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The CALIBRE Source Term Code
Summary

A numerical model has been developed which simulates the diffusion of
radionuclides from a high-level waste canister, through a backfill region
and into a fractured rock matrix. The model includes chain decay and
ingrowth, linear equilibrium sorption, solubility limiting and response to a
redox front as it emerges from the canister and migrates through the near-
field. Radial advection (which approximates the advection downstream
from the canister and buffer) is applied in the fracture, in addition to
diffusion or dispersion.

This document describes the mathematical model and numerical methods
used in developing CALIBRE, together with a number of verification tests
which compare the results with those computed using analytic solutions.
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Introduction

The CALIBRE computer program has been developed as a modelling tool
for the Swedish Nuclear Power Inspectorate’s Project-90 reference reposi-
tory assessment for the disposal of spent nuclear fuel [1]. The conceptual
model geometry for CALIBRE is illustrated in figure 1.1, based on the
KBS-3 disposal concept. The model itself does not include the buffer
material vertically above the canister, nor the emplacement tunnel. The
model calculates the behaviour of radionuclides released to the near-field
environment after the degradation of a high-level waste canister. Processes
modelled include leaching of the nuclides from the solid waste matrix,
diffusion through a bentonite backfill surrounding the canister, diffusion
through a fractured rock matrix and advection and diffusion in the frac-
ture water. As well as decay and ingrowth of chains of radionuclides, the
model includes linear equilibrium sorption and solubility limiting under
reducing and oxidising conditions, as it monitors the movement of a redox
front which originates in the canister and migrates through the near-field.
The redox front information is provided from a stand alone section of the
code, which is described elsewhere [2], [3].
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Figure 1.1 The Conceptual Model Geometry in CALIBRE

The mathematical model of radionuclide transport in the near-field is set
out in section 2. The original detailed mathematical description of the
system is given in the specification document [4] and is not repeated here.
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The numerical methods used to solve the equations are described in sec-
tions 3-5. This includes the finite difference space discretization and time
stepping scheme employed, together with the approach used to handle the
advection, diffusion, decay and solubility limiting processes.

Section 6 describes a number of verification problems, where we compare
the CALIBRE results with those computed using analytic methods. A
detailed description of these methods is given in reference [5]. They show
good agreement overall and also indicate areas where care should be taken
in using the model, to ensure the accuracy of the results.



2.1

Mathematical Model

Transport in the Buffer and Rock Matrix

In the specification document [4] the equations for the release of radionu-
clides from the canister and their migration through the bentonite and
rock matrix were set out. These have been followed with few modifica-
tions. The main change is in the canister itself, where axial diffusion is
included explicitly. This allows for spatial variation in the total concentra-
tions (that is, sorbed, dissolved in the pore water and precipitated) in the
canister, rather than implicity assuming that diffusion results in complete
mixing.

In the canister, the main quantities to be solved for are W'S (t), the amount
of solid waste per unit volume of canister, and Ag- (2), the total concen-
tration of released nuclides. Suffix ij denotes isotope 7 of element j . The

governing equation for solid waste concentration VVg(t) is

dWg(1)

T = A W) + AW ) — ks WE (@), 1)

where );; is the decay constant for isotope i of element j, A;; is the de-
cay constant for its parent nuclide, and k;; is the fraction released from
the solid fuel per year. The release fraction may be constant or time-
dependent. Details of the various fuel release models employed in CALI-
BRE are given in the Project-90 report on the near-field calculations [6].

" The total concentration of released isotope ¢, A¥(t) is partitioned into the

concentration dissolved in the pore water, Cg (t), the concentration sorbed
on solid material, 55 (t) and the concentration precipitated, Pg (2):

AZ(t) = e°CE(t) + SS(1) + PS (1), 2)
where €€ is the porosity in the canister.

Once released from the solid waste form the nuclides in the pore water
diffuse radially into the bentonite, and axially within the degraded canister
region. The governing equation for Ag-(t) is given by

3Ag(r, z,t)

E = .—)\iinCJ"(T, zat)+AIJA?J(r7 z,t)-{-k,JI/V,f(Z,t)

F Yo 0*Ct
+ DB [1-3— (rb—r” (r,z,t))] + D¢ 6—2-2-” (r,z,t), (3)



where D® the effective pore water diffusion coefficient in the bentonite
(assumed valid for the degraded canister/ bentonite region) and D€ is the
effective diffusion coefficient in the axial direction in the canister.

The partitioning between dissolved, sorbed and precipitated concentra-
tions in the absence of solubility limits is given by:

cdt) = A5/, (4
SS) = PKECS(), (5
PS() = 0, Q

where pC is the density of material in the source region, K JC is the element-
dependent distribution coefficient and af is the capacity factor given by:

of =€+ p°K7. (7)

If at any time the solubility limit for element 7, CJ-C(sol) is exceeded inside
the container then equation 4 ceases to hold. Instead the dissolved con-
centration of each isotope is proportional to the ratio of the total isotope
concentration to total element concentration:

A1)

Ci(t) = Cf(sol)m, ()

where the summation over isotopes includes the stable species. The ex-
" pression for the sorbed concentration equation 5 is unchanged whilst the
precipitate concentration is given by:

PS(t) = AG(t) — oF C5(2). 9

Before the canister fails due to corrosion the inventory is calculated using
the Bateman equations, and the concentrations released in all states are
set to zero. After canister failure, nuclides may be released under reducing
conditions in the canister before it becomes fully oxidising.

In the bentonite and rock the governing equations for the A;; are similar
to equation 3, except there is no input from a solid waste source. In the
bentonite equation 3 becomes:

0A5(r,2,1)
VE 3 = —/\ijAg(T, z,t) + )\”A?J(r’ z,1)



4 DB [1_@_(7‘803(r,z,t)) 4 *CE(r, z,t)

-o " 72 ] > (10

and in the rock

OAR(r, 2,1)
5 J = —/\,-jAg(r,z,t) + )\IJA?J(r,z,t)
10 [ 0CE(r,z t)) O?CE(r,2 t)]
L pr (LI (2GInat) [ OCnat) g
[ ( or + 022 (11)
where DB, DR are the effective pore water diffusion coefficients in the
bentonite and rock respectively. The boundary conditions are as follows:

DB 605(7‘, z,1)
or

= F5 (1), (12)

T=r

where r; is the canister radius and F{(t) is the radial flux per unit cross-
sectional area from the canister into the bentonite:

0CEr 50| _ 80Rm=l|  _ )
az z=0 82 z=7
where Z is half the axial distance between fractures;
C(r,2,t)| very = C(r,2,)| oor, (14)
b<2<2Z b<z2<2Z

where 7, is the radial distance of the bentonite/rock interface from the
centre of the canister, and b is fracture half-width;

_ppdCi(rz1) = _prdGstnan) (1)
a’l‘ =12 87‘ <<
b<z<2Z bez<z
B . S
or r=r2 or <z e
0<z<b 0<z<t
OCE(r, 2,1
—11 (T z ) — O, (17)
az z=Z
_prp, 2G5 prp 005t (18)
aZ z=b az z=b




2.2

where F, is the fraction of the fracture surface area available for matrix
diffusion. This may be less than one, to account for channelling in the
fractures. The far boundary condition is given by

Ch(rzt)| =0 (19)

T—00

In the program, the boundary condition 19 is replaced by

Cg(r,z,t)l = 0, (20)

r=r

where 73 is chosen to be far enough away from the canister for the condition
to be true.

Partitioning between dissolved, sorbed and precipitated states in each ma-
terial is treated in the same manner as in the canister (equations 4 - 9)
with appropriate choice of the material-dependent quantities of density,
porosity and distribution coefficients.

Transport in the Fracture

The mass transfer in the fracture can be described in terms of the conti-
nuity equation for the total concentration A of radionuclides, comprising
the fractions dissolved in the water, sorbed on the fracture walls and pre-
cipitated:

0A;;(t
5 i(t) = =XjAi;(t) + Mg A (t)
w l d [ 9Ci; 820,',' l@’C;,-
+D [rm(r'& 37 Tram
aC;; 180,-5
Ty TUg (21)

The subscript :j denotes isotope i of element j, with IJ representing
the parent nuclide. A is the total concentration of the nuclide, C is the
concentration dissolved in the water, D is the diffusion coefficient of
free water, v, and vy are the radial and tangential components of the flow
velocity and A;;, A;; are the decay constants of the nuclide and its parent.

The partitioning between dissolved, sorbed and precipitated concentra-
tions in the absence of solubility limits is given by:
At
Cotty = A58 22)

a;



Si) = PPKR(1 -0y (23)

Pi(t) = 0 (24)
where p®, K ]R, el are the density, distribution coefficient (of element j)
and porosity of the rock, 8 is the fractured rock porosity, é is the effective
depth of surface sorption on the fracture walls and a is the channelling
parameter, or specific wet surface area per unit volume of fractured rock.
This definition corresponds with that used in the Project-90 geosphere
transport code, CRYSTAL [7]. The capacity factor «; of the fracture is
given by:

ba

a; =1+ pRKF(1 - eR)W, (25)

where the porosity of the fracture is 1. Unlike the CRYSTAL code, where
surface sorption is set to zero if matrix diffusion is modelled, surface sorp-
tion is always accounted for in CALIBRE. This is required owing to the
space discretization approach used to solve the model equations. The frac-
ture and its interface with the rock is represented by a single layer of cells,
each comprising both rock and fracture. Surface sorption is therefore in-
cluded to account for the sorption which occurs in the rock portions of
these cells. '

If the solubility limit C;(sol) of element j is exceeded in the fracture then
the dissolved concentration of each isotope is proportional to the ratio of
the total isotope concentration to the total element concentration:
A“(t)
Ci;(t) = C;(sol) =—2—— (26)
1 ( ) J( )z:t A,J(t)

where the summation over isotopes includes the stable species. The ex-
pression for the sorbed concentration (23) is unchanged whilst the precip-
itate concentration is given by:

P;j(t) = Aij(t) — ;Ci5(2) (27)

The boundary conditions at the edges of the fracture are now given by:

act
% e = 0 (28)
aCH ac*t
—DRF,— = -DFF,—~
az z=b az z=b (29)
ocE acF
D or r=ry b or T=T2 (30)




The boundary condition (28) represents the zero flux requirement at the
midpoint of the fracture. Boundary conditions (29) and (30) represent the
flux continuity requirements at the rock-fracture and bentonite-fracture
interfaces, respectively. The superscripts R, B and F denote the rock,
bentonite and fracture respectively, r, is the radius of the bentonite-rock
interface and b is the fracture half-width. F, is the fraction of the surface
area available for matrix diffusion. It corresponds to the channelling pa-
rameter a employed here (in equations 23, 25 above) and in the CRYSTAL
code. For parallel plate fractures with spacing S between fractures and
surface area A,, a and F) are related in the following manner, according
to the definition of a as the fracture wall surface area available for matrix
diffusion per unit volume of fractured rock:

2F, A,
a= A5 (31)
which gives
o= 25’. (32)

A further condition of zero concentration is imposed at a radius r3 suf-
ficiently far from the fracture edge so that it does not influence the flux
into the fracture. This radius also defines the far radial boundary of the
discretized mesh.

The radial and tangential flow velocity components v,, vs may be derived
from the solution to Laplace’s equation for potential flow around a cylin-
~ der. They may be written in the form:

vy = wvcosb (1 - TL) (33)
. Ty’
vg = —vusinf |1+ =3 (34)

where v is the velocity far from the cylinder. The flow field is illustrated
schematically in figure 2.1.
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Figure 2.1 Schematic Representation of the Flow Field Around a
Cylindrical Container in the Fracture Plane

The flow around the canister and bentonite destroys the cylindrical sym-
metry of the system, resulting in the three-dimensional mass transfer equa-
tion (21). Figure 2.2 illustrates the radial and angular dependence of the
contaminants in the cells of the discretized region in the fracture plane. To
avoid the complication and computational cost of a fully three-dimensional
model, an approximation to the flow has been derived which accounts for
the net advective mass transfer downstream from the canister, within a
two-dimensional model.



Figure 2.2 Cell Discretization in the Fracture Plane, Showing
Radial and Angular Dependence of Contaminant Concentration

In the approximation, the angular dependence of the dissolved concentra-
tion is assigned to a weighting function, f(8):

C(r,6) = C(r)f(6) (35)

where C(7) is the average concentration in the fracture water at radius r.
For very thin fractures it is also assumed that there is no vertical variation
" in dissolved concentration within the fracture. The average concentration
C(r) is obtained by averaging C(r,6) over 6:

olr) = = / " C(r, 0)d0 (36)

=21r

This implies that the weighting function f(#) must satisfy the condition:

o | @0 =1 (37)

The continuity equation (21) may also be expressed in terms of the diffu-
sive and advective flux components:

10



94;5(1)

57 = =X;Ai;(t) + AsAL(t)
10 aJ. 10J,
“re T m Traw
aJ¢  10Jg
T A (38)
where the diffusive flux terms are given by:
Jr — _pw Tu
D i (39)
D% 8C.~,-
']0 = _'_r—‘a‘g ’ (40)
0Cj
_ _pwot
J. = =D 5 (41)
and the advective flux terms are given by:
J: = —U,C,'j, (42)
Jg = —‘UoC,'j. (43)

Substituting the weighting function approximation into the angular-dependent
flux terms gives:

w s n
Jo = _%___(’;(;) [ / 3/2/ ’ _gg(o)d9+ /_ :2 %g(g)da] (44)
r?\ C(r ™/ /2
= o (1 _ r_;) _2% [ /‘:2 * 1(6) cos 06 + [ pcost f(0)d0](45)

5= (1+—)%[ /j’;"" £(6) sin 0d6 + /:/Zf(f?)sinﬁdé’],(‘lﬁ)

where we have split the weighting function into an upstream term for 6
ranging from 7 /2 to 37/2 and a downstream term for 8 ranging from —n /2
to 7/2.

If f(8) =1 for all 8, then all the above terms are zero. Non-trivial choices
for the weighting function, for which J? is non-zero and J,; and J¢ are zero
include:

e f(0) =2 on the downstream side and zero on the upstream side,

e f(f) = mcosf on the downstream side and zero on the upstream
side.

11



The radial flux term may be written:

= (1- %) (- ) ), (a7
where o
fo=—5- /7r , cos0(0)d0 (48)
and —
fi= o /_ s 0(0)d0 (49)

Hence, for f(6) = 2, o = 0 and B = 2/, and for f(6) = wcosb, Bo =0
and B, = /4.

The radial flow and downstream weighted concentration approximation
are illustrated schematically in figure 2.3.

1
G -‘-;-/'Ci(r) f(6) do

0

Weighted downstream
average concentration

Figure 2.3 Radial Concentration and Flow Approximation

Precipitate Formation and Dissolution

In CALIBRE, the independent variable solved for is the total concentra-
tion A;;(t), where the subscript refers to isotope ¢ of element j. The total

12



concentration is partitioned into the concentration dissolved in the pore
water, Cj;(t), the concentration sorbed on solid material, S;;(t) and the
concentration precipitated, P;;(t):

Aij(t) = €Cy(t) + Si;(t) + Pis(t)

€Ci;(t) + pK;Ci;(t) + Pij(t)
= CYjC,'j(t) + Pij(t) (50)

where € is the porosity of the material (bentonite, rock or fracture), p is the
material density, ’; is the distribution or sorption coefficient of element
J, and «; is the capacity factor.

If the precipitate is zero, then the dissolved concentration is related to the
total concentration via the capacity factor:

Ci;(t) = Aij(t)/ ;. (51)

If the solubility limit C;(sol) is exceeded, then the dissolved concentration
of each isotope is proportional to the ratio of the total isotope concentra-
tion to the total element concentration:
A"(t)
Ci;(t) = Cj(sol)=——2-+
? ( ) .'I( )2iAij(t)
= Ai;(t)/o (52)

where o' is an ‘effective’ capacity factor, which varies according to the
extent to which the solubility limit is exceeded.

" The precipitate concentrations in each cell are accounted for explicitly
wherever they arise. If the solubility limit changes at any time, then
for cases with precipitate concentrations which exceed the dissolved con-
centration, the precipitate is released at a constant fractional release rate
which is element dependent and user-defined. Once the precipitate concen-
tration falls below the dissolved concentration, the remainder is released
into solution in one time-step, and the precipitate concentration set to
zero. The release fractions used in Project-90 are similar to those calcu-
lated for release from the solid fuel matrix. This technique is employed
to maintain the accuracy of the calculations, which may be upset if rel-
atively large amounts of precipitate are released into solution in a single
time-step. It may also be argued on physical grounds that dissolution of
precipitate is not normally instantaneous, and is more probably controlled
by diffusion and/or surface effects. Another reason for releasing precipi-
tate slowly is that the redox front itself migrates slowly in space and time,
rather than in the discrete steps imposed by the numerical model.

13



3.1

Numerical Methods

The basic approach to solving the equations used within CALIBRE in-
volves a finite difference discretization in the spatial dimensions with a
time-stepping scheme to handle the time dimension. Within each time
step the radioactive decay and ingrowth part of the system is decoupled
from the diffusion part. The solubility limits are used to derive relation-
ships between concentration in the pore water and total concentration,
which is held fixed for the duration of each time-step. With these approx-
imations, the diffusion for each radionuclide is calculated separately. An
alternating direction implicit (ADI) scheme is used, allowing reasonable
time-steps in most cases, with good accuracy. All these aspects of the
method are expanded in the following sections.

Spatial Discretization

The spatial discretization used is based on a rectangular array of cells in
r-z co-ordinates. Figure 3.1 shows how these cells fit into the physical
structure of canister, bentonite, rock and fracture. Each cell has a node
whose position is used when gradient calculations are made. Where ir-
regular cell sizes are used the cell boundaries are placed symmetrically
between nodes. If the cells are all of the same size then the nodes are
at the cell centres. Figure 3.1 shows a rather coarse grid for clarity; in
practice the grid would be much finer.

Bentonite Rock
x | x| x| k X X X X X
; | SR A T A 2 T T 7 T
Canister ; B Fracture

Figure 3.1 Schematic Representation of Spatial Discretization

The independent variable solved for is the average amount per unit volume
within each cell. This is related to the pure-water concentration through
the capacity factor o, and where relevant the solubility limit. In either

14



case we can denote the ratio of amount per unit volume to pore-water
concentration by an effective capacity factor o', which is time dependent
because of the solubility limits and because of the presence of a moving
redox front. The movement of radionuclides between cells is determined
by the diffusive terms in the equations.

We label the columns by ¢ and the rows by 5 and then the discrete version
of the basic equation 10 or 11 for cell 5 in the bentonite or rock is

dAy(t) _

g D C(-1),;=Cis (53)

i=5.021= 5.0 rimr(io1y
¢, BG41),=Ci;
+D’+%’JS'*%J T(i41) =T

.. .. —-L(L—L—C' +1 -C‘.'j
+D; 5415 gt

2 ¢t Zj41—25

Ci(;-1)—Ci,;
+D;; 18— 2
—AViiAij + N Vi A3

where the subscript and superscript p indicates the parent nuclide, and
Vi; - volume of cell ¢, 7
A;j - average total concentration in cell ¢, j
r; - radial co-ordinate for cell-nodes in column 2
z; - axial co-ordinate for all nodes in row j

C;; - average pore-water concentration in cell 1,5 (Ai;/a’y;)

S 1; diffusion coefficient on the boundary between cells i — 1,7 & ¢,j

D1 ; diffusion coefficient on the boundary between cells ¢, j & (1 4+1),5

D;,, 1 diffusion coefficient on the boundary between cells 7,5 & ¢, (j + 1)
D

ii-d diffusion coefficient on the boundary between cells ¢,(j — 1) & ¢,

T+ X (ZG+1) =% -1))
2

1

S._1 .is the surface area between cells i—1,j & 7,5 =
39

Triany i) X (25 41)=2(;-1))
2

Sit1 ; is the surface area between cells Z, j &i+1, 5=

Tt il =Ta-n) ="y
4

S',j+% is the surface area between cells ¢, j &z, j+1 =

1

Si_j_% is the surface area between cells i, j—1& t, j = Si,j+%

Transport in the fracture is described by equation 21, which may be dis-
cretized in terms of the flux entering and leaving a cell across its bound-

15



aries. For a cell centred on column i and row j the continuity equation
becomes:

0

— .. .. S o p
o (Vi) = —AViid + AV A
w Ci-1;-Cij w Ci1,;-Cij
+D S"";‘vj ri—ri-1 +D S""%'-" Ti41=Ti
wg  Cusi=Cij , pWg  Cijmi=Ciy
+D Si,]+% 254125 +D Si.'J-% Zj—=%j-1

Ty +Ty 7'2
+ozontin (1 - ) (6,6 - 4C1)

- 5zjvri+;i-l (1 - (ri:rr.;.lf) {BCi = BiCia}  (54)

where subscript and superscript p denote the parent nuclide and

V.; is the volume of cell 4, j,

Ci; is the average dissolved concentration,

r; is the radial co-ordinate of all cells in column ¢,

z; is the vertical co-ordinate for all cells in row j,

0z; is the depth of all cells in row j,

DV is the free diffusivity of water,

S;_1; = m(r; + r;_1)dz; is the surface area between cells i — 1, j and ¢, 7,
S,~+%,j = w(r; + ri41)62; is the surface area between cells 7,5 and 7 +1, 7,
Sij+i = F(riyn = rica)(riga + 2ri 4 i) is the surface area

between cells 7,5 — 1 and ¢, 7, and

Si

-1 = Si'j+% is the surface area between cells ¢,; and ¢,j + 1.

If By is chosen to be zero then the approximation for the advective term
takes the form of a single-point upstream weighting approximation. i.e.
in computing the advective flux across a cell boundary, we take the con-
centration in the cell from which the contaminants are flowing. Such
approximations are often preferred in the solution of difference equations
for advective flow, as they help to reduce the propagation of numerical
€rrors.
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3.2

Outputs

The main output quantity of interest is the total flux leaving the system at
the far boundary. The condition imposed here is one of zero concentration,
so the flux F(t) is simply calculated by monitoring the total amounts lost
to the end cells over each time-step:

F) = Y v 2 =Tz l) (55)

Jj=1
where the summation is taken over the complete row of cells at the far
boundary and At is the time-step.

Additional outputs which are calculated include the concentrations and
precipitate amounts (if any) at each gridpoint, the flux from the canister
to the bentonite and the flux across the bentonite/rock/fracture interface.
The latter are defined as follows:

_ e N CAC,']'(T=1‘1,Z]',t)

FO(t) = 2_; Sij(r1)D ~ ; (56)
FP() = 30 Syl DS 2020 l) 67

where the S;; are the interface cross-sectional areas and the gradient of

_ the concentration is calculated using a first-order finite difference approx-

imation across neighbouring cells.
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3.3

Time Stepping

The discretized equations could be solved by many different time-stepping
schemes. There are however a number of characteristics of the current
problem which narrow the choice considerably.

Firstly, the moving redox front leads to sudden changes in properties. This
rules out time-stepping schemes which use the history of the solution as
guidance to the solution at the next time.

The next point to consider is the possibility of diverse timescales. Highly
absorbed nuclides will move very slowly, while non-sorbed ones may move
rapidly. Some nuclides have very short half-lives while others have very
long ones. This suggests that rather short time-steps may be required,
which calls for the use of a computationally efficient scheme.

Finally the solubility limitation requires that all isotopes of an element are
solved for simultaneously, again pointing to the need for a very efficient
scheme.

Combining these considerations, the method we have chosen is based on
the alternating direction implicit (ADI) algorithm. This separates the
two space dimensions, treating one implicitly and one explicitly for half a
timestep and then switching over for the second half. This requires the
inversion of nothing worse than tridiagonal matrices.

In the same spirit we separate the calculation of radioactive decay and
ingrowth from the diffusion calculation. Also the value of o, the ratio

" between total and pore water concentrations, is fixed in each cell for the

duration of the timestep.

Thus the steps involved in a timestep are

1. Decay and ingrowth for each cell, including the source cells.

2. Calculate ' for each cell, using properties implied by the redox front
position halfway through the time-step.

3. Calculate partitioning between dissolved and precipitated species.
4. For each nuclide, apply the ADI diffusion step

a) implicit in z , explicit in 7,

b) explicit in z, implicit in r

5. Recalculate the partitioning of dissolved and precipitaed species.
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The length of timestep is limited by the explicit parts of the ADI scheme.
To avoid instabilities it is recommended that
1 1(Ar)?

ZAL
2t <3™p @

and

1 1(Az)? ,
-‘)‘At < 5 D «a

<~

where Ar and Az are the cell sizes in the two directions.

The timestep calculation is dominated at first by the capacity factors
for the relatively non-sorbed nuclides, which are in turn governed by the
prevailing chemical conditions. Generally the distribution coefficients are
smaller under oxidising conditions, so that once the canister has become
fully oxidising, lower values of capacity factors are required. Non-sorbed
nuclides diffuse more quickly through the system, however, so that once
their concentration is effectively zero, the timestep can be readjusted,
provided the relevant nuclides are not daughters which are growing in.
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4.1

Code Verification

The code has been verified where possible against analytic solutions. The
analytical model and methods used to solve the equations are described in
reference [5]. Basically each of the following tests involve the diffusion of
material placed at the inner radial boundary of a thick cylinder. In each
case zero-flux conditions are imposed at the inner boundary and upper
surface of the thick cylinder, together with a zero concentration condition
at the far radial boundary. The lower boundary condition is specified
as zero-flux or zero concentration. The latter condition would represent
a situation in which advective flow in the fracture is sufficiently fast to
maintain an effectively zero concentration of contaminants there.

In the analytical model, a source is introduced at the inner boundary as
a line (or surface) source. This may be a pulse or delta function source
at time zero, or a source of constant concentration. It may be distributed
evenly across the height of the cylinder, or have a z-coordinate dependence.
In the numerical model, the line source is approximated by specifying the
initial total concentration in each of the innermost cells. i.e. the source is
actually dispersed in a thin, cylindrical region.

One-Dimensional Radial Diffusion with a Delta-Function
Source Term

The physical system modelled is shown in figure 4.1. A thick cylinder

. of inner radius 0.5 (arbitrary) units and outer radius 10 units has zero

flux boundary conditions at its inner radius and at the upper and lower
surfaces, while the concentration at the outer boundary is fixed at zero. A
delta function source of strength 10 units is input at zero time at the inner
boundary with zero concentration everywhere else. The cylinder material
has a diffusion coefficient of 0.01 arbitrary units (L?*T~!) and a capacity
factor of 0.1 (dimensionless).
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Delta function input of total amount 10 zero-flux boundary condition
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D=0.01 aa=0.1 condition
Z (c=0)
//////////////////7/7///////////
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Figure 4.1 Schematic Representation of Test Case 1

The cylindrical region is discretized using a radial grid spacing of 0.2 units,
with 22 radial cells in each layer. Vertical grid spacings of 0.2, 0.4 and 0.2
are used, with grid coordinates of 0.1, 0.3, 0.7 and 0.9. The total number
of grid cells is 88.

The source is distributed in the first layer of cells with a total concentration
in each cell given by 10/V, where V is the total volume of the innermost
cells. A time-step of 20 units is used.

The results for the numerical and analytic models are compared at various
output times in table 4.1. At early times, the numerical model results are
higher for points beyond a radius of 1.0, and slightly lower in the inner
- cells. This may be attributed to the source distribution approximation
of the delta-function source, together with the dispersion introduced by
the finite difference and time-stepping approximations. At later times,
excellent agreement is achieved throughout the grid.
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Time Radial Vertical Concentration
Coordinate | Coordinate | (Numerical) | (Analytic)

0.5 1.0 0.5 1.40 x10! 1.44 x10!

2.0 0.5 8.88 x1073 | 4.97 x107*

3.0 0.5 6.76 x10~7 | -6.93 x1078

4.0 0.5 2.54 x107! | -6.44 x1078
1.0 1.0 0.5 1.70 x107! | 1.75 x107!

2.0 0.5 1.56 x10°1 | 9.35 x10~2

3.0 0.5 1.16 x10~* | 3.55 x10°¢

4.0 0.5 2.33 x1078 | -3.09 x10~8
2.0 1.0 0.5 1.49 x107! | 1.50 x10?

2.0 0.5 1.07 1.03

3.0 0.5 1.09 x1072 | 5.96 x1073

4.0 0.5 2.63 x107% | 2.93 x107°
5.0 1.0 0.5 9.22 9.24

2.0 0.5 2.99 3.01

3.0 0.5 3.74 x107! | 3.65 x10™?

4.0 0.5 1.94 x10%2 | 1.65x1072
10.0 1.0 0.5 5.63 5.64

2.0 0.5 3.14 3.15

3.0 0.5 1.07 1.07

4.0 0.5 2.16 x107! | 2.19x107?
20.0 1.0 0.5 3.21 3.21

2.0 0.5 2.36 2.37

3.0 0.5 1.33 1.35

4.0 0.5 4.61 x107! | 5.41x107?

Table 4.1 Comparison of numerical and analytic results for test case 1



4.2

One-Dimensional Radial Diffusion with a Constant
Concentration Source Term

Constant pore-water concentration, ¢ = 10.0

N LLLLLL L L
/]
T 4 zero
§ 1-d radial diffusion with solubility concentration
; 5= 1.9, limiting, no radioactive decay.
A f boundary
/ D=001 0=0.1 condition
7
4//////////////////////////////,
a=1.0 b=4.0
—

Figure 4.2 Schematic Representation of Test Case 2

The physical system is illustrated in figure 4.2. The positions of the radial
boundaries are changed and there is now a source of constant concentration
at the inner boundary. In the numerical model this boundary condition is
modelled as a solubility limited source term with solubility 10 mass units
per unit volume. The region is discretized into 10 columns with increments
of 0.2 and 0.3 and 4 rows, with the same increments as in case 1. The
time-step i1s unchanged.

.. The results are presented in table 4.2. Comparison of the analytic and nu-

merical model results indicate that the accuracy of the numerical model
is reduced where steep concentration gradients exist, as in this example.
At early times the zero concentration boundary condition appears to en-
hance the diffusion. At later times, when the system reaches equilibrium,
it results in lower concentrations throughout the mesh, compared with the
analytical model results. Percentage errors range from 1.5% at radius 1.5
to 15% at radius 3.0.
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Time Radial Vertical Concentration
Coordinate | Coordinate | (Numerical) | (Analytic)
1.0 1.5 0.7 2.16 2.17
2.0 2.37 x107! | 1.81 x107!
2.5 1.32 x10~% | 5.08 x1073
3.0 5.49 x107* | 4.49 x10~5
2.0 1.5 0.7 3.55 3.55
2.0 8.5 x107! |8.17 x107!
2.5 1.34 x107! | 1.14 x107?
3.0 1.55 x1072 | 9.16 x10~3
5.0 1.5 0.7 5.14 5.14
2.0 2.31 2.30
2.5 8.79 x107! | 8.68 x107!
3.0 2.79 x1072? | 2.69 x107!
10.0 1.5 0.7 6.06 6.06
2.0 3.51 3.51
2.5 1.88 1.89
3.0 8.82 x107! | 9.17x107?
20.0 1.5 0.7 6.70 6.73
2.0 4.42 4.49
2.5 2.76 2.87
3.0 1.50 1.66
100.0 1.5 0.7 6.97 7.08
2.0 4.81 5.00
2.5 3.14 3.39
3.0 1.77 2.08

Table 4.2 Comparison of numerical and analytic results for test case 2
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4.3

Two-Dimensional Diffusion with a Delta-Function, Z-
Dependant Source Term

Delta function concentration profile of 3sin (7z/2s) per unit length

_ AL
T7
/)
f e L zero
coag / 2-d diffusion, no radioactive decay concentration
z e <
A é - boundary
7 D=001 0=50 condition
Y 7
L2l UL LA
a=05 b=5.0
L 5., ¢ = 0 boundary condition (fracture)

Figure 4.3 Schematic Representation of Test Case 3

The physical system is illustrated in figure 4.3. The capacity factor is
increased from 0.1 to 5.0 and the lower boundary condition is one of zero
concentration. The source has a profile of strength 3sin(7z/2s) per unit
length. In the numerical model, each source cell is assigned an initial
concentration of 3sin(7z/2s).6z/V, where z denotes the z coordinate of a
cell node, 6z is the cell height, s is the cylinder height and V is the cell
volume. The region is discretized into 22 columns of cell width 0.2 length
units and 15 rows, each also of width 0.2 units, with a time-step of 10

" units. The results are presented in table 4.3. Good agreement is obtained

at later times, although the concentrations in the cells close to the far
boundary are up to 9% below the analytic model values. The results at
early times are in error by as much as 50%. The boundary condition
clearly has a strong influence on the transient behaviour of the system,
particularly for strongly sorbed species. Comparison is also made in this
case of the flux into the fracture, represented by the zero concentration
condition along the 2 = 0 boundary. Excellent agreement of within 1% of
the analytic results is obtained, as shown in table 4.4.



Time Radial Vertical Concentration
Coordinate | Coordinate | (Numerical) | (Analytic)
50.0 1.0 1.0 5.01 x10~2 | 5.01 x1072
2.0 8.67 x1072? | 8.84 x1072
2.0 1.0 4.55 x107* [ 2.73 x10~*
2.0 7.88 x10~* | 4.73 x10~*
3.0 1.0 5.22 x1077 | 1.04x1078
2.0 9.04 x107 | 1.80 x10°8
100.0 1.0 1.0 4.25 x1072% | 4.27 x107?
2.0 7.33 x107% | 7.39 x107?
2.0 1.0 3.04 x107% | 2.91 x1073
2.0 5.25 x1072 | 5.04 x1073
3.0 1.0 3.18 x107° | 1.69x10~°
2.0 5.50 x10~° | 2.93 x10~°
4.0 1.0 9.68 x10~® | 8.31x10~°
2.0 1.68 x10~7 | 1.44 x1078
200.0 1.0 1.0 2.88 x107% | 2.86 x1072
2.0 4.93 x107% | 4.95 x1072
2.0 1.0 7.12 x1073 | 7.13 x1073
2.0 1.23 x1072 | 1.24 x1072
3.0 1.0 5.54 x107* | 5.20x10~*
2.0 9.37 x10~* | 9.00 x10~*
4.0 1.0 1.54 x10~% | 1.11x1073
2.0 2.67 x107% | 1.92 x1073
500.0 1.0 1.0 1.30 x1072 | 1.29 x10~2
2.0 2.23 x107% | 2.23 x1072
2.0 1.0 7.20 x1072 | 7.18 x1073
2.0 1.24 x107% | 1.24 x107?
3.0 1.0 2.44 x1073 | 2.44x1073
2.0 4.22 x10732 | 4.22 x1073
4.0 1.0 4.94 x10~* | 5.00x10~*
2.0 8.55 x10~* | 8.67 x10~*

Table 4.3 Comparison of numerical and analytic results for test case 3
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4.4

Time Flux into Fracture

Numerical | Analytic

50.0 | 3.05 x1072 | 3.06 x10~3
100.0 | 3.00 x1073 | 2.97 x10~3
200.0 | 2.83 x1073 | 2.81 x10~3
500.0 | 2.37 x1072 | 2.37 x1073

Table 4.4 Comparison of the flux from the numerical and
analytic models for test case 3

Two-Dimensional Diffusion with Constant Concentra-
tion Source Term

Fixed concentration boundary condition of 4 (1-cos (2nz/s)) per unit length

_ SLLLLLLLLLL L LIS LSS LS L
X Q
/]
7 - o zero
osg / 2-d diffusion, no radioactive decay concentration
z =0 <
A ; boundary
/] D=01 a=0.1 condition
; . . (c=0)
Y /
—* S S S S
a=5.0 b=100
 ——— {

Figure 4.4 Schematic Representation of Test Case 4

This case is illustrated in figure 4.4. The inner and outer radial boundaries
are at 5.0 and 10.0 arbitrary units respectively and the cylinder hieght is
5.0 units. The concentration at the inner boundary is constant, with a
z-dependent profile of 4(1-cos(27z/s)) per unit length. In the numerical
scheme this is achieved by reassigning the concentration in the source
cells at the start of each new time-step. The region is discretized into 20
columns of widths 0.2 and 0.3 units, 21 rows of width 0.25 units, with a
time-step of 0.02 units. A selection of results at various times is given in
table 4.5. The accuracy of the numerical model results are reduced by the
approximation to the surface source, in addition to the errors introduced
by the space and time discretizations. Percentage errors of up to 20%
occur at early times, improving to under 10% as the system approaches
dynamic equilibrium.
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Time Radial Vertical Concentration
Coordinate | Coordinate | (Numerical) | (Analytic)
1.0 6.0 0.0 6.66 x10~! | 7.79 x107!
1.0 1.53 1.45
2.5 2.99 2.73
7.0 0.0 3.10x107! | 3.28x107!
1.0 5.08 x10! | 4.70 x10~?
2.5 8.31 x107! | 7.40 x10™?
8.0 0.0 7.55 x107% | 7.42 x1072
1.0 1.10 x107! | 9.73 x10~2
2.5 1.66 x10~! | 1.41 x107!
2.0 6.0 0.0 1.06 1.23
1.0 1.98 1.94
2.5 3.52 3.30
7.0 0.0 7.62 x10~! | 8.13 x107!
1.0 1.02 9.97 x107!
2.5 1.44 1.35 x10™!
8.0 0.0 3.48 x107! | 3.58x10~?
1.0 4.15 x107! | 4.04 x107!
2.5 5.24 x107! | 4.90 x107!
10.0 6.0 1.0 2.52 2.6
2.5 4.07 3.96
7.0 1.0 1.82 1.93
2.5 2.25 2.29
8.0 1.0 1.09 1.23
2.5 1.21 1.32
20.0 6.0 1.0 2.53 2.63
2.5 4.08 3.99
7.0 1.0 1.84 1.97
2.5 2.27 2.33
8.0 1.0 1.11 1.26
2.5 1.23 1.36

Table 4.5 Comparison of numerical and analytic results for test case 4
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4.5

One-Dimensional Radial Diffusion with a 3-Nuclide
Decay Chain

Initial delta function concentrations for each nuclide

;///////////////////////////////
7
/
R, . . zero
. 5,2 1-d radial diffusion, 3 nuclide decay chain concentration
z "/ _ 3 2 < bound
A 7 D=13x10"m'/y undary
2 o(Np)=200,0(U)=40,0(Th)=1000 condition
IS S
a=04 b=20
—>

Figure 4.5 Schematic Representation of Test Case 5

This case is illustrated in figure 4.5. The inventory, diffusion coefficient
and capacity factors are taken from reference [9]. A 3-nuclide chain (Np-
237, U-233, Th-229) with corresponding inventories of 2.44, 4.67 x10~*
and 0.0 GBq is used. The inventory figures are scaled down by a factor of 9,
the ratio of the waste cylinder height (4.5 m) to the half-spacing between
fractures (0.5 m), the latter being the section of the near-field system
modelled by the CALIBRE code. The cylinder material is assigned the
properties of bentonite, under reducing conditions. Solubility limits are set

- artificially high, so that precipitation does not occur. Zero flux boundary

conditions are imposed at the upper and lower surfaces of the region, with
a zero concentration far boundary condition. In the analytic model, the
source is introduced as a linearly distributed surface delta-function at the
inner radial boundary. In the numerical model, the inventory in each of
the source cells is specified so that their total concentrations are equal.
The region is discretized into 10 columns of widths 0.1, 0.15 and 0.2m and
5 rows of depth 0.1m, and a time-step of 200 years is used.

The results are given in tables 4.6-4.8. Agreement between the analytic
and numerical models is generally good (within 5%) with the exception of
Np-237 at 10* years and radius 1.6m.
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Time Radial Vertical | Np-237 Conc. (moles/m?)
(y) | Coord. (m) | Coord. (m) | (Numerical) | (Analytic)
1x10* 0.8 0.25 1.05 x1073 | 1.08 x1073
1.2 0.25 1.52 x107* | 1.50 x10~*

1.6 0.25 1.01 x1075 | 6.22 x107°

2x104 0.8 0.25 9.12 x107* | 9.17 x10~*
1.2 0.25 3.22 x107* | 3.31 x10~*

1.6 0.25 6.55 x10~° | 6.46 x10~°

5x10* 0.8 0.25 5.54 x107* | 5.54 x10~*
1.2 0.25 3.50 x10~* | 3.53 x10~*

1.6 0.25 1.53 x10~* | 1.56 x107*

1x10° 0.8 0.25 3.03 x107* | 3.02 x10™*
1.2 0.25 2.16 x10~* | 2.16 x10~*

1.6 0.25 1.07 x10~* | 1.08 x10~*

2x10° 0.8 0.25 1.00 x107* | 9.95 x10~°
1.2 0.25 7.23 x107% | 7.17 x10™°

1.6 0.25 3.63 x107° | 3.60 x10~%

5x10° 0.8 0.25 3.69 x1078 | 3.57 x10~°
1.2 0.25 2.66 x107¢ | 2.58 x10~©

1.6 0.25 1.33 x107¢ | 1.29 x10~¢

Table 4.6 Comparison of numerical and analytic results for test case 5, Np-237
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Time Radial Vertical | U-233 Conc. (moles/m?)
(y) | Coord. (m) | Coord. (m) | (Numerical) | (Analytic)
1x10* 0.8 0.25 1.25 x107° | 1.26 x10~°
1.2 0.25 5.35 x107% | 5.45 x10~

1.6 0.25 1.65 x107¢ | 1.67 x10~¢

2x104 0.8 0.25 1.66 x10~% | 1.66 x10~°
1.2 0.25 9.86 x107¢ | 9.96 x10~©

1.6 0.25 4.13 x107% | 4.19 x10~¢

5x10* 0.8 0.25 1.66 x10~° | 1.65 x10~5
1.2 0.25 1.16 x10~° | 1.16 x10~3

1.6 0.25 5.68 x1075 | 5.70 x10~5

1x10° 0.8 0.25 1.04 x107% | 1.03 x10~°
1.2 0.25 7.45 x107% | 7.40 x10~¢

1.6 0.25 3.73 x107% | 3.71 x10~°

2x10° 0.8 0.25 3.47 x107¢ | 3.42 x10~©
1.2 0.25 2.50 x107° | 2.46 x10~°

1.6 0.25 1.25 x107¢ | 1.24 x10~¢

5x10° 0.8 0.25 1.28 x10~7 | 1.23 x10~7
1.2 0.25 9.21 x1078 | 8.86 x10~8

1.6 0.25 4.23 x1078 | 4.45 x10~8

Table 4.7 Comparison of numerical and analytic results for test case 5, U-233
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Time Radial Vertical | Th-229 Conc. (moles/m?3)
(y) | Coord. (m) | Coord. (m) | (Numerical) | (Analytic)
1x10* 0.8 0.25 9.16 x107° | 9.28 x10~°
1.2 0.25 3.01 x107° | 3.06 x10~°

1.6 0.25 7.53 x1071° | 7.50 x10~1°

2x104 0.8 0.25 2.04 x107® | 2.05 x10°8
1.2 0.25 1.06 x10% | 1.07 x1078

1.6 0.25 3.97 x107° | 4.02 x10~°

5x104 0.8 0.25 3.04 x107® | 3.03 x10°8
1.2 0.25 2.08 x1078 | 2.08 x10°8

1.6 0.25 9.95 x107° | 10.0 x10~8

1x10° 0.8 0.25 2.09 x1078 | 2.07 x10~8
1.2 0.25 1.50 x1078 | 1.49 x10°8

1.6 0.25 7.51 x107° | 7.46 x10~°

2x10° 0.8 0.25 7.07 x107° | 6.97 x10~°
1.2 0.25 5.10 x107° | 5.03 x10~°

1.6 0.25 2.56 x107% | 2.52 x10~°

5x10° 0.8 0.25 2.60 x1071° | 2.50 x10°1°
1.2 0.25 1.88 x1071° | 1.81 x10710

1.6 0.25 9.43 x10~1 [ 9.07 x10~1

Table 4.8 Comparison of numerical and analytic results for test case 5, Th-229




4.6

Two-Dimensional Diffusion with a 3-Nuclide Decay
Chain

Concentration profile = 1/2s.sin(nz/2s) x initial inventory

N LLLLLLL L L L

T /
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// 2-d diffusion, 3-nuclide decay chain ze .
=307 concentration
z 557 <
A ? D=13x10"m%y boundary
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—>; ¢ = 0 boundary condition (fracture)

Figure 4.6 Schematic Representation of Test Case 6

The final case is illustrated in figure 4.6. The same nuclides and physi-
cal parameters as in the previous case are used, but the lower boundary
condition is changed to one of zero concentration (equivalent to high ad-
vective flow in a fracture) and the concentration profile along the inner
radial boundary is set to the initial inventory of each nuclide, weighted
by the factor 7sin(wz/2s)/2s. The same radial discretization is used, but
the discretization in the vertical direction is increased to 6 rows. The
time-step is again fixed at 200 years.

The results for the two models are shown in tables 4.9-4.11. Overall the
agreement is very good, again with the exception of the result for Np-237
at 10* years and radius 1.6. Comparison is also made for the flux into
the fracture, tables 4.12-4.13. The agreement is better than 13% over all
nuclides, with increasing concurrence at later times.
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Time Radial Vertical | Np-237 Conc. (moles/m3)
(y) | Coord. (m) | Coord. (m) | (Numerical) | (Analytic)
1x10* 0.8 0.45 8.62 x10~* | 8.79 x10~*
0.25 6.17 x107* | 6.29 x10~*

1.2 0.45 1.25 x10™* | 1.23 x10~*

0.25 8.92 x10~° | 8.78 x1075

1.6 0.45 8.34 x107¢ | 5.08 x10~°

0.25 5.96 x107¢ | 3.64 x107°

2x10* 0.8 0.45 3.98 x107* | 3.94 x10~*
0.25 2.85 x107* | 2.82 x10*

1.2 0.45 1.40 x10™* | 1.42 x10~*

0.25 1.00 x10=* | 1.02 x107*

1.6 0.45 2.85 x107° | 2.78 x10~°

0.25 2.04 x107° | 1.99 x10°°

5x10* 0.8 0.45 3.59 x107° | 3.47 x10°°
0.25 2.57 x107% | 2.49 x10~°

1.2 0.45 2.26 x107° | 2.21 x10°°

0.25 1.62 x107% | 1.59 x10~°

1.6 0.45 9.85 x107¢ | 9.77 x10~¢

0.25 7.04 x107% | 6.99 x10~©

1x10° 0.8 0.45 8.15 x10~7 | 7.67 x10~7
0.25 5.83 x10~7 | 5.49 x10~7

1.2 0.45 5.79 x1077 | 5.49 x1077

0.25 4.14 x1077 | 3.93 x1077

1.6 0.45 2.87 x1077 | 2.73 x1077

0.25 2.05 x1077 | 1.96 x10~7

Table 4.9 Comparison of numerical and analytic results for test case 6, Np-237
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Time Radial Vertical | U-233 Conc. (moles/m?)
(y) | Coord. (m) | Coord. (m) | (Numerical) | (Analytic)
1x10* 0.8 0.45 4.29 x107¢ | 4.22 x10~®
0.25 3.07 x10~¢ | 3.02 x10~®

1.2 0.45 1.44 x107% | 1.44 x10°¢

0.25 1.03 x107¢ | 1.03 x10~¢

1.6 0.45 3.43 x1077 | 3.32 x10~7

0.25 2.45 x1077 | 2.37 x10~7

2x101 0.8 0.45 1.99 ><10'.6 1.93 x10~°
0.25 1.43 x107¢ | 1.38 x10~¢

1.2 0.45 9.65 x10~7 | 9.57 x10~7

0.25 6.90 x10~7 | 6.85 x10~"

1.6 0.45 3.18 x10~7 | 3.16 x10~7

0.25 2.27 x1077 | 2.26 x10~7

5x10* 0.8 0.45 1.90 x10~7 | 1.81 x10~7
0.25 1.36 x10~7 | 1.30 x10~7

1.2 0.45 1.26 x10~7 | 1.22 x10~7

0.25 8.99 x10~® | 8.70 x10~8

1.6 0.45 5.81 x10® | 5.67 x10~8

0.25 4.15 x10™8 | 4.06 x10~8

1x10° 0.8 0.45 4.40 x107° | 4.08 x107°
0.25 3.15 x107° | 2.92 x10~°

1.2 0.45 3.13 x107° | 2.93 x10~°

0.25 2.24 x107° | 2.10 x10~°

1.6 0.45 1.56 x10~° | 1.46 x10~°

0.25 1.11 x107° | 1.05 x10~°

Table 4.10 Comparison of numerical and analytic results for test case 6, U-233
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Time Radial Vertical | Th-229 Conc. (moles/m?3)
(y) | Coord. (m) | Coord. (m) | (Numerical) | (Analytic)
1x10* 0.8 0.45 4.66 x107° | 4.66 x107°
0.25 3.34 x107° | 3.34 x10~°

1.2 0.45 1.15 x107° | 1.14 x10~°

0.25 8.19 x1071° | 8.13 x10~1°

1.6 0.45 2.17 x1071° | 2.04 x1071°

0.25 1.55 x10719 | 1.46 x10~1°

2x104 0.8 0.45 4.54 x107° | 4.48 x107°
0.25 3.29 x107° | 3.21 x107°

1.2 0.45 1.74 x107° | 1.73 x10~°

0.25 1.24 x107° | 1.24 x10~°

1.6 0.45 4.76 x1071° | 4.67 x1071°

0.25 3.41 x1071° | 3.34 x1071°

5x10* 0.8 0.45 8.03 x107° | 7.71 x107*°
0.25 5.75 x1071° | 5.52 x1071°

1.2 0.45 4.71 x1071° [ 4.60 x10~1°

0.25 3.37 x1071° | 3.30 x1071°

1.6 0.45 1.95 x1071° | 1.93 x10°1°

0.25 1.40 x1071 | 1.38 x10~1°

1x10° 0.8 0.45 2.16 x107 | 2.03 x10~!
0.25 1.55 x107' | 1.45 x10~1

1.2 0.45 1.50 x10~' | 1.42 x10~1

0.25 1.07 x107!* | 1.02 x10~11

1.6 0.45 7.30 x1071? | 6.96 x10712

0.25 5.22 x1071? [ 4.98 x10712

Table 4.11 Comparison of numerical and analytic results for test case 6, Th-229
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4.7

Time Flux into fracture, (moles/y)
(v) Np-237 U-233
Numerical Analytic Numerical Analytic

1x10* | 1.16 x107% | 1.33 x107° | 7.20 x10~% | 7.48 x10~2
2x10* | 6.37 x107° | 6.94 x107¢ | 3.89 x10~® | 3.98 x10~8
5x10* | 8.09 x10~7 | 8.42 x1077 | 4.46 x10~° | 4.56 x10~°
1x10° | 2.02 x107® | 2.03 x107® | 1.12 x10~1° | 1.08 x10~1°
2x10° | 1.16 x107'* | 1.10 x107* | 6.39 x10~'* | 5.86 x10~1

Table 4.12 Comparison of flux for test case 6, Np-237 and U-233

Time | Flux into fracture, (moles/y)
(y) Th-229
Numerical Analytic
1x10* | 6.98 x1071* | 7.87x10~M
2x10* | 7.73 x1071' | 8.36x10~!
5%10* | 1.72 x107" | 1.79x10~1!
1x10°% | 5.25 x10713 | 5.29%x10713
2x10° | 3.13 x107'¢ | 2.98x107'6

Table 4.13 Comparison of flux test case 6, Th-229

Conclusions

Overall the agreement between the analytic and numerical models is very
good, verifying the correct behaviour of the numerical model for the cases
considered above. The cases also illustrate the importance of choosing a
sufficiently fine mesh discretization, to achieve accurate results. Shorter
time-steps are also required during the transient phases when steep concen-
tration gradients may occur and when modelling nuclides with relatively
short half-lives. Special care is also needed in choosing the position of the
far boundary, to ensure it does not significantly influence the results.
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4.8

Verification of the Radial Flow Approximation

A number of test cases were also performed to verify the radial flow ap-
proximation employed in CALIBRE. In the KBS-3 report [8] the flow of
nuclide ¢ from the nearfield is calculated as a rate N; defined by the equa-
tion

N; = Qeq.Coi- (58)

Coi is the concentration of nuclides in the fuel pore-water and Q., is the
equivalent water flow that arrives at the canister with zero concentration of
nuclides and leaves it with a concentration of C,;. If the nuclide is solubility
limited at a concentration of C; ,, then the above equation becomes

Ni = Qein,sol- (59)

In the CALIBRE test cases a single long-lived nuclide is considered, with
a sufficient source inventory for it to remain solubility limited in the canis-
ter pore-water throughout the simulations. To make the comparison with
KBS-3, the effective diffusivity of the rock is set to a very low value to
inhibit matrix diffusion. The flow velocity of the water through a fracture
of width 0.1mm is varied to determine the effect of the radial flow approx-
imation at different flow rates. The simulations are run until the flux (F)
leaving the system reaches an equilibrium value. From the calculated flux
and elemental solubility limit under reducing conditions values of )., are
calculated for comparison with KBS-3:

F
Ci,sol

Qeq = (60)

The results are listed in table 4.14. The 7cosf weighting function is used.
Results obtained using the alternative weighting funtion of 2 are not signif-
icantly different. At low Darcy velocities, the Q., values calculated using

CALIBRE agree reasonably well with the KBS-3 values [8]. At higher
flows, the radial flow approximation predicts a higher flux than KBS-3.

Water Flow Velocity | CALIBRE Q. | KBS-3 Qe
I/m?/y [/canister/y | l/canister/y
0.1 0.65 0.57
0.3 0.9 0.94
1.0 1.8 1.57
3.0 3.8 241

Table 4.14 Comparison of KBS-3 and CALIBRE Q., Values
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The buffer, rock matrix and fracture water provide a diffusive barrier to the
radionuclides. If there is no sorption, then diffusive transit times depend
on the effective diffusion coefficients of each component. Transit times
may be estimated simply by examination of the analytic solutions to the
one-dimensional diffusion equation for a contaminant source of constant
concentration, diffusing into a semi-infinite medium. The solution takes
the form of an error function in which distances are scaled by the quantity
V/Dt, where D is the diffusivity and t is the time. For a distance of
approximately 0.4m (buffer width) the diffusion time which matches this
diffusion distance is of the order of 100 years. This will apply directly for
a non-sorbed nuclide and will otherwise be multiplied by the retardation.

The delay arising from diffusion will be enhanced by the rock matrix
and fracture. If the rock matrix diffusion is neglected, the delay in the
release of a long-lived radionuclide to the far-field when there is virtually
no sorption in the bentonite or fracture is shown in figure 4.7. Release from
the canister occurs at 10* years, where the nuclide is kept at a constant
concentration equal to its solubility limit. The flow rate is 0.1 1/m?/y.
The flux is transformed to an equivalent flow factor by normalisation with
the elemental solubility limit. It can be seen that with no sorption in the
buffer a steady state flux is attained in the first few hundred years.

For nuclides which are sorbed in the buffer ( with a distribution coefficient
of the order of 0.1 m®/kg) the steady state flux is attained by approxi-
mately 10° years, whilst for more strongly sorbed nuclides, the delay is of
the order of 10° years. The effects of diffusion and sorption in the rock
matrix on the above results are shown in figure 4.8. The steady-state flux
- is higher owing to flux escaping to the far field through the rock, as well as
through the fracture. The KBS-3 Q-equivalent for this flux is 0.76. With
virtually no sorption, the steady state flux is attained in approximately
3 x 10* years, compared with several hundred years for the case with no
rock matrix diffusion. With an intermediate level of sorption, the flux is
still only 10 per cent of the steady state flux after 2 x 10° years, whilst
strongly sorbed nuclides are delayed for considerably longer. It is clear
from these results that the primary factors in the retardation of nuclides
released from the canister are diffusion and sorption in the rock matrix.
In comparison, the delaying effects of diffusion and sorption in the buffer
are at best only of second-order significance.
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Figure 4.7 Equivalent Flow of the Near-Field with Sorption in the Buffer
and no Matrix Diffusion
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Figure 4.8 Equivalent Flow of the Near-Field with Matrix Diffusion and Sorption
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