-dependent heat 
source c ( )Q t . 
    The remaining temperature field involves balanced heat sources between the array of line 
sources and the rectangular source (with negative sign). This part may, after rather intricate 
calculations, be represented by a single thermal resistance localR  (K/W) in the last term of 
(4.1): 
 

 c t
local

r c c cr1.5

H1 1 1ln ln , 0.577.
2 4r

DR
H D D

� �

� 
�

� �� �� � � �� �� � � � � � �� �� �� �� �� � � �� �� �  !" #
 (4.3) 

 
Here, �  is Euler’s constant. 
    The solution (4.1)-(4.3) is valid with good accuracy compared to the full expression (13.1)-
(13.2) in App. 1 after a year or two until infinite time. The effects of spacing tD  between 
tunnels and spacing cD  between canisters along a tunnel are shown in a very clear way.  
    A formula suitable for the first few years is in Appendix A1.2. It involves the original line 
sources from the central canister and a suitable number of its closer neighbors. The two 
closest tunnels are also accounted for by equivalent line heat sources along the two tunnels. 
    The formulas for the temperature r ( )T t  at the rock-bentonite boundary are easily 
implemented in Mathcad. Any particular case is readily solved. We obtain the temperature 
level rT  as an input to the further analysis.  
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5 Temperature from canister heat sources 
This section presents the formulas derived in the new report Claesson (2007). The formulas 
are studied in four appended Mathcad calculation sheets. 
 

5.1 Time-dependent point heat source 
The starting point for all formulas for the temperature is a time-dependent point heat source 
with the heat release ( )Q t (W) from time 0t �  in the point (0,0,0)  in an infinite solid 
material with the thermal conductivity r� (W/(m,K)), the density r�  (kg/m3), the heat capacity 

rc  (J/(kg,K)) and the thermal diffusivity r r r r/( )a c� ��  (m2/s) . The undisturbed temperature at 
0t �  is zero throughout the solid. The temperature is 

 

 
$ %

2 2 2

r4 ( )
1.5

r r0 r

( ) 1( , , , ) .
4 ( )

x y zt
a t tQ tT x y z t e dt

c a t t� 


� �
�

���
�� � �

���   (5.1) 

 
   We make the substitution 
 

 2 3

0 12, , , .
t ut t tu t t dt du
t t uu ut t
� � & ��� �� � � � � � � & � '�� "

 (5.2) 

 
Then we get a basic integral for the temperature field from a point heat source with the 
continuous heat release ( )Q t  (W) from the time 0t �  at (0,0,0) : 
 

 
2 2 2

2 2 2

r r r4 4 4
2

1r r

1( , , , ) .
4

x y zu u u
a t a t a ttT x y z t Q t e e e du

ua t
� 


' � � � � � �� �� � � � � �� �
� ��  (5.3) 

 
 

5.2 Time-dependent line heat source 
The next step is to consider a time-dependent line heat source. The heat ( )q t  (W/m) is 
released from time 0t �  along the z-axis in the interval H z H� 	 	 . The solution is  
 

 
2 2

2 2

r r4 4
2

1r r r

1( , , , ) 2 , .
4 4

x yu u
a t a tt z HuT x y z t H q t e e E du

u Ha t a t
� 


' � � � � � �� �� � � � � � � � �� � � �� � � �
�  (5.4) 

 
Here, we use the function ( , )E p v  and the error function erf(x): 
 

 
� � � � 2

0

erf 1 erf 1 2( , ) , erf( ) .
4

x
sp v p v

E p v x e ds
v






�
� � � �� � � � � !  !� � � � �  (5.5) 

 
   We are in particular interested in a canister line heat source.  The temperature from a 
canister at the center (0,0, ), ,z H z H� � � c / 2H H� , with the heat release c ( ) 2 ( )Q t H q t� �  
becomes from (5.4) 
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2 2
2

r4
clhs c 2

1r r r

1( , , , ) , .
4 4

x y u
a tt z HuT x y z t Q t e E du

u Ha t a t
� 


�' � � � �� �� � � � � �� � � �� � � �
�  (5.6) 

 

5.3 Field of canister heat sources 
   The canisters in the nuclear waste repository lie along tunnels. The distance between the 
tunnels is tD , and the spacing between canisters along a tunnel is cD . Canister number n in 
tunnel number m lies at tx mD�  and cy nD� . The temperature field from this canister 
becomes 
 

2 2
2t c

r

( ) ( )
4

can, , c 2
1r r r

1( , , , ) , .
4 4

x mD y nD u
a t

m n
t z HuT x y z t Q t e E du

u Ha t a t
� 


� � �' � � � �� �� � � � � �� � � �� � � �
�  (5.7) 

 
The total temperature field from all canister heat sources involves a sum over all tunnels and 
all canisters along each tunnel: 
 

2 2
2tt c

r

t c

( ) ( )
4

sum c 2
1r r r

1( , , , ) , .
4 4

cx mD y nDN N u
a t

m N n N

t z HuT x y z t Q t e E du
u Ha t a t
� 


� � �' � �

�� ��

� �� �� � � � � �� � � �� � � �
( (�  (5.8) 

 
Here, we consider a case with a central tunnel ( 0m � ) and tN  tunnels to the left and to the 
right. The total number of tunnels in the repository is t2 1N � . In each tunnel there is a central 
canister and cN  canisters on each side. The total number of canisters in a tunnel is c2 1N � , 
and the total number of canisters in the rectangular repository is t c(2 1) (2 1)N N� � � . 
    The double sum (5.8) is a sum over all canisters, i.e. over some 6000 terms. The number of 
terms to compute can be reduced considerably by writing it as a product. We introduce the 
sum 
 

2 2( )( , , ) .
N

p n v

n N
S p v N e� � �

��

� (  (5.9) 

 
 The temperature field from all canisters may be written: 
 

� �2
c t c

sum t c
t c1 r r r r r

/
( , , , ) , , , , , .

4 4 4 4

Q t t u D u D ux y z HuT x y z t S N S N E du
D D Ha t a t a t a t
� 


' � � � � � � �
� � � � � � �� � � � � �

� � � � � �
�  (5.10) 

 
This summation as a product reduces the number of terms to sum from t c(2 1) (2 1)N N� � �  to 

t c2 2 2N N� � . The time to compute a temperature is typically reduced by a factor of 25. 
 

5.4 Tunnel line heat source 
The temperature from the canisters in a tunnel is obtained by a sum over n. For the central 
tunnel ( 0m � ) we have: 
 



10 

 
2 2

2c
r

c

( )
4

c 2
1r r r

1( , , , ) , .
4 4

cx y nDN u
a t

n N

t z HuT x y z t Q t e E du
u Ha t a t
� 


� �' � �

��

� �� �� � � � � �� � � �� � � �
(�  (5.11) 

 
   This formula may be simplified for points far away from the tunnel. The row of vertical line 
heat sources may then be replaced by a horizontal line heat source along the tunnel axis. The 
heat c ( )Q t  from a canister is placed along the tunnel axis over the length cD  around the center 
of the canister. Let tunnel c c( ) Q ( ) /q t t D� (W/m) denote the strength of the tunnel line heat 
source. The line heat source for the central tunnel lies along (0, ,0),y B y B� � � . The tunnel 
length 2B  is given by c c(2 1)N D� � . 
   The temperature for an equivalent tunnel line heat source along the x-axis becomes in 
analogy with (5.6): 
 

2 2
2

r4
tlhs c 2

c 1r r r

1 2( , , , ) , .
4 4

x z u
a tB t y BuT x y z t Q t e E du

D u Ba t a t
� 


�' � � � �� �� � � � � � �� � � �� � � �
�  (5.12) 

 
This solution is a good approximation of (5.11) for points that lie at a certain distance from 
the tunnel.  
 

5.5 Rectangular global heat source 
The canisters lie in a grid in a rectangular area: , , 0L x L B y B z� � � � � � � . The solution for 
all canisters is given by (5.8) or (5.10). For points at a certain distance from the rectangular 
repository area, we may derive a much simpler formula by replacing the vertical canister line 
heat sources by an equivalent surface heat source surface ( )q t over the rectangular repository 
area.  We have 
 

 c
surface

t c

Q ( )( )= , , , 0.tq t L x L B y B z
D D

� � � � � � �  (5.13) 

 t t c c( 0.5) , ( 0.5) .L N D B N D� � � � � �  (5.14) 
 
The solution is then: 
 

� �
2

2

r42
gl c

t c 1r r r r

1 4( , , , ) / , , .
4 4 4

z u
a tLB x Lu y BuT x y z t Q t t u E E e du

D D L Ba t a t a t
� 


' � �� � � �
� � � � � � �� � � �

� � � �
�  (5.15) 

 
We will call this the global solution. It is the same formula as (4.2) but with a different form 
for the variable of integration. It is valid at a certain distance from the rectangular canister 
area. 
 

5.6 Effect of ground surface and undisturbed temperature 
The temperature variation at the ground surface grz D�  may be neglected. We can use the 
annual mean temperature 0T  as boundary condition at the ground surface. The undisturbed 
ground temperature increases downwards with the geothermal gradient to the temperature repT  
at the repository level 0z � . Using a linear geothermal gradient, we have: 
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 � �gr 0 undist rep rep 0
gr

( , , , ) , ( ) .zT x y D t T T z T T T
D

� � � � �  (5.16) 

 
    The temperature field due to the heat emitting canisters is to be added to the above 
undisturbed ground temperature:  
 
 total undist canisters( , , , ) ( ) ( , , , ).T x y z t T z T x y z t� �  (5.17) 
 
The temperature field from the canisters becomes zero at the ground surface grz D� . This is 
achieved by putting negative mirror heat sources at gr2z D� . We can certainly use the global 
solution for the mirror canisters, since they are at the distance grD  from our ground region 

grz D� . We have: 
 
 canisters gr canisters gl gr( , , , ) 0, ( , , , ) ( , , , ) ( , , 2 , ).T x y D t T x y z t T x y z t T x y z D t� � � �  (5.18) 
 
Here, ( , , , )T x y z t is the solution for the repository canisters (in an infinite ground region) as 
discussed in the preceding subsections. 
 

5.7 Mixed solution 
We now again consider the solution from the heat emitting canisters in an infinite ground with 
zero ground temperature at 0t � . We consider the solution around the central canister (or a 
canister not too close to the periphery of the repository): 
 
 t t c c gr, , .D x D D y D D z� 	 	 � 	 	 ) ) �'  (5.19) 
 
Above a certain vertical distance from above the canisters, glzd , we use the global solution: 
 
 gl glz( , , , ) ( , , , ), .T x y z t T x y z t z d� )  (5.20) 
 
    For glzz d� , we proceed in the following way. Let ,L x L B y B� � � �� � � � � �  be a smaller 
rectangular area around the central canister. In this region we use the solutions for canister 
and tunnel line heat sources. In the rectangular repository region outside this smaller 
rectangle, we use the surface heat source of the type (5.13). The global solution for the 
smaller region is: 
 

� �
2

2

r42
gl c

t c 1r r r r

1 4( , , , ) / , , .
4 4 4

z u
a tL B x L u y B uT x y z t Q t t u E E e du

D D L Ba t a t a t
� 


' � �� � � �� � � �
� � � � � � � �� � � �� �� � � �

�  (5.21) 

 
The solution for the surface heat source in the region between the repository rectangle and the 
cutout smaller rectangle in obtained by subtraction gl ( , , , )T x y z t�  from glT ( , , , )x y z t . 
    The smaller rectangular region covers t2 1N � �  tunnels and c2 1N � �  canisters in each tunnel 
around the central canister. So we have: t t c c( 0.5) , ( 0.5)L N D B N D� � � �� � � � � � . 
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    The central tunnel and tcanN �  tunnels on each side, i.e. tcan2 1N � �  tunnels, retain the canister 
line heat sources ( tcan t0 N N� �	 � ). The temperature from these canisters is obtained from a 
summation of the type (5.8), which involves much fewer canisters. We get: 
 

� �2
c t c

can tcan c
t c1 r r r r r

/
( , , , ) , , , , , .

4 4 4 4

Q t t u D u D ux y z HuT x y z t S N S N E du
D D Ha t a t a t a t
� 


' � � � � � � �
� � �� � � � � � �� � � � � �

� � � � � �
� (5.22) 

 
For the tunnels further away in the smaller rectangle, tcan t( 1),... ,m N N� �� * � * , we use tunnel 
line heat sources. We get a sum of solutions of the type (5.12): 
 

+ ,

2 2
2 2t

r r

( )
4 4

tunnel c 2
c 1r r r

tcan t

1 2( , , , ) ,
4 4

( 1),... , .

x mD zu u
a t a t

m

B t y B uT x y z t Q t e E e du
D u Ba t a t

m N N


� 


�' � � � �

-

� ��� �� � � � � � �� �� � � ��� � � �
� �� � * � *

(�
M

M

(5.23) 

 
The temperature for the whole canister field becomes with these approximations 
 
 gl gl can tunnel( , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , ).T x y z t T x y z t T x y z t T x y z t T x y z t� � �� � � �  (5.24) 
 

5.8 Final fast solution 
Total temperature solution is now from (5.17), (5.18) and (5.24) 
 

 tot gl gl gr gl

can tunnel undist

( , , , ) ( , , , ) ( , , 2 , ) ( , , , )

( , , , ) ( , , , ) ( ).

T x y z t T x y z t T x y z D t T x y z t

T x y z t T x y z t T z

�� � � � �

� �� �
 (5.25) 

 
Here, glT  is given by (5.15), glT �  by (5.21), canT �  by (5.22), tunnelT �  by (5.23) and undistT  by (5.16), 
right. The solution is applicable around the central canister (or a canister not too close to the 
periphery of the repository). 
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6 Equations for heat and moisture flow 
We consider the radial flow process at the mid-level 0z �  of the bentonite annulus 
surrounding a canister. See Fig. 1.2. The canister boundary lies at cr r�  and the rock 
boundary at rr r� . The bentonite fills the region c rr r r� � . See Fig. 6.1. 
 
 
 
 
 
 
 
 
 

Figure 6.1. Radial flow process in the bentonite annulus. 
 

6.1 Flow equations 
   The radial moisture flux per unit area, g (kg/(m2,s)), in the bentonite has a liquid and a 
vapor component. The liquid flux liqg  is proportional to the gradient of the pore water 
pressure P with a hydraulic conductivity ( )k S  that is a function of the degree of water 
saturation S. The flux is inversely proportional to the temperature-dependent viscosity ( )T. . 
The water vapor flux apvg  is proportional to the gradient of the water vapor density v�  in the 
gas phases in the pores with a vapor conductivity factor v ( )D S  that is a decreasing function 
of S. We have: 
 

 w v
liq vap liq vap v

( ), , ( ) .
( )
k S Pg g g g g D S
T r r

� �
.

//
� � � � � � � �

/ /
 (6.1) 

 
    The heat or energy flux q (W/m2) has a conductive part with a thermal conductivity ( )S� , 
which is a function of S. The convective part is equal to the liquid and vapor fluxes multiplied 
by their respective heat contents (specific enthalpy). We have 
 

 liq liq vap vap( ) ( ) ( ) .Tq S h T g h T g
r

� /
� � � � �

/
 (6.2) 

 
We will see that the convective parts may be neglected. 
      We consider the total radial flux over the canister height Hc. The area of the cylinder at a 
radius r is c2 rH
 . The total fluxes of heat, Q  (W), and moisture, G  (kg/s), become 
 
 c c( , ) 2 ( , ), ( , ) 2 ( , ).Q r t rH q r t G r t rH g r t
 
� � � �  (6.3) 
 

6.2 Data for bentonite and water 
We will use the degree of water saturation S in the pores and the temperature T as basic state 
variables. The degree of saturation lies in the interval 0 1S� 	 . 

r =0      r = rc    r = rr 

canister
bento- 
nite rock 

r 
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    The water retention curve ( )P S  is an important material property. We use the following 
functions for the bentonite 
 
 v v( ), ( ) (0) (1 ), ( ), ( ).k S D S D S S P S�� � �  (6.4) 
 
The vapor diffusion coefficient v ( )D S  is zero for 1S � , and it is in a first approximation 
proportional to 1 S� . 
   We also need data for water. We will use the saturation water vapor density, the water vapor 
density as a function of S and T, the dynamic viscosity, the heat of evaporation, and the heat 
content of water in liquid and vapor form: 
 
 v,sat v evap liq vap( ), ( , ), ( ), ( ), ( ), ( ).T S T T L T h T h T� � .  (6.5) 
 
We use certain thermodynamic relations, which are presented in Appendix 4. 
   All above functions for bentonite and water are represented by explicit formulas with an 
error below 1% in the interval 10 100T� �  °C and 0.3 1S� 	 . The mathematical program 
Mathcad is used. All the functions (6.4) and (6.5) are discussed further in Claesson, Hagentoft 
and Sällfors (2003). The above functions are also given on pages 1-2 in the models in App. 4-
6 of this report.  
    In the reference case we use the following functions and data: 
 

 
3 20

6 2
v v v in p

( ) (1) , (1) 1.6 10 , ( ) 0.6 0.6 W/(mK),
( ) (1 ) (0), (0) 2 10 m /s 0.85 , 0.39.

k S k S k S S
D S S D D S V

��

�

� � � � � � �

� � � � � � �
 (6.6) 

 
The chosen type of functions and data for bentonite are those of Rutquist, Noorishad and 
Tsang (1999). 
 

6.3 General form for flow equations  
   The moisture flux g and the conductive-convective heat flux q may now be written in the 
following general form 
 

 ( , ) ( , ) ( , ) .S T
S Tg r t K S T K S T
r r

/ /
� � � � �

/ /
 (6.7) 

 ( , ) ( , ) ( , ) .S T
S Tq r t S T S T
r r

� �/ /
� � � � �

/ /
 (6.8) 

 
The flow coefficients for moisture, SK  and TK , and for heat, S�  and T� , are functions of the 
state variables S and T. The exact expressions are given by (14.4)-(14.7) in Appendix 2. For  

SK  and TK  we have: 
 

 w v
v( , )

( ) ( ) .
( )S

dP
K S T

dS
k S D S
T P

� �
.

� �
� �/

� �� �/� �
 (6.9) 

 

 v
v( , ) (0)( ) (1 ), ( ) .T T TK S T D

T
K S S K S �/� �

/
� �� � � �  (6.10) 
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The function ( , )TK S T  involves the factor 1 S�  from the vapor diffusivity (6.4). This factor 
is zero for 1S � , when the gas phase has vanished. The remaining flow coefficient ( , )TK S T�  
is has a very much smaller variation with S and T. The coefficient functions are readily 
calculated in the mathematical program. See Appendices 4-6. 
   The general steady-state relations are now from (6.7), (6.8) and (6.3) of the following type: 
 

 
c

( ) ( , ) ( , ) .
2 S T

G dS dTg r K S T K S T
rH dr dr


� � � � � �  (6.11) 

 

 
c

( ) ( , ) ( , ) .
2 S T

Q dS dTq r S T S T
rH dr dr

� �



� � � � � �  (6.12) 

 

6.4 Temperature over the bentonite annulus 
   The total heat release from the canister is c ( )Q t  (W). It varies in time with a time scale of 
years. The time scale to establish a steady-state temperature profile over the bentonite annulus 
is below 24 hours. We may therefore with very good accuracy consider the temperature as 
quasi steady-state or independent of time. But the value of cQ  and the temperature level and 
profile in the bentonite will vary slowly with time. In any particular moderate time span, we 
have a constant value of cQ  and a constant temperature rT  at the rock boundary. The radial 
temperature profile ( )T r  satisfies, using (6.3) and (6.2) without the convective terms, the heat 
balance equation 
 

 c r r2 ( ) , ( ) .c
TQ rH S T r T
r


 � /
� � � � �

/
 (6.13) 

 
The solution ( )T r  depends on cQ , rT  and the thermal conductivity ( )S�  over the annular 
region. This is discussed further in Appendix 2. Integration in r, using an average value for 
the water saturation S , gives ( )T r :  
 

 c r
r

c av

( ) ln .
2 ( )

Q rT r T
H S r
 �

� �
 � � � �� � �
 (6.14) 

 
The canister surface temperature cT  is obtained for cr r� . 
 

6.5 Thermo-diffusive coefficient function A(S,T) 
The moisture flux G, (6.3) and (6.7), may be written in an alternative form that will prove to 
be very useful for our analysis. We eliminate the temperature gradient by using (6.13). We 
also use (6.10). Then we may write the flux in the following way 
 

 c
c2 ( , ) ( , ) (1 ).

( )S T
QSG H r K S T K S T S

r S



�
/ �� � � � � � � � �
/

 (6.15) 
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The first term is of a diffusive character, and the second one of a convective character with a 
flow coefficient function times 1 S� . We may write the equation in the following way 
 

 c2 ( , ) 2 ( , ) (1 )S
SG H K S T r A S T S
r


 /� �� � � � � � � � �� �/ !
 (6.16) 

 
Here, we have introduced the thermo-diffusive coefficient function 2 ( , )A S T�  as the ratio 
between the functions before 1 S�  and /r S r�/ / . We have 
 

 c

c

( , )( , ) .
4 ( , ) (S)

T

S

QK S TA S T
H K S T
 �

�
� �

�
 (6.17) 

 
The factor 2 is introduced for notational convenience for the solutions in Section 8.2 and 
following. 
    The thermo-diffusive coefficient function ( , )A S T  is of a somewhat intricate character. The 
first right-hand factor is the ratio between the reduced coefficient TK � , where the factor 1 S�  
is taken away, and SK . The second factor involving the heat emission represents the 
temperature gradient in accordance with (6.13). 
    Let us note the criterion for zero flux. The factor within the square brackets of (6.16) is 
then zero. This expression is then zero in steady state. It is also zero at the canister boundary, 
and at the rock boundary in the dry-rock case. The equation for zero moisture flux is: 
 

 Zero flux 2 ( , ) (1 ) 0.Sr A S T S
r

/
0 � � � � � �

/
 (6.18) 

 

6.6 Moisture balance equation
The moisture balance equation for the degree of water saturation ( , )S r t  in the pores of the 
bentonite in the considered radial, time-dependent case for an annular bentonite region 
between canister and rock walls is 
 

 c p w c r2 , ,GrH V S r r r
t r


 �/ /� �� � � � � !/ /
 (6.19) 

 
or, using (6.16), 
 

 p w c r
1 ( , ) 2 ( , ) (1 ) , .S

S SV K S T r A S T S r r r
t r r r

� � �/ / /� �� � � � � � � � � �� �� �/ / / !" #
 (6.20) 

 
Here, pV  is the porosity or pore volume per unit volume of bentonite, and Hc the height of the 
canister.  
     The above equation involves a diffusivity function p w/( )SK V �  and the thermo-diffusive 
function. We have arrived at the equation  
 

 c r
1 ( , ) 2 ( , ) (1 ) , .S SD S T r A S T S r r r

t r r r
� �/ / /� �� � � � � � � � � �� �� �/ / / !" #

 (6.21) 
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The moisture diffusivity ( , )D S T  (m2/s) and the flow coefficient function ( , )A S T  (-) are 
given by  
 

 c

p w c

( , ) ( ) ( , )( , ) , ( , ) .
4 ( , ) ( )

S T

S

K S T Q t K S TD S T A S T
V H K S T S� 
 �

�
� � �

�
 (6.22) 

 
    We obtain a single equation (6.21) for ( , )S r t . Any variation of the temperature profile 
with time is determined from (6.13) and (6.14) with a very slowly varying c ( )Q t  and r ( )T t . 
The equation for S  is of a convective-diffusive character. The second term involving 1 S�  is 
caused by the water vapor diffusion due to the temperature gradient. 
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7 Steady-state analyses 
 
    As mentioned above, the time scale to approach (exponentially) steady-state moisture 
conditions is around 4 years in the wet-rock case, and around 1 year in the dry-rock case for 
the reference data. The temperature and the heat release from the canisters have a distinctly 
longer time scale. The steady-state solutions for the moisture distribution over the bentonite 
annulus are therefore quite interesting to us. The steady-state solutions are discussed in more 
detail in the preceding report Claesson, Hagentoft and Sällfors (2003). Here, some new 
material is added. 
 

7.1 General steady-state equations 
The general steady-state relations are given by (6.11) and (6.12). The fluxes G and Q are 
independent of the radius r in steady state. The moisture flux is zero, since it is zero at the 
canister boundary. We have 
 
 c0, ( ).G Q Q t� �  (7.1) 
 
From (6.11)-(6.12) and (7.1), we get an equation system for the derivatives /dS dr  and /dT dr . 
From this equation system we get the derivatives. We have: 
 

 ( ) ( , ) ,
2

c T

T S S T

Q tdS K S T
dr rH K K
 � �

� � �
�

  

 

 c r
( ) ( , ) , .

2
c S

T S S T

Q t K S TdT r r r
dr rH K K
 � �

� � 	 	
�

 (7.2) 

 
The four flow coefficients are functions of S  and T . We have two coupled, strongly 
nonlinear, ordinary differential equations for ( )S r  and ( )T r . We study the solution for any 
value of S  and T  at the rock boundary rr r� : 
  
 r r r r( ) , ( ) ( ).S r S T r T t� �  (7.3) 
 
    Let us first consider the wet-rock case with full saturation at the rock boundary: r( ) 1S r � . 
The flow function ( , )TK S T  involves the factor 1 S� , (6.10). This means that the value of TK  
and the derivative /dS dr , (7.2) top, is zero for 1S � . From this it follows for the steady-state 
wet-rock case: 
 
 r c r(1, ) 0, ( ) 1 ( ) 1, .TK T S r S r r r r� � 1 � 	 	  (7.4) 
 
The full saturation at the rock boundary is always imposed throughout the bentonite after an 
initial drying at the canister side. The time scale for this saturation is around 4 years in the 
reference case.  
    The situation is very different in the dry-rock case (or in a case with partial saturation only 
at the rock boundary, r r( ) 1S r S� �  ). We will see below that then we always get drying at the 
canister side. It the rest of this section we consider the dry-rock case. 
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7.2 Coordinate-independent relation between S and T 
There is a specific, quite useful, internal structure in the differential equations (7.2) for ( )S r  
and ( )T r . We divide the first equation by the second one. The differential dr and all factors 
except the K-functions cancel. We have in the temperature interval from the rock temperature 

rT  to the higher temperature cT  at the canister  
 

 r c
( , ) , .
( , )

T

S

dS K S T T T T
dT K S T

� � 	 	  (7.5) 

 
The relation between S and T becomes independent of the radius r. The temperature cT  at the 
canister boundary is obtained from the steady-state formula (6.14): 
 

 r
c r

av c

( )( ) ln .
2 ( )

cQ t rT T t
H S r
 �

� �

 � � � �� � �

 (7.6) 

 

7.3 Solution for the reference case 
In the reference case we use the data (2.1) with the heat release c (0) 1000Q �  W. The 
reference rock temperature is chosen to 70�C, and the reference value for the degree of 
saturation at the rock boundary is 0.95. We choose a rather high value for rS  in order to avoid 
large drying. We take 
 
 c r r1000 W, S 0.95, 70 C.Q T� � � �  (7.7) 
 
    The equations (7.2) for ( )S r  and ( )T r  are solved in with the program Mathcad. The full 
solution for the reference case is given in Appendix 4. All data are given explicitly, and the 
solution should be quite easy to follow without particular knowledge of the program, since 
direct mathematical notations are used in Mathcad. Pages 1 and 2 in Appendix 4 specify the 
functions for water and bentonite. The equations are solved at the end of page 2 and the 
beginning of page 3. Runge-Kutta's solution method is used. The output is three vectors for r, 
S and T for the hundred nodes. The computer calculations take a few seconds only.  
    The results, ( )S r  and ( )T r , are shown on page 3 and in Fig. 7.1. The saturation falls from 
S=0.95 at the rock to 0.83 at the canister, while the temperature increases inwards from 70 to 
81.8 �C. There is a clear but moderate drying of the bentonite in the reference case. The 
approximation (7.6) gives the canister temperature 70+11.3=81.3. It underestimates the 
temperature difference over the bentonite by 5%. Figure 7.2 shows the relation ( )S T  over the 
bentonite layer for the reference case.  
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Figure 7.1. Degree of water saturation ( )S r  and temperature ( )T r  for the reference case. 

 
 

 
Figure 7.2. The relation ( )S T  for the reference case. 

 
    The vapor and liquid flows are calculated directly on page 4 from the calculated values 

,i iS T  and ir  at the hundred nodes using the original formulas (6.1). This calculation is a very 
good test that the program is correct. The result is shown in page 4 and in Fig. 7.3.  
 
 

                                        
Figure 7.3. Liquid and vapor fluxes for the reference case. 

 
       The accuracy of the solution is studied in the example. The solution ,i iS T  and ir  shall 
satisfy the original equations (6.1) and (6.2). This is tested directly for the liquid and vapor 
fluxes on page 3, and for the heat flux on page 5 (in Appendix 4). The relative errors are of 
the order 410�  or smaller. The error becomes of the order 610� , when a thousand nodal points 
are used. A calculation then requires half a minute computer time. This shows that we have 
obtained a very high and controlled accuracy, which was one of our tasks. There are not any 
approximations in the model.  
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  The ratio between the convective and conductive heat flux is calculated on page 5, Appendix 
4. The ratio varies between 0.008 and 0.002 in the reference case. This shows that we may 
quite safely neglect the convective part of the heat flux.  
 

7.4 Charts for S(T)
The differential equation for the coordinate-independent relations between S and T, (7.5), is 
discussed in Section 7.2. We will here give a complete chart for these relations for the 
reference case. We will also illustrate the importance of the magnitude of the conductivity 
ratio by varying v (0)D . 
    A suitable number of initial saturation degrees are chosen. We have the mathematical 
problem 
 

 min max

min 1 2 1 2

( , ) , ,
( , )

( ) , , ..., 1 ... 0.

T

S

dS K S T T T T
dT K S T
S T S S S S

� � 	 	

� ) ) ) )
 (7.8) 

 
We take the interval 20 100T	 	 �C in order to cover all normal applications. The start values 
at minT T�  are S = 0.4, 0.5, 0.6, 0.7, 0.8, etc. We choose more closely spaced values near 

1S �  in order to get curves that cover the upper right-hand region: S = 0.85, 0.90, 0.95, 0.98, 
0.99, 0.995, and 0.999. The Mathcad sheet is shown in Appendix 5. The set of curves or chart 
is shown in Fig. 7.4.   
 
 

 
Figure 7.4. Set of curves ( )S T  to cover all cases in 20 100T	 	  �C for the reference case. 

 
      The charts are used in the following way. We have a prescribed rock temperature rT  and a 
prescribed degree of saturation rS . This point is marked in the chart in Fig. 7.4. We choose 
the nearest curve on the vertical line rT T�  or the two curves above and below. The solution 
will follow this curve or lie between the two enclosing curves. We need to know the upper 
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temperature cT . A good estimate is given by (7.6). An example is shown in Fig. 7.4: r 65T �  
and r 0.85S � . We estimate cT  to 77 �C from (7.6). We will follow the indicated curve 
between S3 and S4. The chart is a very handy way to estimate the drying. 
    The set of curves are valid for the reference case. A new chart for another set of input data 
will require some 10 seconds of computer time (ordinary PC). 
  Figure 7.5 shows the chart for the higher temperature interval 80 120T	 	  �C. The slope of 
the curves, and hence the drying for a fixed temperature span over the bentonite, increases 
with the temperature level. This is shown in Fig. 7.4 and in Fig. 7.5 (note the larger T-scale in 
Fig. 6.4). 
 
 

 
Figure 7.5. Set of curves ( )S T  to cover all cases in 80 120T	 	  �C for the reference case. 

 
 
    Figure 7.6 (on next page) shows the chart for 60 90T	 	 �C and 0.6 1S	 	  for a few 
values of v (0)D :  
 
 6 6 6 6

v (0) 1 10 , 2 10 , 4 10 , 8 10 .D � � � �� � � � �  (7.9) 
 
The second value is the reference value. The top, right-hand graph is contained in the larger 
graph of Figure 7.4. We see how the slope increases with T. The slopes increase quite 
strongly with increasing v (0)D . We see that the magnitude of the conductivity ratio 

v (0) / (1)D k  is a critical parameter for drying of the bentonite. 
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Figure 7.6. Set of curves ( )S T  for 60 90T	 	  �C for the reference case for a few v (0)D . 

 
 

7.5 Linearized equation for S(r) 
The equation for the steady-state solution ( )S r  becomes from (6.18) 
 

 c r2 ( , ) (1 ) 0, .dSr A S T S r r r
dr

� � � � � � 	 	  (7.10) 

 
A particular solution is ( ) 1S r �  for all r . This is the solution in the wet-rock case with 

r( ) 1S r � . In the dry-rock case, which is considered from now on in this section, we get a 
moisture distribution from dry to wet over the annular region. 
    A linearization of the equation for the degree of saturation S  is discussed in Section 8. We 
will here consider this linearization in the steady-state case. We make as in (8.2) the 
approximation 
 
 0 0( , ) ( , ) .A S T A S T a
 �  (7.11) 
 
Here, 0S is a mean water saturation level and 0T  the mean temperature in the bentonite for the 
considered case. The total moisture content, which is given by the integral of c2 rH S
 �  over 
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c rr r r	 	 , must be the same for ( )S S r�  and for inS S�  (initial value) in the dry-rock case. 
We have to solve (7.10) with the approximation (7.11) and an integral relation. We have the 
problem: 
 

 c r in2 2 , ; ( ) .
r r

c c

r r

r r

dSr aS a r r r r S r dr r S dr
dr

� � � 	 	 � � �� �  (7.12) 

 
The general solution of the differential equation is of the type 2( ) 1 aS r F r�� � � .  The constant 
F  is determined from the integral.  
    The solution is:  
 

 � �
2
c

ss in c r c c r2 2 2
c r

11( ) 1 (1 ) , , 1, / .
1 ( / )a a

saS r S r r r a s r r
s r r�

��
� � � � � 	 	 2 �

�
 (7.13) 

 
Here, we introduce the ratio c c r/s r r� , which equals 0.6 in our application. The formula 
above is not valid for 1a � , in which case we get 0/0. This quotient is to be replaced by the 
limit  for 1a 3 . We have   
 

 
� � � �2 2 2 2 2

c c c c c c

1 1 1 11: , .
1 2 ln 1/ 2 ln 1/a a

a aa
s s s s s s�

� �
� 3 3

� � � � �
 (7.14) 

 
The right-hand alternative form is used below. Figure 6.7 shows the steady-state moisture 
distribution (7.13) for the reference value in 0.85S �  for different values of a .  This curves 
give the largest drying that may occur in the bentonite. 
 
 

 
Figure 7.7. Steady-state moisture distribution (7.13) for in 0.85S �  

                                         for different values of a  in the dry-rock case. It gives  
                                         the largest drying that may occur in the bentonite. 
 
The largest wetting occurs at the rock boundary with rr r�  in (7.13), and the largest drying 

ss c( )S r  for cr r� . We are in particular interested in the largest drying at the canister wall. We 
have 
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 � �2
ss c in c2 2

c c

1( ) 1 (1 ) 1 , 1.a

aS r S s a
s s

�
� � � � � � 2

�
 (7.15) 

 
The right-hand expression of  (7.14) is to be used for 1a � . Figure 7.8 shows this largest 
drying, which may occur in the bentonite as a function of a  for different initial degrees of 
water saturation inS  in the bentonite.  The curves start at ss c in( )S r S�  for 0a � , and they 
decrease with a larger drying as a increases. 
 
 

 
Figure 7.8. Steady-state moisture distribution (7.15) at the canister 

                                         wall as a function of a  for different initial degrees of water  
                                         saturation inS  in the bentonite. These curves give the largest  
                                         drying that may occur in the bentonite. 
 
    The curves in Fig. 7.7 show drying in the left-hand half of c rr r r	 	 , and wetting above 

inS S�  in the right-hand half of the interval. This is a general feature in the dry-rock case. 
This means that the outer half of the bentonite annulus never dries below inS S� . 
    The above results may be formulated with a new saturation function that is independent of 

inS . We define the steady-state saturation function ss r( ), / ,s s r r4 � by 
 
 ss in in ss c c r( ) (1 ) ( ), / 1.S r S S s s r r s4� � � � � 	 	  (7.16) 
 
From (7.13) we get 
 

 
2
c

ss c2 2 2
c

11( ) 1 , 1, 1.
1 a a

sas s s a
s s

4 �

��
� � � 	 	 2

�
 (7.17) 

 
The left-hand expression of (7.14) is to be used for 1a � . Figure 7.9 shows the function 

ss ( )s4  for different a-values. 
    In particular, we have at the canister boundary   
 
 ss c in in ss c c c r( ) (1 ) ( ), / .S r S S s s r r4� � � � �  (7.18) 
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 � �2
ss c c2 2

c c

1( ) 1 1 , 1.a

as s a
s s

4 �
� � � � 2

�
 (7.19) 

 
The right-hand expression of (7.14) is to be used for 1a � . Figure 7.10 shows ss c( )s4  as 
function of a. 
 
 

 
 

Figure 7.9. The function ss ( )s4 , (7.17), for different a-values. 
 
 

 
Figure 7.10. The steady-state drying ss c( )s4 , (7.19), as function of a. 
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8 Assessing drying, wetting and resaturation 
 
   The highly non-linear coupled equations may, in the form the equations are formulated 
below, be linearized with a loss of accuracy of around 10%. The equation for the moisture 
becomes of a convective-diffusive character. An analytical solution involving Bessel 
functions may be obtained for the transient drying and saturation of the bentonite annulus, 
when it is exposed to heating from the canister side and water saturation from the rock side in 
the wet-rock case. The results are presented in Claesson, 2003A (report) and 2003B (paper). 
The report presents the study in fuller detail. An analytical solution for the time-dependent 
radial water and heat flux through the bentonite annular region around the canister is derived. 
From this it is possible to give explicit formulas for the intensity and time scale of the drying, 
and for the time scale of the water resaturation process.  
     A solution in the dry-rock case has also been developed, but it is not yet reported in detail. 
All formulas and the solution in Mathcad are presented here. 
   The linearized solution involves two parameters. The first key parameter 0t  (or 0D ) gives a 
basic time scale for the whole process of drying and wetting. The second key parameter for 
the initially quite complex coupled process is the thermo-diffusive parameter a. 
 

8.1 Linearization of the equation for S(r,t) 
The general moisture balance equation for ( , )S r t , (6.21), is  
 

 c r
1 ( , ) 2 ( , ) (1 ) , .S SD S T r A S T S r r r

t r r r
� �/ / /� �� � � � � � � � � �� �� �/ / / !" #

 (8.1) 

 
The moisture diffusivity function ( , )D S T  and thermo-diffusive parameter ( , )A S T  depend on 
the flow properties of the bentonite with its water in the pores, (6.22) and (6.9)-(6.10). The 
two functions are shown in Figs. 8.1-2 for the reference data. They are calculated with a 
Mathcad program. See Appendix 6.  
 
 

 
Figure 8.1. Diffusivity function 10

0 0( , ) 10D S T �  (m2/s) using reference bentonite data. 
Intervals for saturation and temperature:  00.6 1S	 	 , o

020 90 CT	 	 . 
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Figure 8.2. The thermo-diffusive function 0 0( , )A S T  using reference bentonite data. 
Intervals for saturation and temperature: 00.6 1S	 	 , o

020 90 CT	 	 . 
 
    Consider as an example the variation of ( , )D S T  and ( , )A S T  in the region 0.8<S<1 and 
70<T<80oC. There is a variation of some 20%*  in the considered region. This is quite typical 
for the type of cases that we will consider. It may be noted that the factor 1 S�  varies much 
more (by a factor 20 between S=0.8 and S=0.99). This separation of the factor 1 S�  is the key 
idea to obtain a tractable problem. 
   The drying and wetting process will in the cases we consider have a variation of the flow 
coefficients ( , )D S T  and ( , )A S T  in the governing equation (8.1) of up to 20%* . We may with 
some caution approximate the two functions by suitable constant mean values. We use the 
approximations:  
 
 0 0 0 0 0( , ) ( , ) , ( , ) ( , ) .D S T D S T D A S T A S T a
 � 
 �  (8.2) 
 
Here, 0S is a mean water saturation level and 0T  the mean temperature in the bentonite for the 
considered case. 
   We introduce these approximations in (8.1). The error involved in this approximation is 
judged to be below 10 %, since the flow functions have values both above and below the 
approximate constant values. There are now two parameters in (8.1). We get a mean effective 
diffusivity 0D  and a convective-diffusive parameter a from the dimensionless factor before 
1 S� : 
 

 0 0 c 0 0
0

p w c 0 0 0

( , ) ( , ), .
4 ( , ) ( )

S T

S

K S T Q K S TD a
V H K S T S� 
 �

�
� � �  (8.3) 

 
Equation (8.1) with the approximations (8.2) may now be written 
 

 c r
0

1 1 2 (1 ) , .S Sr a S r r r
D t r r r

/ / /� �� � � � � � � � �� �/ / / !
 (8.4) 

 

0T

0S
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   The initial degree of saturation in the bentonite is inS . The moisture flux is zero at the 
canister boundary. The criterion for zero moisture flux is given by (6.18). At the rock 
boundary rr r� , the moisture flux zero in the dry-rock case, (6.18), while full saturation S=1 
is maintained in the wet-rock case. Equation (8.4) for ( , )S r t  in a slightly modified form 
together with initial and boundary conditions give the following problem for ( , )S r t : 
  

 
2

c r2
0

1 1 2 , ;S S a S r r r
D t r r r

/ / � /
� � � � � �
/ / /

 (8.5) 

 
 in c r( ,0) , ;S r S r r r� � �  (8.6) 
 

 $ %
c

c c c: 2 1 ( , ) ;
r r

Sr r r a S r t
r �

/
� � � �

/
 (8.7) 
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-
r r

Sr r r a S r t
r

S r t
�

/
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/

�

 (8.8) 

 
The problem (8.5)-(8.8) for ( , )S r t  has a diffusive-convective character, (8.4). It involves one 
essential dimensionless parameter a only. Time is scaled with the diffusivity factor 0D .  
 

8.2 Solution of linearized equation  
The solution ( , )S r t  of (8.5)-(8.8) is expressed with dimensionless radius s  and time 5 , and 
with a new function ( , )s4 5  for the degree of saturation: 
 
 in in r 0( , ) (1 ) ( , ), / , / .S r t S S s s r r t t4 5 5� � � � � �  (8.9) 
 
The dimensionless saturation function ( , )s4 5  is zero, when the saturation equals the initial 
level: inS S� . The value is negative when the saturation is below the initial value: inS S� , 
and it lies in the interval 0 14� 	  for 1inS S� 	 . We use the following basic time scale 0t  
for the considered process: 
  

 
2

r c
0 2

0

4( ) .r rt
D

�

�  (8.10) 

 
    The solution for ( , )s4 5  has in the dry-rock case the form 
 

 
2

ss c r
1

( , ) ( ) ( ) , / 1.na
n n

n
s s s A u s e r r s6 54 5 4

'
� ��

�

� � � 	 	(  (8.11) 

 
Here, the steady-state solution ss ( )s4  is given by (7.17).  This solution is implemented in 
Mathcad in Appendix 7. The eigenvalues n6  lie, with the choice (8.10), close to 2n . The first 
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exponent in (8.11), 2 2
1 0 02 / /( / 4)t t t t6 5� � 
 � � � � , gives the time scale for the exponential 

approach to steady-state conditions:  
 

 
2

0 r c
dry rock 2

0

( ) .
4
t r rt

D

�

� �  (8.12) 

 
    The solution in the wet-rock case for ( , )s4 5  has the form 
 

 
2

c r
1

( , ) 1 ( ) , / 1.na
n n

n
s s A u s e r r s6 54 5

'
� ��

�

� � � 	 	(  (8.13) 

 
The steady-state solution is ( , ) 1s4 ' � , or ( , ) 1S s ' � , in the wet-rock case. This solution is 
implemented in Mathcad in Appendix 8. The eigenvalues n6  lie, with the choice (8.12), close 
to 2 1n � . The first exponent in (8.13), 2

1 0/t t6 5� � 
 � , gives the time scale for the exponential 
approach to steady-state conditions:  
 

 
2

r c
wet rock 0 2

0

4( ) .r rt t
D

�

� �  (8.14) 

 
It should be noted that the time scale in the dry-rock case is one fourth of the time scale in the 
wet-rock case. 
      The exact formulas for eigenfunctions ( )nu r , coefficients nA , and eigenvalues n6  are 
given in Appendix 3 for the two cases. 
 

8.3 An example. The reference case  
The two above solution have been implemented in the mathematical computer program 
Mathcad. The solutions are readily calculated in any particular case requiring moderate 
computer time. In this example and in all other examples, we have  
 
 c c r/ 0.6.s r r� �  (8.15) 
 
For these examples in this section, we take 
 
 in0.9, 0.85.a S� �  (8.16) 
 
The value a=0.9 corresponds to 0 0.9S �  and 0 60T � �C in Fig. 7.12. 
 
8.3.1 Dry-rock case 
The full Mathcad solution for the dry-rock case is given in Appendix 7. The degree of water 
saturation S is shown in Fig. 8.3 as a function of r/r r  for different dimensionless times 

0/t t5 � . The initial value at zero time is 0.85S � . We see a drying at the warm canister side 
and a wetting on the colder rock side, both of which increase with time. The total water 
content is constant in time, since moisture flux is zero at both boundaries. The solution 
approaches the steady-state moisture distribution ss ( )S s . It is quite close for 0/ 0.8.t t �  Fig. 
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7.7 shows the steady-state distribution given by (7.16)-(7.17) for different a-values. The 
dashed curve for 0.9a �  in Fig. 8.3 lies close to the curve for 1a �  in Fig. 7.7.  
 
 
 

 
Figure 8.3. The degree of saturation ( , )S r 5 , c r r/ / 1r r r r	 	 , for a=0.9. 

  
   The strongest drying occurs at the warm canister boundary cr r� . Fig. 8.4 shows the drying 
from the initial value inS  to the final largest drying ss c( ) 0.752S r �  (a=0.9) at steady state. 
 
 

 
Figure 8.4. Degree of saturation c( , )S r 5  at the canister boundary, 

where the strongest drying occurs. 
 
8.3.2 Wet-rock case 
The calculated drying, wetting and resaturation process is shown in Fig. 8.5 in the wet-rock 
case. The degree of saturation ( , )S r 5  is shown as function of the relative radius r/r r  for a 
few dimensionless times 0/t t5 � .  
    The curve for the shortest time 5 =0.002 shows a small drying near the canister, and 
increased saturation from the initial value S=0.85 to S=1 in a small region near the rock 
boundary, where full saturation 1S �  is maintained. The intermediate region is unchanged. 
The dried region and the region of increased saturation both increase in time. Water from the 
dried region is displaced by vapor diffusion through the undisturbed intermediate region to 
the outer parts. At 0.055 �  the two regions meet at r/ 0.8r r � . The drying in the inner region 
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continues until the time of largest drying 5 = 0.216. Then the wetting process becomes 
dominant also at the canister wall. There is from this time a steady wetting of all the 
bentonite. The initial saturation at the canister wall (S=0.85) is restored at the time 5 = 0.694.  
 
 

 
Figure 8.5. The degree of saturation ( , )S r 5 , c r r/ / 1r r r r	 	 , for a=0.9. 

Maximum drying at 5 = 0.216. Initial saturation S=0.85 is 
recovered at canister wall for 5 = 0.69. 

 
    The strongest drying occurs at the warm canister boundary cr r� . Fig. 8.6 shows the degree 
of saturation at the canister boundary as function of time. There is an initial drying with the 
minimum saturation 0.79S �  for 5 = 0.216. From that time there is a steady increase up to 
full saturation at, say, 55 � .  
 

 
Figure 8.6. Degree of saturation c( , )S r 5  at the canister boundary, 

where the strongest drying occurs. 
 

8.4 Dependence on saturation and temperature level
The above solution involves the two key parameters 0t  and a. The time scale 0t  is essentially 
the inverse of 0D , (8.10). The basic parameters 0D  and a are defined in (8.3). They depend on 
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the choice of average saturation level 0S  and average temperature level 0T . The functions 

0 0 0( , )D D S T�  and 0 0( , )a A S T�  are shown in Figs. 8.1 and 8.2 for the reference data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.7. The time scale 0 y 0 0( , )t S T  using reference bentonite data. Intervals in 

degree of saturation and temperature: 00.6 1S	 	 , o
020 90 CT	 	 . 

 
    For the time scale 0t , we have from (8.10) and (8.3): 
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 (8.17) 

The function 0 0 0( , )t S T  is divided by the time of a year yt = 3600·24·365 s, which means that 

0 yt  is the time scale in years. Figure 8.7 shows 0y 0 0( , )t S T  for the reference data. The Mathcad 
model for the calculation is given in Appendix 6. The Mathcad program generates such a plot 
in no time for any bentonite (and water) data. 
   The time scale 0t , (8.17), is determined by the average diffusivity 0D , or by 0 0( , )SK S T .  
The dimensionless parameter a, (8.3), is proportional to the heat flux /cQ H . It is also 
proportional to the ratio between the reduced flow coefficient 0 0( , )TK S T�  for the temperature 
and the flow coefficient 0 0( , )SK S T for saturation gradients. It is a thermo-diffusive parameter. 
It should be noted that the time scale 0t  is inversely proportional to the flow coefficient SK , 
while a only depends on the ratio between the two basic flow coefficients.  
 

8.5 Graphs for the full solution for different a-values 
The degree of saturation ( , )S r t  is given by the basic relation (8.9): 
 
 in in r 0( , ) (1 ) ( , ), / , / .S r t S S s s r r t t4 5 5� � � � � �  (8.18) 
 
The dimensionless saturation function ( , )s4 5  is independent of the initial value inS . It is a 
function of dimensionless radius and time. The only parameter is a ( and c c r/ 0.6s r r� �  ) . 

0T  

0S  
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By calculation of ( , )s4 5  for a suitable set of  a-values, we have the full solution for all cases 
of interest. 
 
8.5.1 Dry-rock case 
The saturation function ( , ) ( , ; )s s a4 5 4 5�  is always zero for 05 � , and it is equal to the 
steady-state solution (7.17) of the dry-rock case for infinite time. The function is zero for 

1a � . We have:
 
 ss( ,0; ) 0, ( , ; ) ( ; ), ( , ;0) 0.s a s a s a s4 4 4 4 5� ' � �  (8.19) 
 
The solution for ( , )s4 5  in the dry-rock case is presented in App. 7. The set of curves from a 
smallest dimensionless time 0.0035 �  up to 0.35 �  is shown for 0.5, 1, 1.5, 2a �  in Fig. 
8.8. The dashed curves show the final steady-state solution (7.17). The different scales for 4  
should be noted. The �-values lie between –0.3 and 0.2 for 0.5a � . The span increases with 
a. The values lie between –1.75 and 0.7 for 2a � .  
 
 

      
 
 

     
 
Figure 8.8. The function ( , )s4 5  for different values of the convective-diffusive parameter a. 

 
8.5.2 Wet-rock case 
The saturation function ( , ) ( , ; )s s a4 5 4 5�  is always zero for 05 � . The steady-state value is 
equal to full saturation in the wet-rock case for infinite time. We have:
 
 ( ,0; ) 0, ( , ; ) 1.s a s a4 4� ' �  (8.20) 
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For 0a �  we have a process of saturation from the rock side without any drying at the 
canister side. 
     The solution for ( , )s4 5  in the wet-rock case is presented in App. 8. Fig. 8.9 shows the 
calculated solution in the wet-rock case for 0, 0.5, 1, 1.5, 2a � . 
 
 

    
 

     
 

          
 
Figure 8.9. The function ( , )s4 5  for different values of the convective-diffusive parameter a: 

0a �  (top left), 0.5, 1, 1.5 and 2 (bottom). 
 
    The set of curves from a smallest dimensionless time 0.0055 �  up to 35 �  is shown for 
the five values 0, 0.5, 1, 1.5, 2a � . The different scales for 4  should be noted. The drying 
phase is longer and deeper as a increases.  
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8.6 Drying at the canister wall in the dry-rock case 
The strongest drying occurs at the warm canister side cr r� . Figure 8.4 shows this decrease of 
S  in the dry-rock case for the reference case with 0.9a � , (8.16). Let c c( ) ( , )s4 5 4 5�  denote 
value for 4  at cs s� . This function gives the largest drying that may occur for any boundary 
condition at the rock boundary. The corresponding degree of water saturation at the canister 
is, (8.18), 
 
 c in in c 0( , ) (1 ) ( / ).S r t S S t t4� � � �  (8.21) 
 
    The function ( )c4 5  starts at zero and falls to the steady-state value (7.19) at infinite time. 
The function is zero for all times in the case 0a � . We have in accordance with (8.19) 
 
 c c ss c c(0) 0, ( ) ( ; ); 0 : ( ) 0.s a a4 4 4 4 5� ' � � �  (8.22) 
 
Figure 8.10 shows c ( )4 5  for 0.5, 1, 1.5, 2a �  (full lines). The dashed curves, which lie very 
close except for small 5 , show the approximation (8.23)-(8.24). 
    The function c ( )4 5  is given by (8.11) with cs s� . An approximation, valid for large 5 , is 
to use only the first term in the sum ( 1)n � . The first eigenvalue 1 1( )a6 6�  as function of a  
is shown in Fig. 8.11, left. The deviation from 1 26 �  is less than 1%. We may use this value 
in the approximation. We get an approximation of the following type 
 
 4

ss c1( , ) ( ; ) ( ) , 0.2.s s a A a e 54 5 4 5� �
 � � 7  (8.23) 
 
The function c1( )A a  is shown in Fig. 8.11, right. The following expression is a good 
approximation 
 
 2.3

c1( ) 0.5 0.13 , 0 2.A a a a a
 � � � � 	 	  (8.24) 
  
The error in the approximation (8.23)-(8.24) is less than 2%. 
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Figure 8.10. The function c ( )4 5  for the drying at the canister wall for 
                                         different a-values (full lines). The dashed curves 
                                         show the approximation (8.23)-(8.24). 
 
 

 
Figure 8.11. The first eigenvalue 1( )a6  and the coefficient c1( )A a  in (8.23) as functions of a. 

 

8.7 Drying and resaturation at the canister wall in wet-rock case 
Fig. 8.5 shows the drying and resaturation in the wet-rock case for the reference case. The 
largest drying and the slowest resaturation occur at the canister wall cr r� . The degree of 
saturation at the wall is from (8.9) 
 
 c in in c 0 c c( , ) (1 ) ( / ), ( ) ( , ).S r t S S t t r4 4 5 4 5� � � � �  (8.25) 
 
The function c ( )4 5 , which gives the drying, has a as parameter. 
 
8.7.1 Drying and resaturation for different a-values 
The function c ( )4 5  has been calculated for different values of a for the wet-rock case. The 
curves are shown in Figure 8.12.The curves decrease to a minimum at md5 5�  below zero, 
which gives the largest or maximum drying. Then the curves increase steadily up to +1: 

in in(1 ) 1 1S S S� � � � �  at full saturation. The initial saturation inS S�  is reached for c 04 �  at 

cin5 5� . 
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Figure 8.12. Left: The function c ( )4 5 , 0 25� � , for  the degree of saturation 
                                  at the canister wall, (8.25), for different a -values. Drying period  
                                  when 04 � .  Right: 25 )  with resaturation only.  
 
   Let us consider an example: 
 
 md md0.9 0.22, 0.4.a 5 4� 1 
 
 �  (8.26) 
 
We get these values by interpolation between the second (a=0.5) and third curve (a=1) from 
top in Fig. 8.12, left. The maximum drying depends on Sin. We have for example for Sin=0.85, 
(8.16), 
 
 c,md 0.85 (1 0.85) ( 0.4) 0.79.S � � � � � �  (8.27) 
 
The real time depends on the time scale 0 yt , which is obtained from Fig. 8.7. We have for 
example  
 
 0 y md5 years 5 0.22 1.1 y.t t� 1 � � �  (8.28) 
 
The value of c ( ;0.9)4 5  has according to Fig. 8.12, left, risen to 0.8 for 2.65 � . We have 
 
 c5 2.6 13 y, 1 (1 0.85) 0.2 0.97.t S� � � � � � � �  (8.29) 
 
8.7.2 Formulas for drying 
   The degree of saturation c ( )4 5  at the canister wall cr r�  may be approximated by the first 
two terms in the sum (8.13). The approximation is valid with good accuracy in the region of 
minimum drying.  The largest drying occurs at the canister at the time when the derivative of 

c ( )4 5  is zero. From this it is possible to derive a formula for the time mdt , when minimum 
during occurs, and a formula for the �-value md ( )a4 . We have 
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 md 0 md md in in md( ), (1 ) ( ).t t a S S S a5 4� � � � � �  (8.30) 
 
 
The functions md ( )a5  and md ( )a4  for the largest drying are shown in Figure 8.13.  
 
 

 
Figure 8.13. The functions md ( )a5  and md ( )a4  to determine 

                                                 the largest drying at the canister wall, (8.30). 
 
8.7.3 Formulas for resaturation  
The first term 1n �  is sufficient for larger times. We have with an error below 2 %  
 
 

2
1

c c1 0( ) 1 , / 0.3.A e t t6 54 5 5� �
 � � � )  (8.31) 
 
or from (8.25) 
 
 

2
1 0/

c in c1 0( , ) 1 (1 ) , 0.3 .t tS r t S A e t t6� �
 � � � � ) �  (8.32) 
 
The functions c1( )A a  and 2

1 ( )a6  in the above exponential expression are shown in Figure 
8.14. 
 
 

  
Figure 8.14. The functions c1( )A a  and 2

1( ( ))a6 in formula (8.32) 
                                             for the exponential behavior at large time.  
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   The time when the degree of saturation has retained its initial value after the initial drying 
is: 
 
 in cin 0 cin ( ).cS S t t a5� 1 � �  (8.33) 
 
The function cin ( )a5  is shown in Figure 8.15. 
 
 

                                       
Figure 8.15. The function cin ( )a5  in formula (8.33) for the time 

                                              when the initial degree of saturation is recovered.  
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9 Key parameters and sensitivity analysis 
 
A sensitivity analysis is presented in Claesson, Hagentoft and Sällfors (2003). These results 
are not reported here again. 
    We have seen that the potential drying depends on the two parameters a  and 0t  only. The 
two parameters depend in turn on the flow properties of bentonite, on the temperature level 
and gradient, and on properties of water. We will here present a rule of thumb to assess the 
key factors. 
 

9.1 Key factors for the thermo-diffusive parameter a 
The thermo-diffusive parameter a  is defined by (8.3). It is proportional to the various key 
factors in the following way: 
 

 c
0 0 v

c 0 0 0

1 1 1 1, , ( , ) (0), .
( ) (1) ( , ) (1)T

S

Qa a a K S T D a
H S K S T k� �

�8 8 
 8 8 8 8  (9.1) 

 
In the third proportionality, (6.10) is used. In the fourth one, (6.9) is used. Here, the last 
proportionality giving 1/ (1)k  may in case of doubt be tested with model that gives ( , )A S T  in 
App. 6.  The factors above show how a  depends on four key factors. Let us define the key 
product f  as 
 

  c v c v
ref

c c ref

(0) (0), .
(1) (1) (1) (1)

Q D Q Df f
H k H k� �

� �
� � � �� �

� �
 (9.2) 

 
Here, refa  is the a-value in the reference case, which has to be calculated by the model in 
App. 6, for example. 
    A rule of sum to assess the variation of a  with the key factors is now   
 

 ref
ref

.fa a
f


 �  (9.3) 

 
This means that a  is doubled, when the vapor diffusivity for bentonite v (0)D  or the heat flux 

cQ  is doubled. The parameter a  is approximately doubled, when thermal conductivity of 
fully saturated bentonite (1)�  or the hydraulic conductivity of fully saturated bentonite (1)k  is 
halved. 
 

9.2 Key factors for the time scale t0

The basic time scale 0t  is inversely proportional to the mean diffusivity 0D , (8.10), which is 
proportional to 0 0( , )SK S T , (8.3). We have as in (9.1), right, 
 

 0
0 0 0

1 1 1 .
( , ) (1)S

t
D K S T k

8 8 8  (9.4) 
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As a rule of thumb we have that the key factor to determine the basic time scale is the inverse 
of the hydraulic conductivity of fully saturated bentonite (1)k : 
 

 ref
0 0,ref

(1)
.

(1)
k

t t
k


 �  (9.5) 

Here, 0,reft  is the value in the reference case, which may be calculated by the model in App. 6. 
The time scale decreases by a factor 10, when (1)k  is increased by a factor 10. 
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10 Survey of models 
 
A number of small computer models has been developed as handy tools of analysis to 
understand and assess the potential drying under various conditions. All models are 
implemented in Mathcad. They are shown in full in App. 4-8. The models, which consist of a 
moderate set of formulas and computations, should be reasonable straight forward to 
implement in other mathematical programs as Matlab or Maple. 
 

1. General steady-state solution for S and T. Eqs. (7.2)-(7.3) are solved. App. 4.  
2. Chart for S(T). Eqs. (7.8) are solved. App. 5. 
3. Key parameters D, A and t0 as functions of S and T. The functions (6.22) and (8.17) 

are calculated. App. 6. 
4. Solution S(r,t) in dry-rock case. The function from (8.9) and (8.11) with the 

specifications in App.3 is calculated. App.7. 
5. Solution S(r,t) in dry-rock case. The function from (8.9) and (8.13) with the 

specifications in App.3 is calculated. App.8. 
 
    The formulas for water and bentonite are used in the first three models. 
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11 Boltzmann solution 
 

11.1  General step-response problem 
Computer models are used to predict the intricate water-temperature-pressure processes in the 
bentonite layer between canisters and rock in nuclear waste repositories. The property 
functions involved in the calculations may vary strongly with the state variables. There is a 
need for independent solutions to control the results. The purpose of this study is to provide 
such a critical solution, which is quite accurate and obtained in a different, semi-analytical 
way. Here, only a brief summary is given. Claesson (2003C) presents more details.  
    The solutions will also provide further insight into the complicated coupled, highly non-
linear processes with water evaporation and condensation. The effects and relative importance 
of particular assumptions and choice of data may be analyzed.  
    Let ( , )S x t  and ( , )T x t  be the solution to the following problem: 
 

 $ %( , ) ( , ) ( , ) .S T
S Tw x t K S T K S T

t x x x
/ / / /� �� � � � �� �/ / / /� �

 (11.1) 

 

 $ %( , ) ( , ) ( , ) .S T
S Te x t S T S T

t x x x
� �/ / / /� �� � � � �� �/ / / /� �

 (11.2) 

 
Here, the moisture and heat contents are given functions of the chosen state variables:  
 
 ( , ), ( , ).w w S T e e S T� �  (11.3) 
 
The particular initial and boundary conditions for Boltzmann solutions are: 
 
 in in( ,0) , ( ,0) , 0 ;S x S T x T x� � � � '  (11.4) 
 
 0 0(0, ) , (0, ) or zero water flux, 0.T t T S t S t� � )  (11.5) 
 
    Here, T is the temperature, and S is the chosen state variable for water or moisture in the 
pores such as degree of water saturation (or water pressure). The flow coefficients and the 
capacity factors are (apart from some thermodynamic restrictions) any functions of S  and T.  
 

11.2 Boltzmann solution 
The solution to this so-called Boltzmann problem depends on a single variable s: 
 

 ( , ) ( ), ( , ) ( ), .
4
xS x t S s T x t T s s

t
� � �� �  (11.6) 

Here, ( )S s�  and ( )T s� are the solution to  
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( , ) ( , ) 2 ( , ) 0,

( , ) ( , ) 2 ( , ) 0, 0 .

S T

S T

d dS dT dK S T K S T s w S T
ds ds ds ds

d dS dT dS T S T s e S T s
ds ds ds ds

� �

� �
� �� � � � � �� �  !

� �
� �

� �� � � � � � � � '� �  !
� �

� �� � �� � �

� �� � �� � �
 (11.7) 

 
The boundary and initial conditions (11.4) and (11.5) become:  
 
 in in 0( ) , ( ) , (0) ,S S T T T T' � ' � �� � �  (11.8) 
 

 0

0

(0) or ( , ) ( , ) 0.S T

s

dS dTS S K S T K S T
ds ds

�

� �
� � � � �� �

� �

� �� � �� �  (11.9) 

 
This is a system of two coupled nonlinear ordinary differential equations, which is much 
simpler to solve with three-digit accuracy using a modern mathematical program (such as 
Mathcad).  
     Mathcad programs for this Boltzmann problem have been developed. They have been used 
as a benchmark test for models for coupled heat and moisture flow in building applications 
CEN-norms.  
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12 Conclusion 
The aim of this study has been to develop tools of analysis to assess the drying of the 
bentonite. A few small models based on a number of equations are available in Mathcad. 
They should be quite easy to translate to other mathematical programs. 
    The key parameters are a time scale 0t  and a thermo-diffusive parameter a. These depend 
in a rather complicated way on flow properties of bentonite, properties of water, level of 
degree of water saturation and temperature in the bentonite annulus, and on the temperature 
gradient. But they are readily calculated with the models. 
    At the outer boundary rr r� , there are two limits. The rock may be sufficiently wet to 
maintain full saturation at the surface of the bentonite, the wet-rock case. The other limit, 
which is the worst possible case, is that the water flow to the rock is zero, the dry-rock case.  
    The bentonite will always start to dry at the warmer canister side (except for case of full 
saturation initially when nothing happens), and the saturation will increase on the rock side 
from the initial saturation inS . In the wet-rock case, wetting from the fully saturated rock side 
will stop the drying after a certain time, and a successive wetting of all bentonite continues 
toward full saturation in the whole annulus after, say, 03 t� . See Fig. 8.5. In the dry-rock case, 
drying on the canister side and wetting on the rock side continue until a steady-state moisture 
distribution is established. See Fig. 8.3. Then water vapor flow outwards and liquid water 
flow inwards balance each other at all points in the bentonite. 
    The curves in Figs. 8.3 and 8.5 show drying in the left-hand half of c rr r r	 	 , and wetting 
above inS S�  in the right-hand half of the interval. This is a general feature. This means that 
the outer half of the bentonite annulus never dries below the initial degree of water saturation 

inS . The strongest drying occurs in a rather thin layer near the canister.  
    The steady-state moisture distributions, which are attained after the time 0t  in the dry-rock 
case, are analyzed in detail. Models for the exact moisture profiles are available. A handy tool 
is a chart for the coordinate-independent relations ( )S S T� . 
    The steady-state solutions are simplified in the linearized case. We get very handy formulas 
to assess the largest drying. Formula (7.15) and Fig. 7.8 give the largest possible drying as 
function of the two parameters inS  and a , only. 
    The complete process is obtained for any a-value in the linearized case from new analytical 
solutions. See Figs. 8.8 and 8.9. Then we also have formulas and graphs that give the drying 
at the canister side. See Section 8.6-7. 
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Nomenclature 
 
 

( , )A S T Thermo-diffusive flow function, Eq. (6.22) - 
a Thermo-diffusive parameter, � �0 0( , )a A S T�  - 

ar Thermal diffusivity of rock, r r r r/( )a c� ��  m2/s 
B Half length of repository tunnels m 
cr Heat capacity of rock J/(kgK) 
Dc Distance between canisters in a tunnel m 
Dgr Distance from ground surface to the repository area m 
Dt Distance between tunnels m 

( , )D S T  Diffusivity function, Eq. (6.22) m2/s 
D0 Mean diffusivity, � �0 0 0( , )D D S T�  m2/s 

v ( )D S  Water vapor diffusivity in the bentonite, Eq. (6.4) m2/s 

v (0)D�  Water vapor diffusivity in the bentonite for 0S �  m2/s 
erf(x) Error function - 
g Moisture flux per unit area (with liquid and vapor components)  kg/(m2s) 
G Total moisture flux, Eq. (6.3)  kg/s 

( )h T  Enthalpy of water (liquid, vapor) J/kg 
Hc Height of canisters m 

( )k S  Hydraulic conductivity m2  
( , )SK S T  Moisture flow coefficient for gradient in S, Eq. (6.7) kg/(ms) 
( , )TK S T  Moisture flow coefficient for gradient in T, Eq. (6.7) kg/(msK) 

L Half width of rectangular repository area m 
P Pore water pressure Pa 
P(S) Water retention curve Pa 
q Heat flux per unit area  W/m2 
Q Total heat flux, Eq. (6.3)  W 
Qc(t) Heat emission from a canister W 
r Local radial distance from the central canister, 2 2x y�  m 
rc Canister radius, inner radius of bentonite annulus  m 
rr Rock radius, outer radius of bentonite annulus m 

cs  Ratio between radii: c c r/s r r�  - 
S Degree of water saturation in the bentonite, 0 1S	 	  - 
Sc  Degree of water saturation at the canister radius - 
Sin  Initial degree of water saturation in the bentonite - 
Sr  Degree of water saturation at the rock radius - 
S0 Chosen mean level for the degree of saturation in Eq. (8.2) - 
t Time s 
t0 Basic time scale, Eq. (8.10) s 

0yt  Basic time scale in years, Eq. (8.17) years 
T Temperature ºC 

cT  Temperature in the bentonite at the canister radius ºC 
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rT  Temperature in the bentonite at the rock radius ºC 

repT  Undisturbed rock temperature at the repository level, ( u (0)T� ) ºC 
T0 Chosen mean temperature level in Eq. (8.2) ºC 
Vp Pore volume of bentonite - 
x Horizontal coordinate perpendicular to the tunnels m 
y Horizontal coordinate parallel with the tunnels m 
z Vertical coordinate from repository level m 
   
   
9  Relative humidity - 

( )T.  Dynamic viscosity of water  kg/(ms) 
( )S�  Thermal conductivity of bentonite W/(mK) 

r�  Thermal conductivity of rock W/(mK) 
( , )S S T�  Heat flow coefficient for gradient in S, Eq. (6.8) W/m 
( , )T S T�  Heat flow coefficient for gradient in T, Eq. (6.8) W/(mK) 

r�  Density of rock kg/m3 

v�  Density of water vapor in the pores kg/m3 

v,sat ( )T�  Density of water vapor at saturation kg/m3 

w�  Density of water, (=1000) kg/m3 
( , )r4 5  Function for water saturation, Eq. (8.9) - 

c ( )4 5  Function for water saturation, Eq. (8.25) - 
5  Dimensionless time, 0( / )t t5 �  - 
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Appendix 1. Temperature field 
 
The canisters of the repository lie in large a rectangular area, L x L� � � , B y B� � � , 0z �  
at a depth grD  below the ground surface. The canisters are placed along tunnels at a distance 

cD . The distance between the parallel tunnels is tD . See Figs. 1.1 and 2.1. The canisters have 
the height cH , and each of them emits the heat c ( )Q t  (W).  
 

A1.1 Temperature field from heat emitting canisters 
Let ( , , , )T x y z t  denote the temperature field in the ground with the array of heat emitting 
canisters. The undisturbed ground temperature without canisters is undist ( )T z . There is a line 
heat source along each canister c c( / 2 / 2)H z H�� � �  with the heat emission c c( ) /Q t H  
(W/m).  
    The temperature field from the central canister alone is obtained by integration in time and 
in space along the canister axis of a point source. We have 
 

 
$ %

c

c

/ 2 2 2 2
c c

can 1.5
r0 / 2 r r r

( ) / ( )( , , , ) exp .
4 ( )4 ( )

Ht

H

Q t H x y z zT x y z t dt dz
a t tc a t t� 
�

� �� �� � �� �� � � ��� !��
� �  (13.1) 

 
The total temperature field becomes 
 

 undist can t c( , , , ) ( ) ( , , , ).
m n

T x y z t T z T x mD y nD z t� � � �((  (13.2) 

 
The sum may involve some 6000 canisters in the positions t c( , ,0)mD nD . For each canister 
there is integration in time and along the line source. The central canister lies along (0,0, )z . 
The temperature due to the canisters is zero to be zero at grz D� . This is obtained by using 
negative mirror sources above the ground surface at gr2z D� . Then we subtract a double sum 
with z  replaced by gr2D z� . After very long time when the effect of the ground surface is 
accounted for we have 
 

 u can t c can t c gr( , , , ) ( ) ( , , , ) ( , , 2 , ) .
m n

T x y z t T z T x mD y nD z t T x mD y nD D z t� �� � � � � � � � !(( (13.3) 

 
The double sum is zero at the ground surface grz D�  
    The integral in z�  may be expressed with the error function. The integration in time may be 
somewhat neater by a suitable variable substitution. We get the following simpler expression 
for the temperature (13.1)  
 

 
2

r

2

can c 2
r c r/ 4

1 1( , , , ) ,
4 4

s

r a t

rT x y z t Q t e E ds
H a s s
�

'
�� �

� � � � � �� �
� �
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 c cerf erf .
2 2

H Hs sE z z
r r

� � � �� � � �� � � � � �� � � �� � � �� � � � !  !
 (13.4) 

     We are in particular interested in the temperature at the bentonite at the mid-level of the 
canister in the very center of the field of canisters, i.e. for 2 2

rx y r� �  and 0z � . The line 
source from the central canister gives essentially an ellipsoidal temperature field in the 
vicinity of the canister. The cylindrical surface is approximated by a suitable ellipsoid (with 
the same volume and general shape). As rock temperature rT , we choose     
 
 r r r r( ) (0, ,0, ), 1.5 .T t T y t y r� � �  (13.5) 
 
There is a small correction to (13.1) and (13.4) from the local temperature field due to the 
local design in and around the canister. These minor contributions would require a local three-
dimensional calculation for the temperature field, the result of which is not important for our 
purposes. 
 

A1.2 Temperature during the first years 
During the first few years [ 2

t /(4 )t D a� ], it is sufficient to consider the contributions from 
canisters below the distance t2D  from the central canister. Here, tD  is the distance between 
two adjacent tunnels, Fig. 2.1. We get a line of canisters along the central tunnel 
( $ %t c1, ..., , int 2 /n N N D D� * * 
 ). The line of canister heat sources from the two adjacent 
tunnels may be replaced by a line heat source along the tunnels with the strength c c( ) /Q t D  
(W/m). With these assumptions, we get the following formula for the rock temperature 

r ( )T t at the bentonite 
 

 r rep can r can c line
1

( ) (0, ,0, ) 2 (0, ,0, ) 2 ( ).
N

n
T t T T y t T nD t T t

�


 � � � � �(  (13.6) 
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�  (13.8) 

 
The undisturbed ground temperature at the repository level 0z �  is u rep(0)T T� . The first 
integral is the contribution from the central canister, and the sum of integrals the contribution 
from the canisters along the central tunnel. The error function and the complementary error 
function are defined by the integrals 
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A1.3 Simplified formula 
    After the first year (or two), we may use the following remarkably simple formula.  
 
 r rep global c local( ) ( ) ( ) .T t T T t Q t R
 � � �  (13.10) 
 
Here, we have a global temperature field obtained from a surface heat source over 0z � , 

L x L� � � , B y B� � �  with the strength � �c ( ) /Q t DD�  (W/m2). See Figure A1.1 
 

 
Figure A1.1. Surface heat source with the strength 0 ( )q t �  

                                                 � �c c t( ) /Q t D D�  (W/m2 ) over the repository area. 
 
The temperature field from the rectangular surface heat source of Fig. A1.1 is 
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 (13.11) 

 
The temperature is the center, 0, 0, 0x y z� � �  in (13.11), is the global temperature of 
(13.10). We have:  
 

 � � � �2 2
gr4 /c c t
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0 r r

( ) / L( ) erf erf 1 , 4 ( ) .
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�� � � � � � �� � � � � � �� � � �� � � � �� (13.12) 

 
We have replaced the array of line sources as defined in (13.2) by smearing out the heat 
sources evenly over the corresponding rectangle, Fig. A1.1. The remaining temperature field 
involves balanced heat sources between the array of line sources and the rectangular source 
with negative sign. This part may, after rather intricate calculations, be represented by a single 
thermal resistance in the last term of (13.10): 
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Here, 0.577� �  is Euler’s constant. 
    The solution (13.10),(13.12) and (13.13) is valid with good accuracy compared to the full 
expression (13.3) after a year or two until infinite time. The effects of spacing tD  between 
tunnels and spacing cD  between canisters along a tunnel are shown in a very clear way 
    Let us note that formula (13.10) may be extended to the case when the repository area 
consists of more than one rectangular array of canisters. Let index A denote a second 
rectangle A A AL x x L� � � � , A A AB y y B� � � � , Az z� .  Then we just have to the 
rectangular global temperature at the initial central canister to (13.10): 
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Appendix 2. Equations for heat and moisture flow 
 
The equations for heat and moisture flow in the bentonite are discussed in Section 6. Here, 
some additional things are presented.  
 

A2.1 Data for water 
    Kelvin's equation relates the pore water pressure P to the relative humidity 9  of adjacent 
water vapor: 
 
 w w v,sat(273 ) ln( ), / ( ).vP R T T� 9 9 � �� � � �  (14.1) 
 
Here, w w/R R M� =8.314/0.018 J/(kgK) is the gas constant for water, and 

w
� =1000 kg/m3 

the density of water. The water vapor density v v ( , )S T� ��  becomes a function of ( )P S  and 
T:  
 
 $ %w w( ) / (273 )

v v,sat( , ) ( ).P S R TS T e T�� ��� �  (14.2) 
 
    The heat of evaporation of water is temperature dependent, and it equals the enthalpy 
difference between vapor and liquid: 
 
 evap vap liq( ) ( ) ( ).L T h T h T� �  (14.3) 
 

A2.2 Flow coefficient functions
    The flow coefficients SK , TK , S�  and T�  in (6.7)-(6.8) are obtained from (6.1)-(6.2). We 
get 
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 v
vap v( ) ( ) ( )( , ) .T S h T D S

T
S T �

� �
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 (14.7) 

 
The coefficient ( , )TK S T  involves the water vapor diffusivity v ( )D S  as factor. The vapor 
diffusion is zero at full saturation. This means that TK  is zero for 1S � : 
 
 v v( ) (0) (1 ) (1, ) 0.TD S D S K T� � � 1 �  (14.8) 
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A2.3 Temperature solution  
Integration of  (6.13) gives 
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c c r
r r
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Q t Q t rT r t T dr T
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 � � � �� �� � � ��  (14.9) 

 
 
The temperature rT  will also change slowly with time due to the influence from other 
canisters. Here, avS  is a suitable average value.  
 

A2.4 Moisture balance equation
We will write Eq. (6.19) in an alternative way. Inserting (6.15), we have  
 

 p w c r
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 (14.10) 

 
From (6.13) and (6.10), we have 
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 (14.11) 

Eq. (14.10) may then be written 
 

 c r
1 ( , ) 2 ( , ) (1 ) , .S SD S T r A S T S r r r

t r r r
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 (14.12) 

 
Here, we have introduced the functions 
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    The total moisture flux is given by the expression inside the curly brackets in (14.12) 
multiplied by c2 H
� : 
 

 c c r( , ) 2 ( , ) 2 ( , ) (1 ) , .SQ r t H D S T r A S T S r r r
r


 /� �� � � � � � � � � 	 	� �/ !
 (14.14) 

 
The flux is zero at the canister boundary, at the rock boundary in the dry-rock case, and 
throughout the annulus in steady state. The expression within the square brackets is then zero. 
We have:  

 Zero moisture flux 2 ( , ) (1 ) 0.Sr A S T S
r

/
0 � � � � � �

/
 (14.15) 
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Appendix 3. Transient solution for dry and wet rock 
 
In this appendix, complete formulas for the solutions in Section 8 are presented. The full 
derivations for wet-rock solution are presented in Claesson (2003A). The dry-rock solution is 
not yet reported, but the solution is well tested in Mathcad, so it is certainly correct. 
 

A3.1. Dimensionless form of linearized equation  
We seek the solution ( , )S r t  of  (8.5)-(8.7) for the rock boundary condition (8.8) in the dry-
rock case and in the wet-rock case. The problem involves the parameters inS , a , cr  and rr . In 
order to reduce the number of parameters as much as possible, we introduce dimensionless 
coordinates: 
 
 0 r c c c r/ , / , 1, / .t t s r r s s s r r5 � � 	 	 �  (15.1) 
 
The time 0t  is chosen as, (8.10): 
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We also introduce a new function r 0( / , / )r r t t4  for the degree of saturation: 
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in in
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S
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 (15.3) 

 
The function r 0( / , / )r r t t4  is zero, when the saturation equals the initial level: inS S� . The 
value is negative when the saturation is below the initial value: inS S� , and it lies in the 
interval 0 14� 	  for 1inS S� 	 : 
 
 in in in0 , 0 , 0 1 1.S S S S S S4 4 4� 0 � � 0 � � 	 0 � 	  (15.4) 
 
    The problem for ( , )s4 5  becomes from (8.5)-(8.8) and (15.3): 
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This problem is independent of the parameter inS . It has a  and the ratio cs  ( c 0.6s �  in our 
application) as parameters. The constants cs , 2

rf , and rf   (using (15.2) ) are given by 
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A3.2. Solution for the wet-rock case  
    A full derivation of the solution in the wet-rock case is given in Claesson (2003A). The 
solution for ( , )s4 5  has the form 
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Here, r/s r r�  is the dimensionless radial coordinate, and 0/t t5 �  the dimensionless time, 
(15.1). The steady-state solution after long time is 
 
 ss ( ) ( , ) 1.s s4 4� ' �  (15.11) 
 
The right-hand boundary value 14 � , (15.8), is imposed throughout the annulus in steady 
state. 
   The eigenvalues rn n f: 6� �  are obtained from the equation  
 
 r 1 c r 1 c 1 2( ) ( ) ( ) ( ) 0, 0 ... .a n a n a n a nJ f Y f Y f J f6 6 6 6 6 6� �� � � � � � �  (15.12) 
 
Here, we use the notations 
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 (15.13) 

 
Then values n6  become roughly equal to 1, 3, 5, etc, : 
 
 1 2 31, 3, 5, ... .6 6 6
 
�  (15.14) 
 
 This is the reason to choose 0t  according to (15.2).  
    The eigenfunctions ( )nu s  are given by 
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The coefficients nA  are given by  
 

 11 1
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aA B s B
B
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 (15.16) 

 

A3.3. Steady-state solution for the dry-rock case  
In the dry-rock case, we first determine the steady-state solution. The equation for the steady-
state solution ( )S r  becomes from (8.4): 
 

 c r2 (1 ) 0, .d dSr a S r r r
dr dr

� �� � � � � 	 	� � !
 (15.17) 

 
This means that the expression within the brackets (essentially the moisture flux) is constant 
over the interval in r. The value is zero at both boundaries according to (8.7) and (8.8), which 
means that the moisture flux is zero for all r in accordance with (7.12). The total moisture 
content in steady state must be equal to the initial amount. We have to solve 
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With the transformation (15.3) 
 
 in in r( ) (1 ) ( ), / ,S r S S s s r r4� � � � �  (15.19) 
 
we get rid of the initial degree of saturation as parameter. The problem (15.18) becomes 
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The general solution is of the differential equation is 
 
 2( ) 1 as F s4 �� � �  (15.21) 
 
The condition of zero integral determines the constant F. We get the steady-state solution 

ss( ) ( )s s4 4�  in the dry-rock case: 
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The largest wetting ss (1)4  occurs at the rock boundary. We are in particular interested in the 
largest drying, which occurs at the warm canister boundary. We have for cs s�  from (15.22): 
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The corresponding degree of saturation is from (15.23) and (15.19) 
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A3.4. Solution for the dry-rock case
    The solution ( , )r t4  has in the dry-rock case the form 
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Here, ss ( ) ( , )s s4 4� ' is the steady-state solution (15.22). 
    The equation for the eigenvalues rn n f: 6� �   is in the dry-rock case 
 
 1 r 1 c 1 r 1 c 1 2( ) ( ) ( ) ( ) 0, 0 ... .a n a n a n a nJ f Y f Y f J f6 6 6 6 6 6� � � �� � � � � � �  (15.26) 
 
Here, we use the notations in (15.13) and (15.9). The values n6  become in the dry-rock case 
roughly equal to 2, 4, 6, etc, : 
 
 1 2 32, 4, 6, ... .6 6 6
 
 
  (15.27) 
 
 This is again the reason to choose 0t  according to (15.2). 
     The eigenfunctions ( )nu s  are given by 
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The coefficients nA  are given by  
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