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Background 
Mathematical modelling is an important tool for developing NDT systems and in the end to 
get more reliable testing situations. It is also important in the situation of inspection 
qualification to get more flexibility and cost effectiveness.  
 
SKI has for the last decade been supporting research for development of a model for 
ultrasonic testing. SKI sees the importance and the benefits in modelling testing situations.  
This project is a fist step to be able to simulate a situation with a more complicated geometry 
of the modelled defect. 
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The purpose of the project is to develop a two dimensional hybrid model for simulation of 
ultrasonic scattering from a crack like structure. The result of the project will give us more 
information about how to get on with the 3D case and implementation in the UTDefect 
software. 

Results   
The results show that the two-dimensional model studied, can be generalized into three-
dimensions. The results also show where special attention has to be given when expanding the 
model into three dimensions.  
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Summary 
 
A two-dimensional hybrid method, combining finite element (FE) and an boundary 
element method (BEM), is used to study ultrasonic waves. 
 
The main objective of this preliminary study is to develop a mathematical model of the 
ultrasonic scattering from an isolated general-shaped crack. In order to achieve such a 
model a hybrid method is developed, the method couple FE and the somewhat less 
numerical demanding integral equations. 
This project is also an investigation whether it is possible to develop such a two-
dimensional hybrid model of the complete NDT situation. If this preliminary study is 
successful the continuation would be a three-dimensional model that could be 
incorporated into the UTDefect© software. 
 
The hybrid model, together with a two-dimensional SH-probe, is used to study scattering 
from three cases: the case of no defect, one circular and one star-shaped defect. 
The results show that is possible to make a two-dimensional model in such a way that it 
can be generalized into three-dimensions. The investigation also shows that the well 
known numerical dispersion, of finite-element computations at high wavenumbers, has to 
be given special attention. 
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Sammanfattning 
 
Rapporten presenterar en tvådimensionell hybridmetod som kombinerar finita element 
(FE) med en randelementsmetod (BEM) för elastiska vågutbredningsproblem. Metoden 
används för att bygga en modell där en isolerad defekt ligger i ett område med finita 
element, detta område kopplas till omgivningen via randintegralselement. 
 
Studien är främst en förstudie för att undersöka om det är möjligt att modellera sprickor 
med komplicerad geometri mha FE och därefter koppla detta område till en i viss mening 
mindre beräkningskrävande integralrepresentation. 
Studien syftar även till att undersöka om det är möjligt att modellera en realistisk OFP-
situation med den föreslagna hybridmodellen. På sikt skulle en sådan defektmodell kunna 
implementeras i den befintliga programvaran UTDefect©. 
 
Med den framtagna hybridmodellen studeras spridning av ultraljud från en 
tvådimensionell SH-sökare för tre fall: fallet med ingen defekt, en cirkulär och en 
stjärnformad defekt. De numeriska resultaten visar att det är möjligt att bygga en 
fungerande tvådimensionell modell på ett sådant sätt att den kan generaliseras till tre 
dimensioner. Undersökningen visar också att problemen med numerisk dispersion, för 
finita elementlösningen, måste ägnas speciell uppmärksamhet. 
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Introduction 
 
In industry non destructive testing (NDT) is a commonly used method to evaluate the 
integrity of individual components. In-service induced cracks such as fatigue and stress 
corrosion cracks can, if they are detected, be sized and monitored in order to postpone 
repairs or replacements. The reliability of a NDT method is highly dependent on how the 
equipment is adjusted to a specific object and to anticipated crack features. The crack 
feature and morphology vary widely between different crack mechanisms and between 
material types, in which the crack appear. 
 
An infinite number of variables and possibilities have to be reduced into a limited group 
of statistically relevant NDT situations. The qualification of inspection systems includes 
the reliability to detect, locate, characterise and accurately determine the size of defects 
that may occur in the specific type of component. Despite the fact that the proposed 
qualification procedure with test pieces is very expensive it also tends to introduce a 
number of possible misalignments between the actual NDT situation that is to be 
performed and the proposed experimental simulation. Apart from the problem of 
reconstructing the geometry and material, the fabricated defects also has to be introduced 
with a verified prescription of its size and NDT characteristics.  
 
In an ENIQ document (European Network for Inspection Qualification, [1]) the definition 
of whether a flaw can be regarded as realistic only states the necessity of a resemblance 
in the signal response from a real flaw. This indicates different demands of the 
manufactured specimens as the NDT system is to be used in connection with detection, 
sizing or characterisation. This also means that the quality of the test piece is bound to be 
associated with a specific NDT method.  
 
The manufacturing of specimens with induced artificial flaws introduce a number of 
parameters (location, size and orientation) that are difficult to control and verify without 
employing destructive testing. Implants of service-induced real flaws introduce other 
parameters that are not trivial to control, e.g. the effect on surrounding material.  
 
According to the Swedish Nuclear Power Inspectorate’s requirements in the regulations 
concerning structural components in nuclear installations, in-service inspection must be 
performed using inspection methods that have been qualified. These demands on 
reliability of used NDE/NDT procedures and methods have stimulated the development 
of simulation tools of NDT. To qualify the procedures extensive experimental work on 
test blocks is normally required. A thoroughly validated model has the ability to be an 
alternative and a complement to the experimental work in order to reduce the extensive 
cost that is associated with the previous procedures. 
 
Up till now only a couple of models have been developed that cover the whole testing 
procedure, i.e. they include the modelling of transmitting and receiving probes, the 
scattering by defects and the calibration. Chapman [3] employs geometrical theory of 
diffraction for some simple crack shapes and Schmitz et al [4] develops a type of finite 
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integration technique for a two-dimensional treatment of various defect types. These 
models are compared with experiments within the PISC project by Lakestani [5]. 
Overviews of the modelling of ultrasonic NDT are given by Gray et al [6] and 
Achenbach [7]. 
 
The UTDefect software has been developed at the Dept. of Mechanics at Chalmers 
University of Technology ([8], [9],…,[14]) and has been experimentally validated and 
verified [12]. The software simulates the whole testing procedure with the contact probes 
(of arbitrary type, angle and size) acting in pulse-echo or tandem inspection situations. 
There is a broad variety of simple-shaped defect types included in the program and 
roughness and different spring boundary conditions on the crack surfaces can be added to 
some of the defects. This model employs various integral transforms and integral 
equation techniques to model probes and the scattering by defects. In this way the 
frequency and some geometry limitations of the geometrical theory of diffraction (GTD) 
[3], [15] are avoided, still without the computer requirements that would result from a 
volume discretization using the finite element method (FEM) or the finite integration 
technique [4]. 
 
Using semi analytical methods, as the integral equation technique above, limits the 
possibilities to model the geometry of the defect. In most cases the simple-shaped defects 
like: spheres, strip-like or penny-shaped cracks is believed to model the real test situation 
good enough. However, sometimes the actual shape of the defect is of great importance. 
The stress corrosion cracks (SCC) often tends to have a heavily branched macroscopic 
shape with a large number of crack tips. The diffraction from the crack tips is commonly 
used as the basis for the defect size analysis and as a consequence, ultrasonic NDT 
methods are not always reliable in this kind of applications. Cracks of branched Y-shape 
have successfully been investigated in two-dimensions with methods as GTD [16] and 
hybrid methods [17], here for surface breaking cracks. 
Numerical approaches, although costly, can be used to evaluate much more complicated 
crack geometries than the Y-shape. In a realistic NDT situation the distance of 
transportation of energy from defect to probe are large and relatively easy to define. 
Using a numerical method to compute this transportation, with almost no change in 
information, is unnecessarily costly. Semi-analytical methods, on the other hand, are 
ideal to handle far-field problems. 
 
The above mentioned hybrid methods take advantage of both semi-analytical and 
numerical approaches. The basic idea is to surround the defect by a finite element scheme 
and deal with the propagation between the probe and the defect with a semi analytical 
method. In this way it is possible to model more complex crack geometries that involves 
a complicated scattering processes without getting to large numerical models. Where it is 
possible to implement, semi-analytical and fully numerical approaches are 
complementary. 
 
The hybrid method used in [17] [18] [19] combines the finite element discretization of 
the near field with a boundary integral representation of the far field for two-dimensional 
problems. Here the interior region with finite elements slightly overlaps the exterior 
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region and couples using a boundary integral representation. The coupled procedure of 
the boundary element method (BEM) and the finite element method (FEM) are frequently 
studied to evaluate singular or hypersingular integrals. The techniques used for two-
dimensional problems in [20] [21] [22] extend, more or less directly, to three-dimensional 
problems. Inspired by [20] we adopt this approach to couple FEM and BEM. 
 
Hybrid models have also been implemented in simulation platforms like CIVA [23], here 
the far field is represented by a ray-method and the defect lays within a parallelepipedic 
box of finite elements. 
 
The main objective of this project is to develop a mathematical model of the ultrasonic 
scattering from an isolated general-shaped crack. In order to achieve such a model we 
have chosen to work with a hybrid method that couple FEM and BEM. 
Investigating the less complicated two-dimensional SH-case with a technique that extend 
to three-dimensions makes it possible to estimate the amount of work to solve the latter. 
Here SH-waves are particularly attractive because of the simple nature of their interaction 
with defects. The response of SH-waves can be clearly observed and the mechanism of 
the scattering can be easily understood. This is important for the future investigation of 
more complicated scattering problem. 
If this preliminary study is successful the continuation would be a three-dimensional 
model that could be incorporated into the UTDefect© software. A mathematical model 
would enable parametric studies of the influence the actual shape of a crack has on 
ultrasonic detectability and its effectiveness in sizing of these kinds of defects. 
 
The proposed hybrid method is not only of interest for scatterers of complicated 
geometry or branched cracks. It should be possible to deal with problems of multiple 
scattering by a cluster of scatterers or by scatterers inbedded in a different material from 
the surrounding matrix in the same way as the problem of a single scatterer in a 
homogeneous material. Possible developments can also include surface breaking defects. 
The user of a simulation platform, based on this hybrid method, would be able to describe 
a quite arbitrary defect geometry and corresponding elastic properties. 



 8

 

Hybrid approach to ultrasonic scattering 
 
The scattering of two-dimensional anti-plane (SH) waves by a defect in an isotropic 
component is considered in this report. The scattering problem at hand is depicted in Fig. 
1. A known wave (i)u  is incident upon a scatterer S and the aim is to compute the total 
field (s)(i) uuu += , here (s)u  is the scattered field. 

 
Figure 1: The scattering problem. 

 
Time-harmonic conditions are assumed and since the problem only has one displacement 
component, the field may be written as tyxu ωie),( − . The time-harmonic equation of 
motion is then given by 

02
T

2 =+∇ uku .     (1) 
The time factor tωie−  is suppressed throughout, kT = ω/cT is the transverse wave number 
and ρµ /T =c is the transverse wave speed. 
 
In order to enable a rather general shape of the scatterer S, a hybrid approach is used to 
solve the scattering problem. The approach is based on a description of the problem by 
means of a partial differential equation inside the domain embedding the scatterer and an 
integral representation of the field in the exterior domain. The method is a hybrid 
between the finite element method (FEM) and the boundary element method (BEM). The 
main motivation for this choice of methods is that FEM can handle general geometric 
object efficiently and BEM is efficient for large domains. Below, FEM and BEM are 
described for the problem and finally, the approach used to combine them. 
 

(i)u

S 
(s)u

xz 

y 
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The finite element method - FEM 
 
In a domain 1Ω enclosing the scatterer (see Fig. 2), the finite element method (FEM) is 
used to discretize the equations of motion.  
 
 
 
 
 
 
 
 

Figure 2: The FEM domain 1Ω . 
 

First, the equation of motion is multiplied by a test function ),( yxv and then integrated 
over the domain 1Ω . The result is 

∫∫ ∂
∂

=−∇⋅∇
11

dduv)(
1

2
T

ΓΩ

Γv
n
uΩkvu ,    (2) 

where 1Γ is the boundary of 1Ω and 1n the outward directed normal to 1Γ . Next, 
triangulations of the domain 1Ω and its boundary 1Γ are introduced. The displacement 
fieldu and its normal derivative 1/ nu ∂∂ are then discretized as 
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Above, ),( yxmψ is the restriction of the shape functions ),( yxmϕ to the boundary 1Γ . ΩN is 
the number of nodes in the triangulation of 1Ω , and ΓN is the number of nodes in the 
triangulation of 1Γ . Letting the test function Ωj Njyxyxv ,,1),,(),( K==ϕ , a linear 
system of equations is obtained as 

⎪
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⎪
⎪
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=
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∫

∫

∫
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Γ
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Ω
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2
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    (4) 

A homogeneous, isotropic continuum is nondispersive. This is not the case for the 
discrete finite element method, the solution is anisotropic in the sense that it depends on 
the orientation of the mesh with respect to the direction of propagation. This is a well 
known phenomenon that can be somewhat treated by the Galerkin/Least-Squares Method 
[27]. 
 

1Γ

1Ω

1n
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The boundary element method - BEM 
 
 
 
 
 
 
 
 
 
 

Figure 3: The BEM domain. 
   
The displacement field in the domain exterior to 1Ω , 2Ω , is evaluated using a boundary 
integral representation 

⎩
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 (5) 

Here n2 denotes the outward directed normal to the boundary 1Γ of the domain 2Ω and 
);( rr ′G is the Green’s function in the domain enclosed by 2Γ . If the domain is infinite, 
);( rr ′G is the free space Green’s function given by 

)(H
4
i);( T

(1)
0 rrrr ′−=′ kG ,     (6) 

where (1)
0H  denotes the Hankel function of the first kind and order zero. 

 
If the load point r′  approaches the boundary 1Γ from 2Ω , only boundary data are present in 
the boundary integral representation Eq. (5). This equation is called a boundary integral 
equation. Calculation of the integrals by boundary discretization leads to algebraic 
equations for solving unknown boundary data in terms of known boundary data. The 
displacementu and its normal derivative 2/ nu ∂∂ are represented as 
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∂

∂
=
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m
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n
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The representations are inserted into the integral equation, the result is multiplied 
by Γj Njyx ,,1),,( K=ψ , and integrated over 1Γ . The resulting linear system of equations 
is (note that the relation 12 nn −= has been used) 
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2Ω
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For evaluating the boundary integrals ΓJ and ΓI appearing in Eq. (8), the approach in [20] 
is used. Here the singularities of the Green’s function require careful analysis when the 
load point r′ approaches the boundary. 
 
 

The hybrid method 
 
Based on the discretization of the displacement field and its normal derivative by means 
of FEM and BEM, a hybrid scheme may be derived to solve the scattering problem. First, 
the coefficients of the normal derivative of u may be obtained from Eq. (8) as 

(i)11 )( FIUJMIT ΓΓΓΓ
−− −−= .    (9) 

This expression is then inserted into the FEM system of equations Eq. (4) and the final 
result is 

(i)112 ))(( FIMUJMIMMkK ΓΓΓΓΓΓΩTΩ
−− −=−−− .   (10) 

Once the resulting system of equations has been solved, the solution in the FEM domain 
is known. By computing T from Eq. (9), the displacement field in the BEM domain may 
be computed from the boundary integral representation Eq. (5). 
 
 

The incident field 
 
The incident field is taken as the field from an ultrasonic SH-transducer. To model the 
contact probe in this isotropic case the approach by Boström and Wirdelius [24] is 
employed. This approach have been used in the 2D case by Niklasson [25], but then 
generalized to the more complicated anisotropic case. 
 
The probe is situated on an elastic half-space that has a traction-free surface except 
beneath the probe where the traction is assumed to be known. The coordinate system is 
introduced according to Fig. 4. 
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Figure 4: The geometry of the probe. 

 
The probes index point is at the origin and the beam axis is in the fourth quadrant in the 
xy-plane, making an angle γ  with the negative y axis. The probe is in contact with the 
half-space at [ ]bbx ,−∈ and 0=y . The traction beneath the probe is taken as a slight 
modification of the traction from a plane wave propagating in the direction ofγ : 
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In Eq. (11), the function )(xg is zero outside the probe and if a piston model is used, one 
beneath it, i.e., 
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The displacement field in the half-space due to the probe may be calculated by means of 
Fourier techniques. If the piston model is used, the field is given by 
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If the defect is far away (many wavelengths away) from the probe, the expression for the 
displacement field Eq. (13) may be approximated by the method of stationary phase. The 
approximate incident displacement field is then given by 

.),(

,
),(π

2
)sin),(/(

))sin),(/(sin(cos),(

22

)4/π),((T

T

(i) T

yxyxr

e
yxr

k
yxrxk

byxrxkbAyxu yxrkiT

+=

−
−

= −

γ
γγ

 (14) 

 
 

y 

x z -b b 

γ

Beam
axis 



 13

Numerical results 
 
In this section, a few numerical examples are presented. 
 
In most cases, with automatic mesh generation and refinement in mind, triangular 
elements are preferred for two-dimensional geometries. The elements used in this study 
are quadratic triangles and the mesh is unstructured as shown in figure 6a, 7a and 8a. 
The diameter of the FE-area is three times the centre wavelength cλ , which corresponds 
to the centre frequency used in both the probe-model and for the plane wave. 
  
Figure 6a shows the FE-mesh for the case of no defect which is used as a reference and 
for making sure that the waves do not get distorted by the discretization. The case of a 
circular defect is shown in figure 7a, where the diameter of the defect is 1.2 times the 
centre wavelength. The star-shaped defect of figure 8a has an outer diameter of 1.8 times 
the centre wavelength and an inner diameter of 0.6. For the presented cases there are at 
least 10 elements per centre wavelength. 
The three geometries are studied for two different incident waves, one from the SH-probe 
and one for an incident plane wave. The displacement field is plotted for two different 
times, the first when the waves just have passed the defect and the second when the 
incident field is barely not noticeable, but movements of the defect still give a scattered 
field. 
 
The grayscale –20 to 0 dB is normalized according to the maximum value for the case of 
no defect, which then is 0 dB. The normalization are made for the incident plane wave 
and the probe wave, respectively. 
 
In figure 6b, 6c, 7b, 7c, 8b and 8c the incident wave is given by the SH-probe model, the 
angle of the probe is o30−=γ and the location of the probe is such that the beam axis hits 
the center of the FE-area. The probe have the size cb λ3= , se figure 4. The center of the 
FE-area is at a depth of 60 centre wavelength cλ and the probe model used is given by the 
farfield expression. Figures (b) show the first time and figures (c) the later. 
 
In figure 6d, 6e, 7d, 7e, 8d and 8e the incident wave is given by a plane wave, the angle 
of incidence is o30− . Figures (d) show the first time and figures (e) the later. 
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Figure 6a: The FE-mesh in an area without defect. 

 
Figure 6b, c: The displacement field in the FE-area without defect, SH-probe model. 

 
Figure 6d, e: The displacement field in the FE-area without defect, incident plane wave. 
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Figure 7a: The FE-mesh in an area containing a circular crack. 

 
Figure 7b, c: The displacement field in the FE-area containing a circular crack, SH-

probe model. 

 
Figure 7d, e: The displacement field in the FE-area containing a circular crack, incident 

plane wave. 
 

 

 
Figure 8a: The FE-mesh in an area containing a star defect. 
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Figure 8b, c: The displacement field in the FE-area containing a star defect, SH-probe 

model. 

 
Figure 8d, e: The displacement field in the FE-area containing a star defect, incident 

plane wave. 
 
Since neither crack opening displacements or stress intensity factors are calculated, there 
are no need for a thorough investigation of crack tip behavior. With a large number of 
quadratic type element near the tip the correct square root singularity will be obtained. 
The two main reasons for using quadratic triangles is that, the number of finite elements 
have a small effect on the total computation time, and for the reason of flexibility. All 
kinds of geometrically complicated scatterer are treated in the same way. 
 
Fig. 9 shows the displacement field at fixed frequency in a half-space containing a 
circular crack (the innermost circle). The boundary 1Γ separating the two solution 
techniques (FEM and BEM) is circular (the outermost circle) and shown in the figure. In 
the figure 9a, the probe is unangled ( o0=γ ) with the probe located straight over the 
crack. In figure 9b and 9c, the angle of the probe is o14=γ and the location of the probe 
is such that the beam axis hits the crack. The center of the probe is then in the upper left 
corner of figure 9b and 9c. All figures shows the expected symmetry about the central 
beam axis 
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Figure 9a, b, c: The displacement field in a component containing a circular crack. 
 
It should be noted that the numerical computation of the field in the BEM domain and the 
computation of the field on the boundary 1Γ  takes approximately half of the total 
computation time each, for the calculations in figure 9 it takes even more than half of the 
total computation time. For standard calculations, where the signal response Γδ [26] is 
calculated, there is no need to calculate the field in the entire BEM region. The FEM 
calculations, in the interior domain, have a very small effect on the total computation 
time. 
 

Concluding remarks 
 
The scattering of SH-waves by an isolated defect has been investigated numerically by a 
hybrid method which combines the finite element method (FEM), the boundary element 
method (BEM) and a boundary integral representation. The incident field is taken as the 
field from an ultrasonic SH-transducer and due to the simple nature of the SH-wave, each 
individual diffracted wave can in principle be identified and observed. 
 
The proposed hybrid method shows to be both efficient and suitable for solving 
ultrasonic scattering from defects of complicated geometry. The FEM is a good choice 
for describing detailed geometry and is effective in numerical computations in a narrow 
region. As expected, calculation of entities on the boundary region in the BEM domain 
takes a lot of computation time. The discretization of the boundary region have to be 
made very careful, the FE- discretization of the interior region can be made more rough 
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since its impact on the total computation time is small. It is clear that the hybrid method 
is better than solitary using the BEM. The latter would produce a model where the 
number of elements, and thereby computation time, increases not only with frequency but 
also with the complexity of the geometry. Computation time could then be determined by 
geometry and not frequency. 
 
Combining the FEM and the BEM is, due to numerical dispersion, not without 
difficulties. The FE-computed solution will gradually get out of phase with the integral 
equation solution and cause difficulties on the coupled boundaries. In practical terms, this 
leads to an increase in the cost of the FE solution at higher wavenumbers. For the studied 
problem the Galerkin/least-squares method has been successfully employed for linear 
triangles. 
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