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SSM perspektiv

Bakgrund

Idén om att tillimpa berikningsintelligens inom kidrnkraftsindustrin for olika
tillampningar &r inte ny, med tillimpningsexempel fran tidigare 1990- och 2000-
tal. Med utvecklingen och populariteten av artificiell intelligens (Al) bérjar manga
forskare 6verviga att tillimpa Al-teknik i kdrnkraftverk inom olika omraden i ett
tidigt skede. Al-teknik skulle potentiellt kunna uppticka utrustningsfel pa ett béttre
sitt (genom feldiagnos), minska stress genom att hjilpa operatérer under onormala
forhallanden. Al-teknik &r sarskilt viktig for nésta generations reaktorkonstruktioner,
men de flesta tidigare tillimpningar har endast skraddarsytts for specifika
detaljerade scenarier. Det dr av intresse fé6r SSM att finansiera forskning om Al och
maskininldrning f6r att stodja vidareutveckling och anviandning av Al- och ML-
applikationer i industrin. Det &r ocksa viktigt for SSM att ldra sig mer om dessa
avancerade tekniker till stod fé6r SSM:s tillsyns- och godkdnnandeprocesser dir Al
och ML sannolikt kommer att vara en del av bade utformningen och driften av olika
kiarntekniska anldggningar.

Resultat

Studien bygger framst pa en litteraturstudie och deltagande i en konferens om Al.
Litteraturgenomgangen innehaller exempel och fallstudier av ML-tillimpningar
inom olika omraden inom kirnkraftsindustrin, sasom sidkerhets- och riskanalys,
anldggningsdrift och underhall. Den belyser potentialen hos ML for att forbéttra
kiarnsidkerheten proaktivt. Det understryker ocksa det internationella samfundets
stora intresse for att anta och/eller ytterligare etablera nya metoder for att forbattra
sikerheten. Men den identifierar ocksa utmaningar som dataproblem och den "svarta
ladan” karaktdren hos vissa metoder som maéste 16sas for att uppna allmiin acceptans
for dessa avancerade metoder for kiarnsiakerhet.

Det pagaende forsknings- och implementeringsarbetet belyser den

omvilvande inverkan som dessa tekniker kan ha eller redan har pa olika aspekter

av kidrnkraftverkens drift, inklusive tillimpningsomraden som prediktivt underhall
och sidkerhetsanalys.

En slutsats fran litteraturstudien &r att det kanske finns ett behov av en mer
harmoniserad klassificering/kategorisering av tillimpningar. Annu viktigare

dr att bristen pa vigledning om vilken algoritm eller metod som ska anvindas,
dataoverviganden och tillginglighet, beroende pa applikationen, dr uppenbar

och detta kan vara en utmaning i det framtida antagandet eller 6vergangen till
ML-metoder eller f6r att etablera dem ytterligare.

Relevans

Projektet ger en utokad bild av den nuvarande anvindningen av Al och ML

inom kédrnkraftsbranschen. Det finns ocksa manga Al/ML FOU-projekt inklusive
benchmarkingaktiviteter som beskrivs i litteraturen. SSM dr medvetet om den snabba
utvecklingen inom detta omrade och kommer i enlighet med rekommendationerna
i rapporten att fortsitta att f6lja utvecklingen inom Al och ML. Genom att halla

sig informerad om de senaste forskningsframstegen och tillimpningarna kan
organisationer inte bara f6rbli konkurrenskraftiga utan ocksé identifiera och

anta innovativa losningar som stérker sikerheten och minskar risken. Projektet
understryker att SSM:s hittills sma steg nir det giller anvindning av Al i branschen,
men dven for interna dndamal till stod for forbittrad dndamalsenlighet och
dndamalsenlighet, behover stirkas.

Behov av ytterligare forskning

Inga specifika ytterligare atgiarder bedoms vara nédviandiga pa kort sikt, men SSM
behover folja utvecklingen och sprida kunskap om Al/ML i organisationen inklusive
avdelningarna/sektionerna for tillsyn och licensiering av kirntekniska anldggningar.

Projektinformation
Kontaktperson SSM: Per Hellstrom
Referens: SSM2023-4526 / 4530635



SSM perspective

Background

The idea of applying computational intelligence in nuclear industry for different
applications is not recent, with application examples from the earlier 1990s and
2000s. With the development and popularity of Artificial Intelligence (Al), many
researchers start to consider applying Al technologies in Nuclear Power Plants

in various fields at an early stage. Al technologies could potentially better detect
equipment failures (through fault diagnosis), reduce stress by assisting operators

in abnormal conditions. Al technology is especially important for next-generation
reactor designs, but most previous applications have been tailored for only specific
detailed scenarios. It is of interest for SSM to finance research on Al and Machine
Learning in order to support further development and use of Al and ML applications
in the industry. It is also of importance for SSM to learn more of these advancing
technologies in support of SSM oversight and approval processes where Al and ML are
likely to be part of both the design and the operation of various nuclear facilities.

Results

The study is based mainly on a literature review and participation in a Topical
conference on Al. The literature review includes examples and case studies of ML
applications in various areas in the nuclear industry, such as safety and risk analysis,
plant operation, and maintenance. It highlights the potential of ML to enhance
nuclear safety proactively. It also emphasizes the international community’s keen
interest in adopting and/or further establishing novel approaches to enhance safety.
However, it also identifies challenges such as data issues and the "black box” nature of
some methods that need to be solved to achieve general acceptance of these advanced
methods for nuclear safety.

The ongoing research and implementation efforts highlight the transformative

impact these technologies could have or already has on various aspects of nuclear
plant operations, including application areas such as predictive maintenance and
safety analysis.

One conclusion from the literature review is that there is perhaps a need for a more
harmonized classification/categorization of applications. More importantly, the lack
of guidance of which algorithm or method to use, data considerations and availability,
depending on the application is evident and this could be a challenge in the future
adoption or transition to ML approaches or to establish them further.

Relevance

The project provides an extended view of current use of Al and ML in the nuclear
business. There are also many AI/ML R&D projects including benchmark activities
that are described in the literature. SSM is aware of the rapid development in this
area and as recommended in the report, SSM will maintain continuous monitoring
of developments in Al and ML. By staying informed about the latest research
advancements and applications, organizations can not only remain competitive but
also identify and adopt innovative solutions that strengthen safety and reduce the
risk. The project underlines that SSMs so far small steps regarding use of Al in the
industry, but also for internal purposes in support of improved effectiveness and
efficiency, need some strengthening.

Need for further research

No specific further actions are deemed necessary in the short term, but SSM need to
monitor the development and disseminate knowledge about AI/ML in the organization
including the departments / sections for oversight and licensing of nuclear facilities.

Project information
Contact person SSM: Per Hellstrom
Reference: SSM2023-4526 / 4530635
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SAMMANFATTNING

Med utvecklingen och populariteten av artificiell intelligens (AI) har manga forskare borjat ver-
véga att tillimpa Al-teknologier inom kérnkraftsindustrin inom olika omraden. Al-teknologier och
maskininldrning har potentialen att kunna appliceras inom flertalet omrdden och &ven inom reak-
torsékerhet. Dock finns det utmaningar att dvervinna, speciellt den "black box"-natur som ménga
maskininldrningsmetoder har, for att uppna ett accepterande av att anvénda dessa avancerade me-
toder for reaktorsékerhet.

Rapporten utforskar, via en litteraturstudie, anvindningen av artificiell intelligens (AI) och maski-
ninlérning (ML) inom kérnkraftsindustrin, med fokus pa sikerhetsanalys. Den betonar att Al-tek-
nologier kan exempelvis detektera avvikelser innan fel 1 utrustning uppstér och ge beslutstod till
operatorer vid driftstérningar.

Al &r den 6vergripande termen som omfattar olika tekniker for att skapa intelligenta maskiner. ML
ar en delméngd av Al som fokuserar pa att utveckla algoritmer som kan ldra sig automatiskt fran
data. Djupinldrning (DL) 4r en delmingd av ML som anvénder neurala nétverk for att lara sig fran
stora dataméngder. ML/DL kan tillimpas inom flera omraden, exempelvis systemdesign och -ana-
lys, anldggningsdrift och underhall, samt sékerhets- och riskanalys.

Négra av de viktigaste utmaningarna inkluderar:

e  Att sdkerstilla att data som anvénds for att trina ML-modeller 4r av hog kvalitet och till-
géngliga i tillrickliga méngder, vilket 4r avgdrande for att kunna gora korrekta och palit-
liga forutségelser.

e  Attnoggrant validera och verifiera ML-modeller for att sékerstélla att de fungerar korrekt
och palitligt i olika scenarier under olika forhallanden och med olika typer av data.

e Att gora ML-modeller mer forklarbara och transparenta. Detta ar sarskilt viktigt inom sé-
kerhetsanalyser, dir det dr avgorande att forsta hur och varfor en modell gor vissa forutsa-
gelser.

e  Att sdkerstilla att ML-modeller kan integreras pa ett effektivt siatt med operatorer och att
de kan anvéndas for att stodja beslutsfattande pa ett palitligt sétt.

Sammanfattningsvis dr de viktigaste punkterna foljande:

e Det rekommenderas att karnkraftsindustrin bor fortsétta utforska och implementera Al
och ML for att forbattra sdkerheten och effektiviteten, och investera i forskning for att
Overvinna utmaningar.

e Etablera samarbete mellan aktdrer och strdva efter standardisering av riktlinjer och sdker-
hetskrav for AI och ML-applikationer.

Al och ML har stor potential att forbéttra sdkerheten, genom dkad tillgénglighet och tillforlitlighet
inom kdrnkraftsindustrin, men det finns ocksa betydande utmaningar som maste dvervinnas.



SUMMARY

With the development and popularity of artificial intelligence (Al), many researchers have begun
to consider applying Al technologies within the nuclear power industry in various areas. Al tech-
nologies and machine learning have the potential to be applied across multiple domains, including
nuclear safety. However, there are challenges to overcome, especially the "black box"-nature of
many machine learning methods, to achieve acceptance of using these advanced methods for nu-
clear safety.

The report explores, via a literature study, the use of artificial intelligence (AI) and machine learn-
ing (ML) in the nuclear industry, with a focus on safety analysis. It emphasizes that Al technolo-
gies can, for example, detect anomalies before equipment failures occur and provide decision sup-
port to operators during disturbances.

Al is the overarching term that includes various techniques for creating intelligent machines. ML
is a subset of Al that focuses on developing algorithms that can automatically learn from data.
Deep learning (DL) is a subset of ML that uses neural networks to learn from large amounts of
data. ML/DL can be applied in several areas, such as system design and analysis, plant operation
and maintenance, as well as safety and risk analysis.

Some of the key challenges in using Al and ML include:

e  Ensuring that the data used to train ML-models is of high quality and available in suffi-
cient quantities, which is crucial for making accurate and reliable predictions.

e  Carefully validating and verifying ML-models to ensure that they function correctly and
reliably in different scenarios under various conditions and with different types of data.

e Making ML-models more explainable and transparent. This is particularly important in
safety analyses, where it is crucial to understand how and why a model makes certain pre-
dictions.

e  Ensuring that ML-models can be effectively integrated with operators and that they can
be used to support decision-making reliably.

In summary, the key points are as follows:
e [t is recommended that the nuclear industry should continue to explore and implement Al
and ML to improve safety and efficiency and invest in research to overcome challenges.
e Establish collaboration between stakeholders and strive for standardization of guidelines
and safety requirements for Al and ML-applications.

Al and ML have great potential to enhance safety by increasing availability and reliability within
the nuclear industry, but there are also significant challenges to overcome.
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1 Introduction

1.1 Background

The idea of applying computational intelligence in nuclear industry for different applications is not
recent, with application examples from the earlier 1990s and 2000s. [1] With the development and
popularity of Artificial Intelligence (AI), many researchers start to consider applying Al technolo-
gies in Nuclear Power Plants (NPPs) in various fields at an early stage. Al technologies could po-
tentially better detect equipment failures (through fault diagnosis), reduce human operating pres-
sure by assisting operators in abnormal conditions. Al technology is especially important for next-
generation NPP design, but most previous applications have been tailored for only specific de-
tailed scenarios. [2]

Al and Machine Learning (ML) can be used in several ways, for example:

Data analysis
ML algorithms can analyse large amounts of data to identify patterns, trends, and correlations.

This can include historical data, real-time data, and external data sources.

Risk prognosis
Predictive ML models can be developed to estimate the probability of a specific event occurring.

For example, ML algorithms can analyse historical data on accidents or failures to identify pat-
terns and factors that contribute to those events. These models can then predict the likelihood of
similar events happening in the future, allowing for proactive risk management.

Decision support
ML models can be used to develop decision support systems that aid in making risk-informed de-

cisions. These systems can analyse various scenarios and assess their associated risks, allowing de-
cision-makers to choose the optimal course of action. For example, ML algorithms can analyse
different risk mitigation strategies and recommend the most effective approach based on historical
data and its predictive capabilities.

Anomaly detection

ML can be used to detect anomalies or unusual events that may indicate increased risk. For in-
stance, ML algorithms can analyse sensor data to identify deviations from normal behaviour that
may indicate a potential equipment failure.

Topical conference on Al and ML

During the fall 2023, the organisation International Association for Probabilistic Safety Assess-
ment and Management (IAPSAM) arranged a topical virtual conference on Artificial Intelligence
and machine learning [3]. Included topical areas of interests were the following:

e Al and Machine Learning (ML) to support risk analysis and risk-informed decision-mak-
ing.

Automation trustworthiness and transparency for Al-based automation technologies.
Uncertainty quantification for Al and ML technologies.

Risk-informed design and regulation of Al and ML technologies.

Human reliability analysis for a human-machine interface with AI and ML technologies.
Prognostics and Health Management using Al and ML.

Digital twins for risk analysis, assessment, and management.

Interpretability of Al and ML technologies for safety-critical applications.



e Al and ML for condition-based risk assessment.

e Al and ML for safety measures optimization.
This demonstrates that the use of Al and ML for nuclear safety has a clear potential to enhance
and/or transform the nuclear reactor safety proactively. The international community seems very
keen to adopt novel approaches to enhance safety. However, many applications also identify chal-
lenges to overcome, like data issues and the “black box” nature of some methods to reach a gen-
eral acceptance of using these advanced methods for nuclear safety.

1.2 Artificial Intelligence, Machine Learning and

Deep Learning

The hierarchy of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL),
see Figure 1, can be understood as follows:

e Artificial Intelligence (AI): Al is the overarching system that encompasses various tech-
niques and methods to create intelligent machines and systems. Machine Learning and
Deep Learning are both subfields of Al

e Machine Learning (ML): ML is a subset of Al that focuses on developing algorithms with
the ability to automatically learn and improve on the basis of data or experience, without
being explicitly programmed. There are several types of ML, generally divided into four
groups: Unsupervised learning, Semi-supervised learning, Supervised learning, and Rein-
forcement learning.

e Deep Learning (DL): DL is a subset of ML in which multi-layered neural networks, mod-
elled to work like the human brain, to “learn” from large amounts of data. Within each
layer of the neural network, DL algorithms perform calculations and make predictions re-
peatedly, progressively “learning” and gradually improving the accuracy of the outcome
over time. DL is differentiated in that it can process unstructured, unlabelled data.

Figure 1 Hierarchy of Artificial Intelligence (Al), Machine Learning (ML), and Deep Learn-
ing (DL). [4]

ML can be applied in several types of application fields in the nuclear industry, such as:



e Plant operation and maintenance. For example,
o Plant degradation modelling, fault, and accident diagnosis and prognosis,
o Plant operation and maintenance efficiency improvement.
e Nuclear safety and risk analysis. For example,
o Plant safety assessments including component and system reliability, external
events, and severe accidents.
o Plant security assessments including cybersecurity and physical security.
e Reactor system design and analysis. For example,
o Reactor thermal hydraulics,
o Reactor physics,
o Reactor system performance.

1.3 Scope, Objectives and Limitations

The report is intended to provide a comprehensive overview of the current and potential applica-

tions of Al and ML in the nuclear industry, as well as the challenges and opportunities. However,
the report also acknowledges the limitations and uncertainties inherent in this emerging, fast-de-

veloping, field.

Al and ML can help to increase the quality of both deterministic and probabilistic safety analyses
by better identifying inaccuracies, both in terms of documentation and input data. They can also be
essential tools for collecting data from other departments, identifying trends, and thereby enabling
even more initiative-taking work with risks. In other words, the use of Al and ML could have a
major impact on future safety analyses.

The objectives of the project are as follows:

e Identify and evaluate Al and ML within the nuclear industry for safety analysis via a liter-
ature review.

e Identify and recommend application areas for Al and ML.

e  Analyse what challenges exist with Al and ML and how to solve or minimize these.

Limitations that should be considered when reading this report are:

e This report does not address applications for nuclear security assessments including cy-
bersecurity and physical security.

e ML and DL are rapidly evolving fields that are constantly producing new methods, mod-
els, and applications. Therefore, this report is limited to information available when writ-
ing.

e The report does not endorse any specific ML technique or vendor over another but rather
presents a broad overview of the available options and use cases.

e ML cannot solve all issues related to nuclear safety, plant operation and maintenance. It is
an algorithm or model that try to augment human expertise and enable more efficient and
effective decision making, but it also requires careful validation, verification, and testing
to ensure its reliability and safety.

e ML is highly dependent on the quality and quantity of data that is used to train and evalu-
ate the models. The availability and accessibility of data may vary depending on the type
of plant, the regulatory framework, the proprietary interests, and the ethical and privacy
concerns. The report does not address these issues in detail but rather presents use cases
and their potential.

e ML is influenced by the context and objectives of the plant operators and maintainers, as
well as the stakeholders and regulators involved. The report does not account for the



specific needs, preferences, and constraints of each individual plant or organisation, but
rather offers general insights and their potential.

e The report also does not address the legal, social, or ethical implications of using ML in
nuclear safety, plant operation and maintenance, which may require further investigation.

1.4 Structure of the report

The report consists of eight chapters that cover the following:

e Chapter 1 introduces the motivation and objectives of the report, as well as the scope and
limitations of the study.

e Chapter 2 provides an overview of advanced computational tools and techniques that can
be used for data-driven modelling and optimization. It presents the main concepts and
techniques of ML, such as supervised, unsupervised, and reinforcement learning, and the
types of algorithms and models used for different tasks, such as classification, regression,
clustering, and optimization. It also introduces common metrics and methods for evaluat-
ing the performance and robustness of ML models, such as accuracy and precision.

e Chapter 3 presents the project’s literature review. It also presents examples and case stud-
ies of ML applications in various aspects of the nuclear industry, such as safety and risk
analysis, plant operation and maintenance.

e Chapter 4 discusses the challenges and the future of Al and ML in the nuclear industry. It
identifies the main barriers and limitations for applying ML techniques to safety systems,
such as data availability and quality, model validation and verification, interpretability,
and human-machine interaction.

e Chapter 5 provides and discuss future research directions.

e Chapter 6 concludes the insights from the project.

e  Chapter 7 list the references cited in the report.

e Chapter 8 provides categorised tables with reoccurring abbreviations used in the report.



2 An Overview of Machine Learning (ML)

2.1 The Relationship between Statistics and ML

Within nuclear safety, operating experience is collected to be able to estimate different parameters
such as component reliabilities, initiating event frequencies, Common Cause Failure (CCF) param-
eters and to conduct component and system trend analysis. Statistics is normally used to estimate
these types of parameters which are used as input in Probabilistic Safety Assessment (PSA).

By looking at the relationship between statistics and ML, it is possible to see where the use of ML
could be beneficial. Statistics and ML are linked in terms of methodological principles but are dif-
ferent in their primary goals. Statistics have a focus on inference by modelling the data generation
process to formalize understanding, whereas ML concentrates on prediction to identify the best
course of actions with no or limited understanding of the underlying mechanism. Statistics is a
subfield of mathematics while ML is a subfield of computer science and grew out of Al to focus
on learning from data.

Statistical methods have traditionally been used on smaller data sets, in cases where the entire pop-
ulation of data is not known. Advanced ML methods require much more data than the traditional
statistical methods but can predict when relationships are more complex. Some of the ML algo-
rithms, e.g., Bayesian Networks (BNs) and Gaussian Processes (GPs), are also popular approaches
in statistics. However, ML approaches such as DL sacrifice some degrees of interpretability for
predictive power.

Both fields (statistics and ML) involve data analysis but differ in their approaches, goals, and
methods. They are similar in the sense that both rely on data to extract insights, both use probabil-
ity and optimization techniques, and aim to find patterns in data (though their end goals differ).

Traditional statistics aims to find inference, e.g., to understand the relationship between variables
and to test hypothesis. It is suitable to use this in case of small datasets since it can yield robust in-
sights or in cases where explainability is of importance, i.e., when clear, interpretable models are
required for decision-making.

ML aims to optimize models to obtain as accurate predictions as possible. It works well with high-
dimensional data with many variables or unstructured data (e.g., images, text). It requires large
data volumes to train complex models. It is ideal for non-linear or unknown variable relationships
or when models need to improve automatically over time.

2.2 Overview of ML paradigms

ML can be subdivided into different paradigms of learning, see Figure 2, and the main types are:

e Supervised Learning
e Unsupervised Learning
e Reinforcement Learning

Other paradigms within ML include semi-supervised, rule-based, self-supervised, batch, meta,
online, and quantum machine learning. Each of these paradigms has its own advantages and appli-
cations, depending on the specific problem and the amount of available labelled data. This is fur-
ther explored in chapter 3 with examples of applications using these paradigms.
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Figure 2 Machine learning paradigms and methods (based on [5]).

2.2.1 Unsupervised Learning

Unsupervised learning is a paradigm in ML where algorithms learn patterns exclusively from unla-
belled data. This approach is used to group data based on the underlying hidden features in the
data. There are three main approaches in unsupervised learning:

Clustering: Clustering algorithms group unlabelled data based on their similarities or dif-
ferences. Common clustering methods include hierarchical clustering, k-means, Gaussian
mixture models, DBSCAN (Density-Based Spatial Clustering of Applications with
Noise), and OPTICS (Ordering Points To Identify the Clustering Structure). These meth-
ods help identify commonalities in the data to create groups.

Anomaly Detection: Anomaly detection methods identify data points that do not fit into
any group or cluster. These methods can help detect outliers or anomalies in the data. Ex-
amples of anomaly detection methods include Local Outlier Factor (LOF) and Isolation
Forest (IF).

Learning Latent Variable Models: Latent variable models aim to represent complex data
in a lower-dimensional space while preserving the essential characteristics of the original
data. These models can be used for dimensionality reduction, feature extraction, and data
visualization. For example, Principal Component Analysis (PCA).

In unsupervised learning, all one has is a set of data samples without being told their expected la-
bels (ground truths) for categorical variables, nor the true numeric values for continuous variables.
Unsupervised learning methods are promising in many applications due to three major reasons.

1.
2.

Labelling a large dataset can be surprisingly expensive and time consuming.
Find features that can best represent the data which will be useful for future prediction
tasks.



3. Gain insights into the structure of the data, i.e., the understanding of the probability den-
sity and subgroups, which can help influence the design for data classification and regres-
sion applications.

In summary, unsupervised learning is a powerful tool for extracting insights from data without the
need for labelling data.

2.2.2 Supervised Learning

Supervised learning is a type of ML where the algorithm learns from labelled input and output
data. The goal of supervised learning is to learn a function that maps input data to output data
based on the relationship between the input and output data. There are two main types of super-
vised learning:

e Classification: In classification tasks, the goal is to predict the categorical class or label of
an instance. Some common classification algorithms include Logistic Regression (LR),
Decision Trees (DTs), Support Vector Machines (SVMs), and Random Forests (RFs).

e Regression: In regression tasks, the goal is to predict a continuous value. Some common
regression algorithms include linear regression, polynomial regression, and DTs.

Supervised learning algorithms learn from labelled data by minimizing the difference between the
predicted output and the actual output. This is done by adjusting the model's parameters to mini-
mize the error between the predicted output and the actual output. The performance of a super-
vised learning algorithm is evaluated using metrics such as accuracy, precision, recall, and F1
score (for classification), and mean absolute error (MAE) and root mean square error (RMSE) (for
regression).

Supervised learning implies a training data set that contains the observed values of the variable of
interest. The observed values can be either categorical (labels), discrete, or continuous. Supervised
learning implies the availability of a labelled training dataset that consists of a set of training sam-
ples. In its most common form, each data sample pair has an input feature vector and a desired out-
put value (label). A supervised learning algorithm learns the underlying model (or inferred func-
tion) between the input and the output using the training set, and the requirement is that the model
should be able to generalize from the training set to unseen data samples.

A wide collection of supervised learning algorithms is available, each with its strengths and weak-
nesses. The most widely used learning algorithms include Artificial Neural Networks (ANNSs),
GPs, BNs, SVMs, DTs, RFs, and various models within the subfield of DL such as Convolutional
Neural Networks (CNNs).

2.2.3 Reinforcement Learning

Reinforcement learning (RL) is a ML technique that trains software to make sequences of deci-
sions. It is based on the Markov Decision Process (MDP) framework, where an agent takes actions
in an environment and receives positive, negative, or zero rewards based on its actions. The agent
learns to maximize the cumulative reward over time through a trial-and-error learning process.

Key concepts in RL include the agent (the ML algorithm), the environment (the problem space),
actions (steps the agent takes), state (the environment at a given time), and reward (the value asso-
ciated with taking an action).

There are several types of RL algorithms that can be used to train agents to interact with dynamic
environments and maximize rewards. Some of the most common types of reinforcement learning
algorithms include:



e Value-based methods: These algorithms estimate the value of each state or state-action
pair and use this information to determine the best action to take. Examples of value-
based methods include Q-learning and SARSA (State-Action-Reward-State-Action),
which is explained below.

e Policy-based methods: These algorithms directly learn the optimal policy, or sequence of
actions, to take in a given state. Examples of policy-based methods include “REIN-
FORCE” (Monte Carlo method) and Actor-Critic methods (hybrid method which com-
bines value-based with policy-based methods).

e Model-based methods: These algorithms learn a model of the environment and use this
model to plan future actions. Examples of model-based methods include Dyna-Q and
Monte Carlo Tree Search.

Q-learning is a type of reinforcement learning algorithm used to train an agent to make decisions
in an environment by maximizing the expected cumulative reward. It is a model-free, value-based,
off-policy algorithm that learns the optimal action-value function, or Q-value, for each state-action
pair. The Q-value represents the expected future reward that an agent can obtain by taking a partic-
ular action in a given state. The Q-learning algorithm updates the Q-value iteratively as the agent
interacts with the environment and receives rewards.

SARSA is an on-policy reinforcement learning algorithm used to understand the Markov decision
process policy. In SARSA, the Q-value is updated taking into account the action performed in the
next state, unlike in Q-learning where the action with the highest Q-value in the next state is used
to update the Q-table. SARSA is used to learn a policy that balances exploration and exploitation

and can be applied in various domains, such as decision making.

2.3 ML Languages and Tools

Different programming languages are associated with the ML algorithms. Python, C++, and R are
among the most popular programming languages used for ML, [6]. Each language has its own
strengths and weaknesses, making them suitable for different tasks and applications.

e Python: It is a fast-growing, general-purpose programming language known for its reada-
bility and structure. It has a vast ecosystem of libraries and frameworks for ML and data
analysis, such as Pandas, NumPy, and TensorFlow. Python is widely used in the data sci-
ence community and is suitable for developing ML models.

e C++: Itis a flexible, object-oriented, mid-level language based on the C programming
language. It can directly interact with hardware under real-time constraints and is suitable
for parallel computing. C++ is often used in industries that require low-level access to
system resources, such as software development and data processing.

e R:Itis atop choice for many data scientists as a language and environment for statistics,
visualization, and data analysis. R has numerous built-in statistical and graphical tech-
niques and can be extended with ML packages. It is widely used in academic research
and data analysis.

There are various ML tools, platforms, and software available for data analytics and visualization,
such as Python Pandas, NumPy, KNIME, TensorFlow, PyTorch, Accord.net, Google Cloud Au-
toML, and Jupyter notebooks, [6]. Commercial off-the-shelf software like SAS and MATLAB
also offers powerful ML capabilities, with prebuilt functions, extensive toolboxes, and specialized
apps for classification, regression, and clustering. Results from these software’s are generally
trusted.



2.4 Natural Language Processing

Natural Language Processing (NLP) involves a series of techniques and methods to enable com-
puters to understand, process, and generate human language. Depending on the problem, super-
vised, unsupervised and reinforcement learning methods as well as DL models are used. NLP is an
emerging field in the nuclear industry with increasing interest and applications.

Common advanced techniques in NLP involve:

1. Rule-Based Methods: Using predefined linguistic rules.

2. Machine Learning: Using algorithms to learn from data, such as Naive Bayes (NBs),
SVMs, and decision trees.

3. Deep Learning: Utilizing neural networks, for example, Recurrent Neural Networks
(RNNs), Long Short-Term Memory (LSTMs), and Transformers, e.g., Bidirectional En-
coder Representations from Transformers (BERT), Generative Pretrained Transformer
(GPT), which are pre-trained language models.

Some of the key NLP techniques are:

1. Text pre-processing. This consist of tokenization (breaking the text into smaller units),
lemmatization (reducing words to its base form), normalization (handling abbreviations
etc. to standardize the text) etc.

2. Syntactic analysis. This involves determining relationships between words in a sentence,
parsing by analysing the grammatical structure of sentences using algorithms.

3. Semantic analysis. This includes for example determining the correct meaning of a word
based on context.



3 ML Applications in the Nuclear Industry

3.1 Literature Review

A review of published literature surveys of applications and use cases of Al in different areas in
the nuclear industry have been conducted. In the following references, different compilations of
list of applications and use cases of Al can be found. This review does not aim to be complete, but
more of to present the status and the efforts made so far with ML and DL methods in the nuclear

industry.

A review of the application of artificial intelligence to nuclear reactors: Where we are
and what’s next 5]

This paper lists previous application of Al in nuclear reactor design optimization, nuclear
reactor operation and maintenance (O&M). Applications of Al to nuclear reactor design
optimization include nuclear reaction core design, thermal-hydraulic simulation analysis
and radiation shielding design. Applications of Al to nuclear reactor O&M include online
condition monitoring, fault diagnosis and predictive maintenance. For each application,
the used ML method and overall findings are presented.

Status of research and development of learning-based approaches in nuclear science and
engineering: A review [7]

In this paper, popular ML methods are evaluated against different criteria regarding their
suitability. It also presents an algorithm selection scheme for nuclear and radiological
data criteria.

Nuclear Power Plants With Artificial Intelligence in Industry 4.0 Era: Top-Level Design
and Current Applications — A Systemic Review [2]

This paper categories Al-related nuclear power applications into Physical-Plant-Centred
and Human-Operator-Centred technologies and review research works from 7 typical
NPP functional scenarios in the recent two decades and covers 106 research papers. The
functional scenarios include nuclear fuel management, nuclear data processing, autono-
mous control for fixed procedure, fault detection and diagnosis, human-machine interac-
tion, emergency alarming and decision-making assistance. Representative Al techniques
within the two main categories are summarized.

Artificial intelligence in nuclear industry: Chimera or solution? [1]

This paper presents applications of ML with presentation of their focus and highlights. It
also summarizes research on applications of Al in fuel management, fault diagnosis, tran-
sient identification, and accident scenarios. For each application, the used technique, type
of application and findings are presented.

Exploring Advanced Computational Tools and Techniques with Artificial Intelligence and
Machine Learning in Operating Nuclear Plants [6]

In this report, a review of applications is summarized in tabular form with presentation of
used ML method, data category and the objective of the application. The applications are
divided into reactor thermal hydraulics, reactor physics, reactor system performance,
plant operation and maintenance, plant cyber security, nuclear safety and risk analysis.
Data-Theoretic Approach for Socio-Technical Risk Analysis: Text Mining Licensee Event
Reports of U.S. Nuclear Power Plants [8]

This paper presents ML techniques for organisational factor in safety/risk analysis and
PSA. For each application, the data source, data type, data format, type and sub-type of
process and type of technique is presented. One finding was that there are limited studies
using text mining approaches for PSA.

Probabilistic Safety Assessment and Management (PSAM) 2023 Topical conference on
Artificial Intelligence & Risk Analysis for Probabilistic Safety/Security Assessment &
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Management. [3]
Conference proceedings can be found via the reference. A special issue is also planned to
be finalized in October 2024.

e Survey on the Use of Artificial Intelligence in Nuclear Power Plants [9].
This PSAM conference paper classifies a survey of applications into diagnosis, predic-
tion, response (i.c., severe accidents), and process (i.e., optimization of design and opera-
tion), with the purpose and the used type of learning algorithm for each application.

o Deep learning for safety assessment of nuclear power reactors: Reliability, explainabil-
ity, and research opportunities [10]
This paper presents state-of-the-art in DL-applications for nuclear safety analysis. Each
reviewed application is classified into its field of application, DL method, training data
(e.g., CFD, RELAP, MAAP simulation), and predicted parameter (e.g., reactor vessel wa-
ter level).

e  Possibilities of reinforcement learning for nuclear power plants: Evidence on current ap-
plications and beyond [11]
This paper focuses on RL applications including different situations such as power
startup, collaborative control, and emergency handling. It also discusses possibilities of
further application of RL methods and challenges. The authors note that this field is still
comparatively blank, and many works can be explored.

o Application of artificial intelligence technologies and big data computing for nuclear
power plants control: a review [12]
This paper comprehensively reviews the literature on artificial intelligence technologies
and big data, seeking to provide a holistic perspective on their relations and how they can
be integrated with nuclear power plants. Further, this review also points out the future op-
portunities as well as challenges for applying Al and big data computing in the nuclear
industry.

In summary, this literature review covers diverse applications and methods of Al in the nuclear in-
dustry, emphasizing the potential of ML and DL methods in enhancing reactor design, operations,
maintenance, safety, and risk analysis. The large volume of applications distributed over many dif-
ferent fields shows the potential of using such methods. One finding from this review is that there
is perhaps a need for a more harmonized classification/categorization of applications. Also, only
one of the references above, [7], addresses some guidance of which algorithm or method to use de-
pending on the application.

The applications in the above references cover a total of 335 references. The following subsections
presents statistics regarding application area, type of learning and algorithms used. However, it is
important to acknowledge that this survey of applications is not complete and may not reflect the
full extent of ML usage in the nuclear industry. Due to the rapid development of ML methods in
recent years and the diversity of possible applications, as demonstrated in Figure 3, it is challeng-
ing to achieve a comprehensive overview of all relevant studies. Moreover, not all applications are
open access and thereby available. Therefore, this review should be seen as a snapshot of the cur-
rent state rather than a definitive map of the ML landscape in the nuclear industry.

11
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The number of available algorithms is large, and it is no easy task to select which algorithm to use
in an application case. The algorithm selection for a successful nuclear application depends on two
major factors [6]:

1. The nature and objectives of the task, e.g., classification or clustering analysis.
2. Data availability and quality.

In practice, the two above factors can be used to narrow down the searching range, but generic
principles can be applied. The best strategy is to evaluate and compare different algorithms. Inter-
national research and applications with use cases along with extensive experiments with specific
physical phenomenon considerations is recommended. The final algorithm(s) should be deter-
mined by using values of quantitative metrics, e.g., accuracy, precision, and recall rate, on new da-
tasets.

For assessment of data availability and quality, see further sections 3.1.4 and 3.1.5.

3.1.1 Application Areas

From the literature review, a list of references has been extracted and compiled. Categorizing these
applications not only highlights the current areas of focus but also exposes opportunities for fur-
ther development and integration. Although some overlap between categories exists (as shown in
Table 1), this highlights the adaptability and cross-functional capabilities of ML in various nuclear
fields.

As seen in Table 1, the most frequently cited application areas are “Physical Plant-centred” and
“Reactor Physics”, highlighting the critical role of ML in optimizing plant operations and under-
standing reactor behaviour. However, the categorisation of “physical plant-centred” is very broad
and include an array of applications which overlaps with the more well-defined and detailed appli-
cation areas. Conversely, the area “Digital twins” demonstrate low grade of adoption, and this area
is further discussed in section 4.5.
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Table 1 Application areas in the literature review.

Application area Count
Accident scenarios 22
Diagnostics 41
Digital twins 3
Fuel management 11
Nuclear Safety and Risk Analysis 17
Nuclear Safety and Risk Analysis - Organisational Factors 5
Nuclear Safety and Risk Analysis - PSA 15
Radiation shielding design 4
Reactor Operation and Maintenance 47
Reactor Physics 49
Reactor System Performance 16
Reactor Thermal Hydraulics 23
Transient Identification 10
Physical Plant-centred 52
Human-centred 20
Total 335

Previous surveys show that applications of ML have been widely applied to enhance, for example,
equipment reliability, reduce radiation exposure to personnel, assist with decision making and op-
timize maintenance schedule in three major areas: nuclear power plant health and management,
nuclear operations and controls, and radiation protection. A list of example cases and algorithms

are shown in Table 2, reproduced from [6].

Table 2 Example use cases and algorithms.

Application Area Use Case

Algorithms

Plant health and manage- | System behaviour prediction
ment

BNs, NB, ANNs, SVMs

Severe accident classifications

ANNs, DTs, BNs

Functional failure of systems

ANNSs, Clustering algo-
rithms, e.g., K-means

Crack detection

CNNs

Equipment monitoring

CNNs, ANNSs, BNs

Nuclear operations and Anomalous event detection

AEs, SVMs, ANNs, DTs

controls
Unattended operations DTs, BNs
Detection and response to degraded | CNNs, ANNs
or failure conditions
Radwaste management CNNs
Radiation protection Radionuclide identification ANNs, SVMs

tion

Special nuclear material identifica-

ANNSs, GPs, NB, Clustering
algorithms

3.1.2 Application Sub-Areas

Table 3 presents further detailed analysis within the category “Nuclear Safety and Risk Analy-
sis”. Here, the applications (37 in total, row 5-7 in Table 1) span a wide spectrum of nuclear
safety. It is seen that some sub-areas overlap with the other application areas in Table 1.
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Table 3 Application sub-areas within “Nuclear Safety and Risk Analysis”.

Application sub-area

Accident analysis

Other

Cost risk analysis

Performance shaping factors

Data mining

Risk insights in real-time

Dynamic PSA

Risk-informed decision making

Event reports

Scenario identification

Fire hazards

Seismic analysis

Human factors

Simulation data

Integrated DSA-PSA

Transient identification

LOCA detection

These sub-areas can be grouped and summarized in three main groups, see below.

Risk Analysis and Assessment

A field focused on comprehending and measuring risks and utilizing this knowledge to inform de-

cision-making.

e  Costrisk analysis: Estimation of financial risks associated with nuclear safety measures.

e Dynamic PSA: Analysis to evaluate risk in systems where both time-dependent behav-
iours and interactions between components evolve dynamically.

e Risk insights in real-time: Monitoring risks and gaining insights into them as they hap-

pen.

e Risk-informed decision making: Using risk assessments to guide safety-related decisions.
e Integrated DSA-PSA (Deterministic Safety Analysis and Probabilistic Safety Assess-
ment): Combining deterministic and probabilistic models for a more comprehensive

safety assessment.

Event and Scenario Analysis

Area that focuses on understanding specific accident or event scenarios.

e Accident analysis: Examination of past accidents or potential future accident scenarios.
e Eventreports: Analysing events that have occurred in NPPs.
e Transient identification: Detection and analysis of abnormal or unexpected transient

events in NPPs.

e Fire hazards: Analysis and prevention of fire-related risks.
e Seismic analysis: Assessing the impact of seismic events.
e LOCA detection (Loss of Coolant Accident): Detection of potential or actual loss of cool-

ant.

e  Generic analyses:

o Scenario identification: Identification of various potential scenarios that could
affect nuclear safety.
o Data mining: Extracting insights from large datasets to identify trends or pat-

terns.

o Simulation data: Use of simulation models to analyse scenarios.

Human Factors and Organisational Safety

Area that emphasizes the role of human factors and organisational decision-making in maintaining

nuclear safety.

e  Human factors: Study of how human behaviour and limitations affect nuclear safety.
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e Performance shaping factors: Factors that influence human performance in the context of
nuclear safety.

3.1.3 Type of Learning Process and Algorithm/Method

The literature review showed that for the applications, where the type of learning or algorithm
were specified (not given in about 16% of the applications), about 53% of the application uses su-
pervised learning.

The most common ML algorithms are listed below, and all of these uses supervised learning. It is
also noteworthy that all algorithms, except SVMs, GAs (but can be combined with DL algorithms)
and ANNSs (depending on their structure), are DL algorithms. Also, GAs are not strictly a ML al-
gorithm but are often used in ML to optimize parameters and neural networks. In general, tradi-
tional ML algorithms like SVMs often perform well on structured, smaller datasets, whereas DL
methods, particularly DNNs and their variants, are suitable for tasks involving large datasets and
high-dimensional data.

e  Support Vector Machine (SVM)

o SVMs are traditional ML algorithms used for both classification and regression
tasks. SVMs aim to find the optimal hyperplane that separates data points of dif-
ferent classes by maximizing the margin between them. SVMs are not DL algo-
rithms but are highly effective in smaller datasets or cases where interpretability
is important. SVMs are commonly used in tasks like text classification.

e Artificial Neural Network (ANN)

o In shallow form, ANNs are considered part of traditional ML. However, when

ANNSs have multiple hidden layers, they become DNNs (see below).
e  Deep Neural Network (DNN)

o DNNs are an extension of ANNS, distinguished by having multiple hidden layers
between the input and output layers. These deep architectures allow DNNs to
model complex patterns in data.

e Recurrent Neural Network (RNN)

o RNNs are specialized types of neural networks that are particularly effective in
processing sequential data, such as time-series data. Unlike traditional neural
networks, RNNs have memory, allowing them to capture temporal dependencies
in data.

e Fuzzy Neural Network (FNN)

o FNNs combine fuzzy logic with neural networks to handle uncertainty and im-
precision in data. They are particularly useful in systems where decision-making
requires handling vague, imprecise, or noisy input, making them effective in ap-
plications for control systems, pattern recognition, and decision support. The in-
tegration of fuzzy logic allows FNNs to model complex relationships in data that
traditional neural networks might struggle with.

e  Genetic Algorithm (GA)

o Gas are optimization algorithms inspired by the process of natural selection. Un-
like most of the other algorithms in this list, GAs do not use a neural network but
rather evolve a population of potential solutions to optimize a problem.
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3.1.4 Data Selection and Considerations

Data are central to any data-driven Al system’s ability to learn. Data can come in structured form
(e.g., databases) or unstructured form (e.g., event reports, specification documents, non-destructive
testing images and files).

Data processing
Any type of ML model needs data and the data itself need to undergo data processing to be usable.

In general, the data go through the following process [13]:

e Data acquisition: Data can be collected through one or multiple sources. The nuclear in-
dustry has collected data over decades, but much of this data is stored across separate
tools and databases. Thus, resulting in isolated datasets even within a single nuclear
power plant. This process also involves assessing the suitability of the data to be included
in the model. For example, the data could be biased or may not be broad enough to be
representative for its application. Data bias is further addressed below.

e Normalization: Normalization involves adjusting data to a common scale, making differ-
ent datasets mathematically comparable. Normalization enables the integration of datasets
from various plants, ensuring that the combined data (e.g., data from multiple plants) can
be effectively used in ML models.

e Data quality checking: Before deploying data in any ML model, it is vital to perform
quality checks. The data must be examined for completeness, potential biases, and other
factors that could impact its usefulness. Identifying and rectifying data issues, whether by
correcting errors or removing faulty data, ensures that the input to the ML model is relia-
ble and robust.

e Data labelling: For applications that need labelled data, i.e., supervised learning ML algo-
rithms, proper data labelling is critical. The nuclear industry presents a wide spectrum
when it comes to data labels. For instance, some datasets may be entirely unlabelled, such
as process sensor data that lacks information on equipment condition, while other datasets
may be fully labelled, like equipment failure that have been classified and reported into a
database. Ensuring consistent and accurate labelling across datasets is essential for train-
ing ML models.

Data classification
The quality and size of the dataset used in training and validating the ML model is crucial for
overall performance. During the development of a ML model, the data is commonly divided into:

1. Training datasets used directly for training the ML model,
2. Test datasets used to monitor and evaluate the training, and
3. Qualification datasets used to evaluate the final performance of the model.

The selection and independence of these datasets have significant effect on the ML model’s per-
formance. Data are classified into categories according to their role in the model development. The
primary categories include training data, validated data, test data, and production data.

e Training data: Training data constitute the datasets from which the ML algorithm learns
by adjusting its model parameters to address the specified task. These datasets may be in
the form of time series, images, or texts. Operating experience data typically fulfil this
requirement.

e Validated data: Validated data refer to the subset of data that is rigorously examined and
confirmed to be reliable for informing algorithmic choices. These data, usually extracted
from the same source as the training data. The validation process ensures that the data
used in the model development phase accurately reflect the underlying processes, thereby
contributing to the robustness of the final model.

16



e Test data: Test data are primarily used to evaluate the performance of supervised ML
models. Since unsupervised models lack labelled data, alternative evaluation techniques
are necessary. These may include benchmarking the outputs of different models or incor-
porating expert human judgments to assess performance. The test data serve as an inde-
pendent metric for assessing the model’s accuracy and generalizability across different
scenarios.

e Production data: Production data are those processed by the Al system during its opera-
tional phase. This data, typically received in real-time or near-real-time, is critical for
supporting ongoing decision-making processes and system monitoring, ensuring that the
Al system continues to perform reliably under operational conditions.

Sample size determination (SSD)

The ML model performance is mainly reliant on the size and quality of the data sets used in the
ML model training. It is of importance that the available data (historical, simulated, or experi-
mental) is ensured to be adequate for training, validation, and testing of ML models. The required
sample size will depend on which requirements the target ML model performance metrics need to
fulfil.

Unbalanced data

Significant class imbalance can affect the training process and performance of ML models. Such
imbalance may result from biased sampling methodologies, where data are not uniformly collected
across all classes, or from labelling errors that incorrectly assign instances from one class to an-
other. This affects the representativeness of the training data, but it also limits the model’s ability
to generalize effectively to new or rare events.

Data bias

Data bias is a systematic error wherein certain classes are overrepresented relative to others, lead-
ing to a training dataset that does not accurately reflect the true underlying population. Conse-
quently, models trained on biased datasets may inherit these imbalances, resulting in skewed or in-
accurate predictions.

Beyond the effects of unbalanced data, data bias may also arise from sample bias and measure-
ment bias. Sample bias is where training samples are drawn from a narrow or unrepresentative
subset of the population. Measurement bias, which occurs when the conditions under which train-
ing data are collected differ significantly from those encountered during actual operation. Addi-
tional factors contributing to measurement bias include varying noise levels between training and
testing datasets, as well as incorrect labelling in supervised learning contexts, which can signifi-
cantly affect model performance.

3.1.5 Data Availability in Applications

Data availability can vary widely across different application fields and understanding these differ-
ences is necessary for developing a ML model.

From the literature review, about two thirds of the listed applications focus mainly on the type of
algorithm used and do not explicitly state the type of data used in the application without further
analysis of each reference. Since not all references are open access and thereby available, it is dif-
ficult to draw conclusions regarding the data availability. In [6], the data source or the type of
training data used is explicitly stated per application and has here been summarized in Figure 4.
Here, 67% of the applications (76 references in total) used simulated data.
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Figure 4 Data classification of applications.

Plant operation (monitoring and process control)

In operational monitoring and process control, data is typically generated continuously by an ex-
tensive network of sensors installed throughout a nuclear facility. These sensors produce high-fre-
quency, high-resolution data streams that capture a wide array of operational parameters. Although
the amount of data is considerable, most of it reflects normal operating conditions. This means that
while there is much data to analyse system performance over time, the occurrence of anomalies or
deviations is relatively rare. Consequently, it becomes essential to implement sophisticated anom-
aly detection techniques that can reliably identify these rare but important events.

Predictive maintenance

For predictive maintenance, the situation is somewhat similar but with its own unique challenges.
Equipment monitoring systems accumulate extensive datasets during regular operations. This data
volume provides a strong foundation for modelling normal equipment behaviour. However, the ac-
tual failure events, which are crucial for training models to predict equipment failures or mainte-
nance needs, occur infrequently. This imbalance between normal and failure data can lead to chal-
lenges in model training, requiring the use of techniques such as oversampling or undersampling
to accurately predict potential failures. The reliability of these predictive models is vital, as they
may impact maintenance planning and operational safety.

Safety and risk assessment

Safety and risk assessment represents another application area where data availability is a signifi-
cant concern. Safety-related events, such as near-misses or minor incidents, are very rare. This
scarcity of real-world event data makes it difficult to build robust models solely based on operat-
ing experience, even if both plant-specific and generic (national and international) data are consid-
ered. To address this, simulated scenarios often play a key role, providing additional data that
mimics potentially hazardous conditions or events. However, the integration of simulated data
comes with the challenge of ensuring that these simulated scenarios accurately reflect the com-
plexities of real-world events. The success of safety and risk assessment models, therefore, de-
pends not only on the availability of data but also on the careful validation and calibration of simu-
lation outputs against actual operational data.
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Simulation and modelling

Simulation and modelling applications are largely defined by the generation of simulated data.
Physics-based simulation codes allow researchers to create detailed models of nuclear processes
which can be used for exploring a wide range of scenarios. A key challenge with simulation data is
its variability and the potential for discrepancies when compared to real-world observations. It is
imperative to continuously validate and adjust simulation models so that they align closely with
empirical data, thereby ensuring that the insights derived from these simulations are both accurate
and applicable to real operational conditions.

3.2 ML in Nuclear Safety and Risk Analysis

Recent research has developed or applied ML methods for nuclear safety and risk analysis, mainly
for PSA of nuclear power plants. In contrast to ML applications in reactor design and system anal-
ysis, and plant operations and maintenance, ML applications in nuclear safety and risk analysis are
performed on structured data and unstructured free-text data.

ML techniques such as NLP, supervised ML and unsupervised ML are applied to identify free text
data and extract implicit information. NLP can be used to extract, from free-text reports, causal re-
lationships between factors that lead to failures. Context analytics and text analytics can support
decision-making and PSA activities.

ML applications in nuclear safety and risk analysis are not only directly applied for model devel-
opment or uncertainty quantification but often embedded in complicated frameworks for different
purposes. Particularly, the “black box” nature of ML brings challenges with respect to the trust-
worthiness and transparency of the results of ML applications and it becomes difficult to meet reg-
ulatory requirements.

A review of existing studies was conducted in [8], focusing on applied ML approaches for the
PSA of nuclear power plants. Their findings concluded the following:

e There are a limited number of studies using ML to quantify PSA model elements. The ap-
plication of ML approaches for PSA primarily analysed physical phenomena, where ML
was used to cluster the simulation outcomes. In these studies, the data are not historical
events but are the results of simulation codes. Consequently, the main challenge is deal-
ing with large volume of data rather than processing heterogeneous data (e.g., varying
formats and structures of data).

e Among the PSA-oriented ML studies, most of these efforts used historical event data ra-
ther than results of simulation codes. Only a few studies used text mining approaches for
PSA. Additional research is needed to compare the performance evaluation of ML tech-
niques for unstructured event data to justify the best selection for PSA.

ML approaches have the potential to improve plant safety and efficiency. Potential application
fields within nuclear safety and risk analysis include:

e  System, structure, component reliability

¢ Human reliability analysis

¢ External event analysis

e Accidental radiological release and monitoring

Each field is further discussed on the following subsections.
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ML applications in these fields can provide benefits to both NPP operators and the regulator for
plant safety and efficiency. By introducing ML techniques into these fields, potential benefits for
plant safety and efficiency include but are not limited to:

¢ Achievement of a better level of safety by:
o Removing/reducing failure sources.
o Developing better failure-preventing strategies.
o Developing better accident-mitigation strategies.
¢ Enhancement of safety evaluation techniques by:
o Expanding safety evaluation scope.
o Improving safety evaluation accuracy.
e Reduction of human and computational labour cost.

3.2.1 System, Structure, and Component Reliability

Traditionally, System, Structure and Component (SSC) reliability is performed using PSA tools or
reliability modelling methods with conventional statistical methodologies, which may have the
limitations of inapplicability in some extrapolated conditions and be expensive computationally.

Some efforts prove that ML techniques can be introduced in the analysis, evaluation, and enhance-
ment of SSC reliability by providing an efficient and accurate prediction of SSC failure probability
or reliability. By developing surrogate models that may have a better scalability and predictive ca-

pability when ML training data is sufficient, ML techniques have the potential to improve SSC re-

liability analysis and evaluation in plant safety assessments.

Various ML models have been applied to safety-related issues in nuclear power plants, including
ANNSs, kernel regression models, NLP, unsupervised ML methods such as classification and clus-
tering, and others, [6]. These models can be used for one of the following purposes:

¢ Data-driven models: Developing a model that learns patterns and relationships from the
data without relying on prior physical understanding or models.

¢ Physics-guided surrogate models: Supporting existing physical models or tools by build-
ing a ML model that captures the underlying patterns and relationships in the data.

[6] identifies that the primary technical challenge confronting the integration of ML into SSC reli-
ability analysis concerns the inconsistency between ML training data and the data observed in real-
world, full-scale prototypic conditions. ML training data predominantly comprises of numerical
simulation data, supplemented by a limited set of available experimental data and/or operational
data. The challenge arises from potential scale distortion (i.e., not accurately reflect the range and
variability) in the simulated conditions used for generating training data compared to the actual
conditions of full-scale systems. Nevertheless, given the extensive past research in this area, the
knowledge and empirical correlations derived from past efforts can serve as valuable guides in the
development and evaluation of ML models.

3.2.2 Human Reliability

Human Reliability Analysis (HRA) is a systematic technique used to identify, analyse and quantify
the human contribution to risk in complex socio-technical systems. Johnson et al. observe that the
HRA process “usually involves identifying potential human errors, analysing the causes of those
errors, factors that influence these, and determining the likelihood and consequences of those er-
rors”, [14] (pg. 1). In recent years, several studies have been performed to evaluate how Al and ML
could be utilised for HRA. Among the potential applications of AI/ML, the most common appear to
be (i) data mining, (ii) error classification, (iii) human error prediction and (iv) human performance
modelling.
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The first HRA method for nuclear power applications was published in 1983, called Technique for
Human Error Rate Prediction (THERP, [15]), and several more methods have been developed since
then. Despite the maturity of HRA as an analysis technique, one of the most significant challenges
for analysts is the lack of empirical data about human error to inform and underpin HRA methods (
[16], [17], [18], [19]). It is unsurprising therefore that one of the predicted uses of ML for human
factors data analysis is data mining, [20].

[21] noted that diverse HRA data “are helpful for understanding the nature of human errors under a
given task context” (pg. 1), and to reduce uncertainty in the calculation of Human Error Probabilities
(HEPs). Sources of HRA data typically include “operating experiences (e.g., event investigation
reports), observations from full-scope simulators, experiment results using partial-scope simulators,
expert judgments and interviews with subject matter experts”, [21] (pg. 1-2). [22] observed that
“although simulation technology can generate a large amount of data now, accident reports that
record real accident scenarios are still essential sources [of human error data]” (pg. 745). Further,
[14] noted that “Data from major accident reports have the potential to better capture the interaction
between human, machine, and organisational systems, providing additional contexts and scenarios
not fully achieved by simulators and expert elicitation”, [14] (pg. 2).

Despite this, manual extraction of core information related to human and organisational factors
(HOF) is a challenge because it is time consuming and expensive, and because accident report texts
from various sources may contain significantly different structures and levels of detail. Further,
“manual coding of accident records could bring uncertainties and inefficiencies, especially when
many records are available”, [22] (pg. 745).

One technique that can be used to mine relevant data from the text of accident reports is NLP. As
noted in Section 2.4, NLP can be used to extract causal relationships between factors to understand
how HOFs can influence an accident. Reference [20] describes an example approach using “a data
mining framework combining with correlation analysis, cluster analysis, and association rule mining
for identifying intrinsic correlations among human factors”, [20] (pg. 164), shown in Figure 5.
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Figure 5 The data mining framework [20].

In this approach, an initial screening analysis of operating event reports is performed to identify
those events where human factors was either a root cause and/or a causal factor in the event. A
correlation analysis is then performed to identify the strength of the relationship between factors.
Cluster analysis is performed to analyse the similarity between root causes and causal factors. Fi-
nally, association rule mining is performed to identify associations, frequent patterns, or causal struc-
tures from the data sets. Association rule mining can be used to analyse and predict behaviour “to
study the associations and causal structure of the influencing factors, which enable us to predict the
occurrence of a specific influencing factor based on the occurrences of the other influencing factors”,

[20] (pg. 167).

The data mining framework technique utilised in reference [20] enabled extraction of the most fre-
quently identified HOF-related root causes and causal factors from the analysed events. Further-
more, this technique allowed for identification of strongly correlated contributing factors, which
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gives greater insight into both why the events occurred as well as where improvement efforts could
be focused for greatest effect.

NLP is a promising approach, especially where it can reduce the workload of the analyst by signif-
icantly reducing the amount of time needed to process and extract data from a source report, and
potentially identifying latent patterns or relationships that are harder for a person to detect manually.
However, there are some limitations. [23] noted that “Factors that make the application of machine
learning challenging in this domain are the lack of quality and uniformity of the data, limited depth
of information present in the documents, the complexity of the taxonomies applied, lack of uni-
formity and correctness in the processing and labelling of existing documents, or the presence of
low-quality annotated data that may corrupt possible training data”.

Another potential application of ML is as a “virtual human factors classifier”, [24], whereby a text
recognition and classification algorithm is used to automatically classify accident reports using a
pre-defined human factors taxonomy. The goal is to enlarge a human reliability dataset significantly
faster, in about one third of the time it would take to perform this task manually. This method uses
data extraction techniques such as “bag-of-words” (BoW), “Term Frequency — Inverse Document
Frequency” (TF-IDF) and “word2vec”. BoW extracts strings of words from texts and calculates
their frequency of occurrence, to form a vocabulary that allows prediction of which words are likely
to occur together. TF-IDF is similar in that it also calculates the frequency of occurrence of words,
but (unlike BoW) it assigns higher scores to domain specific words. Word2vec is a kind of neural
network that “assumes that words that occur in the same contexts tend to have similar meanings”,

[24] (pg. 4).

Once data are extracted from reports, ML techniques are used to classify text features. These meth-
ods may be supervised or unsupervised, and the method chosen may be “based on how texts are
going to be classified, and if some documents have been previously classified by humans (allowing
their use as examples to train the machine)”, [24] (pg. 5). Examples given include “Naive Bayes”
and SVMs, both of which are popular supervised methods. In [24], it is observed that “Naive Bayes
classifiers perform better with missing data, and therefore it might be a good choice to identify
human factors interactions in major accidents that are considered rare and uncertain events” whereas
“SVM has the potentiality to better capture features interactions and better classify larger docu-
ments”, [24] (pg. 8). [24] claims that the virtual human factors classifier has the potential to signif-
icantly accelerate the data collection process for analysts and that it represents “an efficient way of
expanding existing human reliability databases based on accident reports”, [24] (pg. 23).

Another area of research on how ML can benefit human reliability analysis is the area of human
error prediction, although research on this topic is relatively scarce at this time. [25] observed that
understanding what is meant by the term “prediction” is in itself a discussion point, stating that
“prediction is understood as foreseeing the possibilities for errors” and studies exploring this “ap-
proach the problem of real-time prediction of human error in the sense of detecting hidden precursors
of forthcoming error in the time series representing temporal evolution of system and/or operator
state”, [25] (pg. 173-174).

[25] presents a simple example where ML is used to analyse data on a human balancing a virtual
overdamped stick, to predict human control errors that would result in the stick falling. ML is used
to train a classifier to distinguish between periods of “normal” and “faulty” stick balancing, but also
to identify stick fluctuations and operator actions in “pre-fall” segments from a historical dataset.
The goal is to detect the precursors (changes in the operator behaviour or system state) that indicate
that the stick might be about to fall, in the seconds before it falls. The study achieved a predictive
accuracy of 73-47% and noted that “more advanced data analysis methods (e.g., Bayesian tech-
niques) can also improve accuracy of control error prediction”, [25] (pg. 177).

Research around using ML for human performance modelling appears to be more abundant. This
can be used to predict human behaviour and human error probabilities, but also to support the pop-
ulation of databases through generation of synthetic human behaviour data. [26] used a deep-learn-
ing model to predict future task performance based on workload estimates and contributing
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cognitive, physical, visual, auditory and speech components. The authors noted that “a relationship
exists between workload and overall task performance; thus, workload information may be used to
predict future performance”, [26] (pg. 3). [26] used LSTM neural networks, which predict future
time-steps of a sequential data series based on previous time-step information. Experimental studies
were performed whereby participants simulated supervision of a remotely piloted aircraft in the
NASA MATB-II task environment, and objective and subjective workload measures were collected
throughout. The data were used to train a generalised model for the group of participants and then
individualised models, with the researchers concluding that the individualised model predictions
were more accurate than the generalised model. Although not specifically developed for use in HRA,
such research can be extremely valuable for predictive analysis of human reliability in high work-
load scenarios.

3.2.3 External Events

External events include both natural external events (e.g., earthquakes, high winds, and external
flooding) and human-made external events (e.g., airplane crashes, explosions at nearby industrial
facilities, and impacts from nearby transportation activities).

These external events normally have wide-area effects that may cause malfunctions of several
SSCs at a plant or at several facilities at a site. Specific strategies are essential for preventing and
mitigating failures and accidents resulting from these external events, and these strategies vary de-
pending on the design of the NPP and its site.

PSA tools have been widely applied to external event analyses and can provide sufficient infor-
mation and knowledge for constructing control and management strategies.

External events PSA can also be separated from internal events PSA because it has unique and
specialized analysis methods for various kinds of external events. Depending on country-specific
modelling practices, external events as well as internal fires may or may not be integrated with the
internal events model. In case of using a separate external event PSA model, the construction of it
may require extensive computational resources for quantification.

Researchers have suggested the introduction of ML to provide for a more efficient external event
analysis in PSA. For example, ML-based methodology for seismic fragility curves estimation us-
ing SVMs, and fragility curves based on seismic damage data and numerical simulations by
ANNS. [6]

Existing efforts of applying ML in external event analyses have applied various ML and advanced
statistical methods, including k-nearest neighbour modelling, mean-iterative neural networks, sim-
ple ANNs, DNNs, SVMs, and others for scenario analyses and classification, clustering, and re-
gression trees for identification of external events. [6]

[6] note that the primary technical challenge confronting the integration of ML into external events
include the lack of data or knowledge for some rare external events, particularly some combina-
tions of external events.

3.2.4 Accidental Radiological Release and Monitoring

The assessment of accidental radiological releases is of significant importance for nuclear safety,
guiding decisions in accident control and management. Once radioactive materials are released
into the atmosphere, the source term information becomes inherently unknown and uncontrollable.
Therefore, monitoring the dispersion of accidental radiological releases becomes necessary.

ML approaches have been applied to better estimate the release rate, amount, and area of source
terms or radioactive materials from NPPs operations and accidents. Various ML methods and data-
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driven frameworks have found application in this area, encompassing conventional ANNs, GPs,
RFs, GAs, and sophisticated DL approaches like CNNs and RNNs. The selection of ML methods
is dependent upon the complexity of the database and the latent physics involved. [6]

The Rapid Source Term Prediction (RASTEP) tool, developed by Vysus Group in cooperation
with the Swedish Radiation Safety Authority (SSM), is an emergency preparedness tool that uses a
probabilistic approach to provide decision support in nuclear emergency situations, [27]. RASTEP
utilizes Bayesian Belief Networks (BBNs) to predict potential source terms based on real-time
data. By incorporating PSA level 1 and 2 analyses, the tool effectively models various release cat-
egories and their associated source terms, allowing for rapid and reliable predictions during a cri-
sis. This probabilistic approach accounts for uncertainty in the data, providing decision-makers
with a clearer understanding of potential radiological releases and their impacts. The integration of
RASTERP into crisis organizations' operational frameworks enhances situational awareness, ena-
bling informed actions to protect public health and safety during severe accidents.

[6] note that the primary challenge in implementing ML within this field lies in the scarcity of data
available for validating ML models and frameworks. However, leveraging high-fidelity simulation
data generated through intensive computational processes (e.g., data obtained from simulations
that closely emulate the real-world conditions or phenomena) enables the quantification and reduc-
tion of uncertainties in ML predictions.

3.2.5 NLP of Operating Experience

In PSA-models, operating experience is used to estimate equipment reliability, unavailability, initi-
ating event (IE) frequencies. For these, classical statistical approaches are used to estimate the fail-
ure probabilities/rates and frequencies. However, the estimations are based on time-consuming and
resource-heavy manual analysis of the historical data, i.e. the operating experience in terms of fail-
ure event reports. With use of NLP, this process could be automated which would save time and
resources and as well identify new relationships between failure event reports. These new insights
could support decision-making and assist in the identification of anomalous behaviours that might
occur in a system, the possible cause-effect relations between events and their potential conse-
quences, [28].

With ML it would be possible to recognize and process both structured data and unstructured data.
Structured data would here be data classification using existing or new data fields from existing
databases where operating experience are collected. Unstructured data would here be analysed
with NLP methods for causal learning, e.g., extracting causal relationships from failure reports.
For example, “the cause of the pump failure was due to broken pump shaft”. In this example, the
model would identify and couple the words “cause” and “due to”, and thereby identify the rela-
tionship between the pump failure and why it failed. With NLP methods it would be possible to
extract failure data for parameter estimations.

NLP methods could also be used for other applications to support and optimize NPP operation and
maintenance including advanced diagnostic (such as detecting failure causes), prognostic models
(such as predicting the remaining useful life) and human reliability analysis (as discussed in sec-
tion 3.2.2). Examples of applications are:

e [29] describes that the NLP method used free text data (event descriptions) to automati-
cally identify and characterize a Low Power Shutdown (LPSD) initiating event. In the ap-
plication, a dictionary-informed DL approach was implemented and evaluated. The main
challenges identified were that the event descriptions and the terms used in the records
are not standardized, and that the training/testing datasets are small.

e [30] developed a similar method for automatic fault detection to build a reliability data-
base based on existing operating experience.
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3.3 ML in Reactor System Design and Analysis

ML methods have found extensive application in the design and analysis of reactor systems, en-
compassing areas such as reactor thermal hydraulics, reactor physics, and reactor system perfor-
mance.

The predominant data types involved consist of structured experimental data and numerical data
produced by simulation codes or simulators. These datasets serve as valuable complements to
plant operating experience, allowing the simulation of key parameters and variables in fundamen-
tal reactor systems.

ML applications are focused on addressing model and code uncertainties, as well as developing
closure models. A closure model refers to a mathematical or computational model used to repre-
sent processes or phenomena that may not be fully resolved within the primary modelling frame-
work. ML-based approaches have proven to be instrumental in facilitating the advancement and
implementation of thermal-hydraulic and neutronic methods. These methods offer innovative op-
portunities for dimensionality reduction and the creation of reduced-order models within fluid me-
chanics or neutronics.

Applications of ML include nuclear reactor design optimization. Reinforcement learning has been
applied for various optimization problems within the nuclear industry, especially attributed to the
nuclear fuel design. Nuclear fuel design involves two common problems: (1) core optimization
and (2) assembly optimization. Core optimization aims at finding the best loading pattern of all as-
semblies in the core such that the reactor operation is economic and meets safety constraints,
whereas assembly optimization aims on finding the optimal material composition and location of
all fuel rods in the assembly. Examples of ML applications are:

e Nuclear Power Plant Fuel Optimization, [31]: Reinforcement learning algorithms, includ-
ing deep reinforcement learning, have been assessed for their potential in optimizing nu-
clear power plant fuel, presenting a novel approach to solve the loading pattern problem.

e Nuclear Assembly Design Optimization, [32]: Physics-informed reinforcement learning
has been employed for the optimization of nuclear fuel assemblies, aiming to improve
fuel efficiency, reduce costs, and ensure safety constraints.

While ML algorithms are adept at handling and analysing structured data, a significant technical
challenge arises from their inherent "black box" nature. This characteristic introduces a new source
of uncertainty, complicating the explanation and trustworthiness of ML techniques, especially in
their application to nuclear industry. Additionally, the exceptional capability of ML techniques to
capture features from training data may result in overfitting issues in predictions (i.e., a model
learns the training data too well, including its noise and outliers, making it perform poorly on new,
unseen data).

3.4 ML in Plant Operation and Maintenance

In recent decades, there has been a growing exploration of ML techniques to enhance the support
and optimization of nuclear power plant operations and maintenance. The majority of ML applica-
tions in this context rely on simulated data due to the scarcity of available plant operating data.
Nevertheless, the robust, accurate, and rapid computational capabilities by ML techniques prove
highly instructive and valuable. They play a pivotal role in realizing autonomous plant control and
management, leading to cost reduction and enhanced reactor resilience (e.g., predicting, identify-
ing, and responding to potential issues).

It is worth noting that most of these ML-aided techniques are specifically developed for safety-sig-

nificant or safety-related Instrumentation and Control (I&C) applications in NPPs. The licensing
process for these applications is subject to stringent regulatory requirements. Therefore, future
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research should focus on identifying, analysing, and evaluating the trustworthiness, transparency,
and robustness of ML-aided techniques.

Applications within operation and maintenance can be sub-divided into two different focus areas:
(1) diagnosis and prognosis and (2) optimization of maintenance.

3.4.1 Degradation Modelling

Components in a NPP must endure high-temperature water, stress, vibration, and an intense neu-
tron field. Material degradation within this environment has the potential to result in reduced plant
performance or an unplanned shutdown, leading to a loss of power generation. Consequently,
modelling degradation and implementing online monitoring are necessary to address issues related
to component ageing. This approach allows for precise predictions of failure points or the remain-
ing useful life (RUL) of components, enabling timely maintenance or replacement.

While several models exist for estimating material or component degradation, these models typi-
cally come with fixed forms or parameters, restricting their applicability under certain extrapolated
conditions. Additionally, conventional methods rely on prior physics knowledge and expertise, of-
ten having limited adaptability to learn from extensive measured or simulated data. This highlights
the potential for ML methods to create data-driven surrogate models, which can use such data for
model improvement.

Depending on the complexity of involved physics, sufficiency of data, and internal dependency of
degradation features, different ML methods have been introduced and demonstrated for degrada-
tion modelling, including GPs, simple ANNs, DNNs, RNNs, unsupervised learning, and support
vector regression, [6].

3.4.2 Fault Diagnosis

Fault Diagnosis (FD) involves identifying abnormal behaviour in a component by analysing spe-
cific indicators. In complex systems such as nuclear power plants, pinpointing faults accurately re-
quires collecting data through sensors, processing the data with algorithms, and extracting essen-
tial patterns for effective fault identification or classification.

Fault detection, diagnosis and prognosis (FDDP) is extensively implemented in existing NPPs to
enhance and ensure the reliability and availability of SSCs. These approaches are physics-based
and data-driven and rely heavily on prior physics knowledge and expertise, and the available
measured or simulated data. Although these methods do not demand extensive data, they may
struggle to precisely predict faults or NPP states in unfamiliar or abnormal conditions.

In contrast, data-driven approaches using ML methods can unravel intricate, nonlinear patterns
from large datasets. These approaches exhibit broad applicability and self-improvement capabili-
ties facilitated by adaptable ML models as new data becomes available. The integration of data-
driven and physics-based approaches, often termed hybrid physics-guided data-driven approaches,
shows promise in addressing knowledge and technical gaps by using the strengths of each ap-
proach.

A diverse array of ML methods has been demonstrated, spanning from supervised to unsupervised
learning and ranging from techniques like GPs, SVMs, and ANNs to more intricate models such as
Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), and RNNs. [6]

The primary technical challenges in ML applications for FDDP persist in enhancing their explain-

ability, interpretability, and trustworthiness, especially given the potential impact on the perfor-
mance of highly safety-related and safety-significant Instrumentation and Control (I&C) systems.
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Thus far, FD may be the most active application area of ML techniques in the nuclear industry and
considerable progress has been achieved, [5].

3.4.3 Predictive Maintenance

Currently, the nuclear industry adopts preventive maintenance programs for SSCs. Often the pre-
ventive maintenance times are based on the average service life of similar equipment, disregarding
the specific operating conditions of individual components. Consequently, a conservative stance
often leads to excessive maintenance, which results in increased costs but also heightens system
risks due to potential human errors during maintenance.

The safety and efficiency of NPP Operation and Maintenance (O&M), is enhanced by the develop-
ment of models and algorithms for diagnostics and prognostics (i.e., reliability assessment at the
current moment and in the future). These Prognostics and Health Management (PHM) techniques
use real-time and historical operational data to provide decision support for improved perfor-
mance, reliability, and maintainability. They are capable of handling high volumes of multi-di-
mensional data collected by sensors. The PHM techniques aim to shift from an "on-time mainte-
nance strategy" to an "on-demand maintenance strategy" through RUL prediction for key equip-
ment, see Figure 6.
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Figure 6 PHM framework [5].

Nuclear researchers are actively working on developing ML-based inference methods that over-
come the limitations associated with classical approaches. Inference methods have the ability of
reasoning or deducing information beyond what is explicitly stated in the data, whereas classical
methods often have limitations in terms of complexity, adaptability, or the ability to handle large
datasets. As of now, there are no implementations of these methods ready for practical applica-
tions, [33].

An example application for assessment of equipment reliability data is given in reference [34]. In
this application, the automatic generation of knowledge is based on a textual element in order to
assist system engineers in assessing an asset’s historical health performance. The goal is to assist
system engineers in the identification of anomalous behaviours, cause—effect relations between
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events, and their potential consequences, and to support decision-making such as the planning and
scheduling of maintenance activities. The application describes how equipment reliability textual
data elements are first pre-processed to handle typos, acronyms, and abbreviations, then ML and
rule-based algorithms are employed to identify physical entities (e.g., systems, assets, and compo-
nents) and specific phenomena (e.g., failure or degradation).

A systemic review of ML algorithms for periodic in-service inspection (ISI) using non-destructive
examination (NDE) methods, [35], addresses their potential and gaps. The study concluded that
the confidence in ML results for NDE relies on careful data selection, model tuning, and robust
verification and validation. Using standardized, representative datasets not only improves perfor-
mance confidence but also enables easier method comparisons. Missing data sets and workflow
details limits this further (such as sample size determination, handling unbalanced data and bias).

Research presented in [36] introduce federated-transfer learning (FTL) to scale ML models for
condition-based monitoring (CBM) across a component or plant system by combining federated
learning (FL) and transfer learning (TL) approaches. FL enables a centralized server to develop an
aggregated global CBM model, while the training data are safely and privately distributed on the
devices of plant systems, and TL enables application of the developed aggregated model to differ-
ent but related systems within the same plant site, or to the same system at different plant sites.
The study in [36] demonstrated the significance of the FTL approach with use of a multi-kernel
adaptive SVM and an ANN, which avoids building exclusive predictive models for each NPP and
each system. While there is limited use of FTL in the nuclear industry, the secure, privacy-oriented
approach it offers could be advantageous for CBM in NPPs. Given the sensitive nature of nuclear
data, FTL's potential to enable collaborative learning without sharing raw data could be a future
development in nuclear safety and optimization.
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4 Challenges and the Future of Al and ML

4.1 Accelerate Innovation

In the US, the Nuclear Regulatory Commission (NRC) has developed an Al Strategic Plan, [37],

covering fiscal years 2023-2027, with vision and goals to continue to improve its skills and capa-
bilities to review and evaluate the application of Al to NRC-regulated activities, maintain aware-
ness of technological innovations, and ensure the safe and secure use of Al.

The Al Strategic Plan, [37], includes five goals: (1) ensure NRC readiness for regulatory decision-
making, (2) establish an organisational framework to review Al applications, (3) strengthen and
expand Al partnerships, (4) cultivate an Al-proficient workforce, and (5) pursue use cases to build
an Al foundation across the NRC.

The first goal aims to establish a robust and flexible Al regulatory framework that provides an ob-
jective, sound technical basis upon which regulatory decisions can be made and enforced. Thus,
the overall strategy is to continue to keep pace with technological innovations to allow for the safe
and secure use of Al in NRC-regulated activities, when appropriate, through existing or new regu-
latory guidance, rules, inspection procedures, or oversight activities.

The International Atomic Energy Agency (IAEA) has published a document, [33], on how they
can assist and help accelerate the development and adoption of ML methodologies for the nuclear
industry.

The availability and quality of data is a challenge for several application areas, sometimes because
it contains sensitive data. Improving the availability of data sets would enable evaluation/bench-
marking of ML techniques. Also, increased sharing and accessibility of data would accelerate the
development and adoption of ML methodologies, [33]. Their potential beneficial actions within
data and information management systems include:

e Developing and maintaining a library of benchmark datasets for comparing and evaluat-
ing performance of various ML algorithms.

e  Guiding development and deployment of privacy-preserving methods for data anony-
mization.

e Creation of a repository facilitating the exchange and sharing of data for representative
projects to promote the value of Al

IAEA also aims to assist the innovation within the field by:

e Facilitating a network with subgroups for each of the main application areas.

e Arranging training workshops, e.g., to improve model transparency and making the ML
systems understandable.

e Coordinate research projects. For example, the IAEA has designated the “Center for Sci-
ence of Information” at Purdue University in USA as the first IAEA Collaborating Centre
to support the Agency’s activities on Al for nuclear power applications, including reactor
design, plant operations, and training and education, [38].

e Review the impact of Al and ML on existing [AEA guidance and standards and provide
commentary on their applicability, especially in the safety and security area.

e Develop principles and guidance for Al and ML systems, including best practices. In ad-
dition, IAEA topical reports on Al technology and or the practical use of Al in a nuclear
power context would be beneficial.
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Within the Organisation for Economic Co-operation and Development — Nuclear Energy Agency
(OECD-NEA), there is a task force dedicated to “Artificial Intelligence and Machine Learning for
Scientific Computing in Nuclear Engineering”, [39]. This task force objectives are to provide the
following:

e Standardised benchmark exercises with certified experimental data and high-fidelity com-
putational data for the training of AI/ML models.

e Detailed guidelines for applying AI/ML methodologies for supervised, unsupervised, and
semi-supervised ML, as well as advanced topics such as deep generative learning and
probabilistic ML.

e Proposals towards the development of verification, validation and uncertainty quantifica-
tion requirements of AI/ML models in nuclear systems based on consensus positions of
the task force.

e  Guidelines for improving AI/ML trustworthiness through accuracy, robustness. (repro-
ducibility, applicability) and transparency (explainability, interpretability).

e Training opportunities to demonstrate AI/ML principles and practices.

e Demonstrations of the AI/ML guidelines for specific applications.

Overall, these initiatives aim to enhance safety and efficiency in nuclear operations through Al and
ML integration. It is clearly seen that many efforts are taken place, and this is an interesting devel-
opment. These initiatives by well-known organisations are perhaps the key to successfully acceler-
ate the development and adoption of Al and ML methods within the nuclear field.

4.2 Black Box Dilemma and Explainable Al

A major concern with Al systems, particularly those using DL algorithms, is their "black box" na-
ture. The process within a DL model between input and output involves hidden layers where fea-
tures are encoded through multiple neuron clusters, making it obscure to humans. Figure 7 illus-
trates the paradox between Al explainability and performance, reproduced from [5]. Models with
superior performance often have more complex internal mechanisms and are harder to explain,
whereas models with simpler mechanisms, like linear and rule-based models, struggle with com-
plex nonlinear problems. The ideal model would achieve both high performance and high explain-
ability.

The nuclear industry has high requirements in terms of safety and is heavily regulated. Thus, it is
crucial to enhance the transparency, robustness, and accountability of Al models. Focusing solely
on accuracy is insufficient for the integration of Al. Consequently, researchers must address these
broader criteria to advance the field.
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The existing obstacles that prevent the further fusion of Al and nuclear technologies so that they
can be scaled to real-world problems are classified into two categories [5]:

1. Data issues: Insufficient experimental data increases the possibility of data distribution
drift and data imbalance.
2. Black-box dilemma: DL methods such as CNNs, RNNs have poor interpretability.

Potential strategies to address the challenge with the black box dilemma:

1. Promoting the use of eXplainable Al (XAI) technologies to enhance the transparency and
reliability of AI models used in nuclear applications. XAl aims to make Al systems more
interpretable and their decisions more understandable to human users.

2. Better integration of domain knowledge with data-driven approaches. Incorporating ex-
pert knowledge and physics-based models can help reduce the reliance on pure "black
box" Al and improve the robustness and interpretability of the solutions.

Overcoming the "black box" dilemma is crucial for building trust and ensuring the safe and re-
sponsible deployment of Al in critical nuclear operations, where the ability to understand and ex-
plain the Al system's decisions is essential.

" HBN: Hierarchical Bayesian Networks; SLR: Simple Linear Regression; CRF: Conditional Random Fields; MLN: Markov Logic
Network; AOG: Stochastic And-Or-Graphs; XGB: XGBoost; and GAN: Generative Adversarial Network.
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The field of explainable Al include a broad spectrum of methods and to support practitioners for
choosing an appropriate XAl method for their use-case, some main categories for evaluation of
method selection include:

e Scope of interpretability: Global vs local explanations.

e Explanation target: Model understanding vs outcome understanding.

e Data type: Structured versus unstructured data.

e Explanation type: Feature importance, example-based, rule-based, etc.
e Explanation form: Visual, textual, local approximation, etc.

e  Model-specific versus model-agnostic (model-generic) methods.

Common strategy for XAl selection includes distinguishing between model-specific and model-
agnostic methods, local and global scope of explanations, the data type handled, the form of expla-
nations provided (visual, textual, rules, etc.), and whether they explain the model or its outputs.

Current XAl studies are mostly focusing on classification problems with images or natural lan-
guage data. However, since Al models in the nuclear industry are applied to various problems
other than classification problems, further research is needed to investigate on how to apply XAl
for such problems.

4.3 Transparency and Ethics

Transparency in Al is a multi-faceted concept. According to the OECD Al Principles, transpar-
ency can refer to (i) “disclosing when Al is being used”, (ii) “enabling people to understand how
an Al system is developed, trained, operates, and deployed in the relevant application domain”,
(iii) “the ability to provide meaningful information and clarity about what information is provided
and why”, and (iv) “facilitating public, multi-stakeholder discourse and the establishment of dedi-
cated entities, as necessary, to foster general awareness and understanding of Al systems and in-

crease acceptance and trust”, [40].

According to [41], transparency is tightly linked to the concepts of explainability (see Section 4.2)
and openness. In [42], it is noted that “fransparency has been highlighted as one of the key ethical
considerations required to build trustworthy AI” (pg. 1). As noted earlier, the trustworthiness of
Al is a key factor when considering its potential use for safety analysis in NPPs. However, when
determining how much of the inner workings of Al should be revealed, organisations need to con-
sider the context within which the Al is used. [42] stated that “While transparency is generally
useful in the case of decision-making systems, especially when decisions are being suggested to
aid human decision-makers, it isn’t entirely clear whether the same is true for all types of Al sys-
tems and contexts of application. Additionally, this is transparency of the algorithms alone, out-
side of its situated context, and excluding the user interactions. Such a specific definition of trans-
parency, arguably, is unlikely to have an effect on trust”. Further, the degree of transparency must
be considered to avoid information overload for users, which can actually negatively affect the
level of trust that users have in the Al, [42].

The concept of ethical Al refers the safety, privacy, security and the transparency of Al systems, as
well as issues such as bias, diversity and privacy preferences, [43]. In fact, ethical Al is considered
to be such a significant issue that there are now over 80 ethical Al guidelines and standards, [43],
developed by international bodies and expert groups including the European Commission [44],
UNESCO? [45] and the United Nations [46].

The ethical development and use of Al systems is not straightforward and must consider several
factors including fairness, autonomy, anonymity and privacy. Ethical Al is tightly coupled to the
concepts of explainability, i.e., transparency and interpretability. Transparency aims to detail how

2 United Nations Educational, Scientific and Cultural Organization
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data is processed and transformed in the ML algorithm. Interpretability focuses on the clarity of
the relationship between the input features and the output decision. In simpler terms, while trans-
parency reveals the model’s mechanics, interpretability explains how specific inputs lead to partic-
ular outcomes.

Although ethical Al guidelines are often concerned with fairness, privacy and safety related to in-
dividuals, it is still an important concept for the development of AI/ML systems for safety analysis
for NPPs. For example, accountability is an important issue in ethical Al — deciding who is respon-
sible for the Al systems and the decisions they make, and also who is responsible if the system is
seen to be causing harm, [43] (pg. 7). Further, explainability of systems is important to ensure that
the AI/ML provides adequate justification of the outcomes of the system, and to support trustwor-
thiness in those outcomes, [43].

4.4 Regulatory Requirements and Standards

As mentioned in section 4.1, the NRC anticipates increased use of Al in their regulated activities.
Hence, the NRC has formulated a strategic goal to ensure readiness for regulatory decision-making
and review of Al applications. Al technologies provide the underlying capability for autonomous
systems. Higher autonomy levels indicate less reliance on human intervention or oversight and,
therefore, may require greater regulatory scrutiny of the Al system, [37].

The NRC plan to assess whether any regulatory guidance (e.g., regulatory guides or standard re-
view plan sections) or inspection procedures need to be updated or created to clarify the process
and procedure for the licensing and oversight of Al in NRC-regulated activities.

The NRC will undertake research to develop an Al framework to determine the approach to assess
technical areas such as, risk analysis, explainability, data quality, quantity, applicability, and un-
certainty. The NRC will also work with agency stakeholders and the international regulatory com-
munity to determine the currently available Al standards and identify the technical areas where
gaps may exist. In addition, the NRC will participate with standards development organisations
and the international regulatory community (Al Strategic Goal 3) for development of Al standards
and guidance documents, [37].

The TAEA has identified that concrete efforts will be needed to develop a roadmap guiding regula-
tory investigation, research and positioning on the application of Al systems for nuclear power
plants, [33].

Enabling acceptance of Al in safety-related applications standards, especially with regard to safety
and security, would need existing standards to be adapted, or new standards developed.

The development of Al technologies for safety critical applications could present a challenge to
regulators, as many traditional assurance approaches might not be easily applicable.

One possible approach involves the IAEA assessing how Al and ML impact existing guidance and
standards, offering insights on their suitability, particularly concerning safety. Regulatory approval
is crucial for their implementation in nuclear power plants. However, the lack of a clear pathway
for licensing Al applications, especially in safety-critical areas, may hinder their deployment and
the potential benefits they offer. Establishing adaptable guidelines addressing common regulatory
hurdles for AT and ML would facilitate their development and adoption. Such guidelines should
emphasize the advantages of these technologies while ensuring their safe and responsible deploy-
ment.

The study in [47] draws attention to the hidden risks often embedded within AI’s core decision-

making mechanisms and acknowledges the limitations of directly applying IAEA’s nuclear safety
regulatory framework to Al
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An TAEA Technical Document (TECDOC), “Safety Implications of the Use of Artificial Intelli-
gence on Nuclear Power Plants”, is planned to be published in late 2024, [48]. This TECDOC
will address identified factors relevant to the use of Al in nuclear safety applications and the po-
tential benefits and challenges of deploying Al.

In general, upcoming regulations would need to address the complete AI/ML lifecycle (in particu-
lar, for safety-critical systems), and demonstrate guidance on how to address the range of new vul-
nerabilities AI/ML systems present in terms of both the data utilised, and the model itself, [49].

The UK regulator, Office for Nuclear Regulation (ONR), plan in the next twelve months to release
new guidance on regulating Al for their inspectors. ONR has also a set of Al-related regulatory
objectives, see Figure 8, [48]. They will continue to support the safe deployment of Al systems,
without compromising their independence. They will continue to work with industry, academia
and domestic and international organisations to improve consistency of approach, reduce regula-
tory uncertainty and achieve common positions on technical matters relating to Al

Develop ONR inspector
capability in relation
to Al

Develop a regulatory
approach which is
informed by national, and
international,
best practice

Support the use of Al
where this reduces risk to
workers and the public

ONR
Al Regulatory
Objectives

Minimise regulatory
uncertainty through
guidance and frequent
engagement with
dutyholders

Share learning and
approaches with other
regulators, and
international agencies

Develop our
understanding
of how different Al
use cases impact
safety and security
risk profiles

Figure 8 ONR Al regulatory objectives.

Recent collaboration between the regulatory bodies of the US, Canada and the UK have published
a report, [50], on their view of Al systems for nuclear applications. The report provides a collec-
tion of standards and guidance across regulatory areas. The list contains both existing non-Al and
Al-specific standards and guidance relevant to the nuclear industry. The report also concludes that
"the fast pace of Al development means it is unlikely that Al-specific consensus standards for the
nuclear domain will be available to support regulatory activities within the near future. In the in-
terim, existing nuclear-specific standards remain a starting point coupled with considering the
unique attributes introduced by AI".

The overarching goal of these efforts is to ensure a harmonized approach to Al regulation that en-
hances safety and reliability while ensuring compliance with regulatory frameworks. The regula-
tory bodies have a vital role in setting and enforcing these regulations, as well as to continuously
monitor and assess compliance. The main challenge is that regulations need to keep up with the
fast-paced development of Al and simultaneously not hinder the continuous development. To miti-
gate this challenge, close cooperation between the regulatory body and the utilities is necessary.
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Concerning standards, a survey by Idaho National Laboratory (INL) [51], which focuses on nu-
clear applications, note that “although Al related laws and regulations have been slow to be en-
acted, professional organisations have been active in issuing standards for the use of AI”’. The In-
stitute of Electrical and Electronics Engineers (IEEE) has and is in the process of publishing sev-
eral standards that relate to Al systems, see further [51].

In addition to IEEE, the International Organization for Standardization (ISO) has in conjunction
with the International Electrotechnical Commission (IEC) also published standards relating to the
use of Al, [51]. The nuclear power community has also created a dedicated ISO/IEC subcommittee
(JTC 1/SC 42) working on promoting a rapid transfer of Al technologies from pilot studies to wide
applications, [33].

[51] presents the following key areas for nuclear regulators and researchers to address:

e Definitions: Establish standardized definitions to promote faster evaluation and adoption
of new proposals for nuclear applications.

e System requirements: Address performance requirements in regulations and standards.
Numerous studies have demonstrated impressive evaluation results, such as accuracy, but
it remains uncertain if these are adequate for nuclear systems. Additionally, there is a lack
of guidance on the necessary transparency and explainability of these systems for imple-
mentation.

e Application requirements: Applications will likely require unique criteria. Hence, regu-
lators should not only establish benchmark performance metrics for Al in nuclear systems
but also identify a range of applications for potential approval.

e Human factors and training: Essential to focus on operator interaction, training, and
readiness for these systems when implementing Al.

Another technical report3, IEC TR 63468:2023 [13], overviews Al technologies from a nuclear
perspective, and summaries potential Al application scenarios in nuclear facilities. This report was
developed by the subcommittee SC 45A for “Instrumentation and control, and electrical power
systems”. The report identifies proven or potential applications, with the objective to foster better
understanding and adoption of Al technologies and to support future standard development. It rec-
ommends setting up a new dedicated working group to be responsible for and coordinate standard
development efforts. The report notes that “the regulatory framework from nuclear regulators is
not yet established” and consequently, the focus is on non-safety related Al applications. Never-
theless, Al technologies can still be applicable in safety applications, given that both the technol-
ogy and regulations support their use.

4.5 Digital Twins

A Digital Twin (DT) system consists of a physical system (e.g., plant components, sensors, opera-
tors), a virtual system (simulations, models), and data relationships between them. The system en-
ables real-time data flow from plant sensors to the virtual model, which can then provide insights
for predictive maintenance, anomaly detection, and support for decision making.

DTs can provide insights equivalent to Modelling and Simulation (M&S) but need to learn and
provide those insights much faster than the development and uses of M&S. DTs are tightly cou-
pled with operation with the ability to assimilate and adapt to real-time information from the oper-
ating environment through continuous learning.

3 Note that an IEC technical report is entirely informative in nature, and it establishes no requirements.
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The DT for nuclear systems has existed for decades in the form of on-line core monitoring sys-
tems. Advances and capabilities with ML-based predictive analysis has the potential to further im-
prove decision-making capabilities for reactor operation.

Existing reactors traditionally rely on analogue instrumentation and legacy systems, so current DT
systems are typically one-directional, from the physical asset to a digital model, rather than the
full, real-time, bi-directional integration envisioned for next-generation systems. However, the in-
creasing use of both digital systems and models for existing reactors provides an increased poten-
tial for adopting DT systems within several areas, [52].

e  Plant-referenced simulators: These simulators replicate control room environments and
simulate plant operations under normal, transient, and accident conditions. While they
provide valuable training and design validation, their scope is limited to the fidelity re-
quired for operator training and post-event analysis, rather than full-scale, real-time, DTs.

¢ Condition monitoring and predictive maintenance: Modern upgrades include the installa-
tion of advanced sensors (e.g., for vibrations, thermal imaging, acoustics) and enhanced
data analytics. Many US utilities have set up monitoring and diagnostic systems that use
these sensor data streams (sometimes also augmented with ML) to detect anomalies, pre-
dict equipment degradation, and optimize maintenance intervals.

Digital Twins (DT) in the nuclear industry offer significant advantages in terms of operational effi-
ciency, safety, reliability, and regulatory compliance. The technology is expected to see rapid
adoption in the nuclear sector over the next 10 years as its benefits become more widely recog-
nized. A special interest has been observed for advanced reactor designs and implement DT sys-
tems to optimize such reactors.

The integration of DTs into nuclear operations necessitates a thorough evaluation of current regu-
lations to identify applicable criteria and potential gaps. This ensures that DT applications comply
with safety standards and regulatory expectations. The regulatory requirements for DTs will vary
depending on their specific applications. Each use case demands a tailored approach to meet rele-
vant regulatory criteria. The regulatory requirements for a DT will be directly dependent upon how
it is to be used (i.e., its functionality), which is discussed in [53].

The digital twin concept can be applied to several areas, for example, to support risk-informed
safety analyses and PSA. Potential opportunities identified in [54] are:

e Modelling and simulation to inform safety analyses:

o Support risk-informed and deterministic regulatory conclusions with new data
and insights.

o  Support decision-making with integrated modelling and simulation.

e Integration of DT with PSA:

o Inform PSA models with internal and external data and analysis and provide dy-
namic parameter estimation, SSC availability, or risk triplets for advanced reac-
tor SSCs, etc.

o Upgrade and augment PSAs using DTs (e.g., use of advanced models, physics-
based or AI/ML, in DT for identifying novel failure modes, correlations, and de-
pendencies).

o Estimate human error probabilities and make recommendations for minimizing
human errors and their consequences.

Three specific DT challenges when considering ML related to licensing and regulatory activities
are identified in [55]. These are:
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¢ Quality/optimum of input data: ML algorithms require significant amount of DT training
data to produce reliable results. Gaps can occur when input data is insufficient or when
the quality of the data is poor (may lead to false outputs or large uncertainties).

¢ Identification and selection of appropriate ML algorithms: the wide range of available
ML methods and algorithms (as seen in this project’s literature review) is a challenge to
select the most appropriate algorithms and will be dependent on many factors (e.g., per-
formance, size, complexity, scalability). Also, eliminating algorithm bias is a significant
challenge.

¢ Explainability of the I/O relationships contained within the algorithms: The ability to ex-
plain and understand the algorithms relationships will be crucial, both for regulatory pur-
poses but as well as for broader acceptance (i.e., the black-box nature needs to be
avoided).

4.6 Natural Language Processing

NLP has the potential to derive actionable information from textual data. This has the potential to
enable the nuclear industry to automate many processes, increase efficiency, and reduce costs.

However, open-source dictionaries do not understand the industry-specific language, and therefore
is an industry-specific dictionary needed to conduct text mining and apply NLP-based algorithms,
[56].

Some challenges that NLP methods are facing concern:

e  The variation of phrasing/wording that varies between workers, sites, utilities, and coun-
tries. This is especially seen when looking at operating experience over time.

e  The most promising NLP models have been developed for the English language, which
results in limited applicability for non-English speaking countries.

e Data sharing limitations among utilities and organisations due to security constraints, in
order to create larger, high-quality datasets for training NLP models.

Looking ahead, the U.S. Department of Energy's Light Water Reactor Sustainability (LWRS) pro-
gram is involved with an Al and NLP application, which aims to develop virtual assistants and au-
tomated processes, [57].

Large Language Models

Large Language Models (LLMs) are a specific type of deep learning model designed for NLP
tasks. They are typically characterized by having a very large number of parameters and being
trained on massive datasets, which enables them to generate coherent and contextually relevant
text, summarization, question answering, and more.

In the nuclear domain, [58] presents some previous efforts with LLMs, such as NukeBERT and
NuclearQA in addition to their own model CurieLM. NukeBERT is a pre-trained language model
derived from BERT (Bidirectional Encoder Representations from Transformers), specifically de-
signed for applications within domains that possess limited datasets, such as nuclear science. Dur-
ing evaluations, it has demonstrated substantial performance enhancements compared to the origi-
nal BERT baseline. NuclearQA is a benchmark tool designed to evaluate LLMs in the nuclear do-
main. This benchmark revealed a gap in current LLMs' scientific knowledge, pointing to the need
for more specialized models. These domain-specific LLMs have demonstrated potential in their
respective fields, indicating that fine-tuning LLMs on domain-specific data can be effective.

CurieLM, a LLM specifically tailored for the nuclear domain [58], which was guided by three key

principles: ensuring high-quality data, maintaining domain specificity, and involving domain ex-
perts in the process.
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The dataset included documents published by IAEA, French Institute for Radiation Protection and
Nuclear Safety, etc. The study resulted in a model that outperformed the base LLM in correctness,
language adaptability, and the provision of concise, relevant, and domain-specific responses. In
addition, future research is however needed but also shows the future potential of LLMs in the nu-
clear domain.

4.7 ML Application Outlook in Sweden

Regarding NLP, there is in Sweden limited awareness and knowledge of NLP and its solutions for
domain-specific issues (e.g., operation and maintenance) have not been explored within Nordic
NPPs, [59]. One key takeaway in [59] is that the nuclear industry's language is highly specialized
and varies significantly between utilities. Additionally, challenges include restricted permissions,
limited data access and data quality.

Al efforts differ among Swedish utilities, with one utility notably ahead in its Al implementations
compared to the other two, [60]. Some academic research in form of theses has been carried out at
the utilities related to Al

e Bjorn's thesis [61] explored detecting deviations in sensor data with Al

e Lindskog and Gunnarsson's thesis [62] focused on predictive maintenance, utilizing ML
to predict possible machine damage based on measurements and historical issues.

e  Schultz’s thesis [63] investigated trending and condition monitoring to predict malfunc-
tions of valve actuators.

e Sjogren’s thesis [64] explored anomaly detection with ML methods. Here, a data-driven
approach using a hierarchical autoencoder framework was studied.

The analysis of component and sensor data remains the most prevalent area for Swedish stakehold-
ers. Additionally, there has been demonstrated interest in predictive maintenance. At the Os-
karshamn nuclear power plant a modern tool to harness the plant's data for early fault detection,
preventing downtime and enabling better maintenance planning is being used. The tool for anom-
aly detection uses ML and the plant's process data to monitor operations, identify anomalies, and
predict disturbances. This tool has also been evaluated at the other utilities in Sweden in a collabo-
rative effort. Due to the ongoing, experimental nature of the work and the proprietary aspects of
the algorithms, no references are available, [64].

In addition to these application and theses, several challenges have been identified and need to be
resolved to further increase the applicability of AI/ML. As mentioned above, NLP faces chal-
lenges regarding approaches that use domain-specific language. Another area concerns data availa-
bility, since ML relies heavily on large datasets to be useful. The extensive historical operating ex-
perience of the Swedish nuclear power fleet has the potential to enable models and algorithms to
train on such data. However, compared to other countries with nuclear power with much larger
fleets, the potential will be limited.

International collaboration and sharing of datasets could bridge these gaps, but data security and
data applicability will then be another issue to resolve. [59] identify that collaboration among utili-
ties, stakeholders, and nations for data-driven research will be essential and would greatly benefit
the sector when it comes to introducing Al in the nuclear industry.

While the current adoption of ML remains relatively low, it is highly probable that we will see ei-
ther a rise in its usage or at least pilot implementations of various applications in the near future.

Large language models
Al Sweden, in partnership with WASP and RISE, has launched GPT-SW3, the first LLM designed
for Swedish and Nordic languages, [65]. It is offered as an open model for businesses and
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organizations to incorporate into their products and services. This model equips Sweden with a vi-
tal resource that enhances the capacity to leverage Al without ambiguities surrounding training
data, unclear licensing terms, or that models are only accessible as cloud services.

Even though this model is not yet used in the nuclear industry, it is an enabler for future applica-
tions and use cases.
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5 Future Research Directions

Future work within Al and ML in the nuclear industry represents a promising avenue for enhanc-
ing the sector's efficiency, safety, and innovation capacity. As Al and ML techniques continue to
evolve, further research and development could yield substantial benefits, as discussed in chapter
4.

Further research could involve conducting benchmarking and comparison of different ML method-
ologies. This comparative analysis could highlight the strengths and weaknesses of various ap-
proaches, providing clearer insights and facilitating the selection of the most suitable methods for
the application in question. Also, combining machine learning with traditional PSA and determin-
istic safety analysis (DSA) methods could offer more robust safety assessments. Research into hy-
brid models that include domain knowledge and physical laws with data-driven insights is neces-
sary to ensure the reliability of Al in safety-critical systems.

Explainability and trust will be an integral part to aid the implementation of Al and ML. It is criti-
cal to ensure that the data-driven models’ decisions are transparent and interpretable to build trust
with operators and regulators. Further work with this issue is needed, especially for application ar-
eas that require regulatory approval. XAl techniques can offer insights into the decision-making
process of complex models, making them more suitable for highly regulated environments like nu-
clear safety.

The use of actual plant data for the training and validation of Al and ML models should be priori-
tized. While simulators provide valuable data, real-world data can help ensure the accuracy, valid-
ity, and reliability. Collaboration could be beneficial to advance the useability of such models.

The application of digital twins could revolutionize predictive maintenance and risk analysis in nu-
clear facilities. By integrating ML with real-time sensor data and simulations, digital twins can
provide highly accurate forecasts of equipment failures or safety risks. Future research should fo-
cus on how digital twins can be tailored to nuclear reactors, offering new pathways for nuclear
safety.

Future research should also investigate the best ways to integrate human oversight with Al-driven
systems. This includes designing interfaces and decision-support systems that enable operators to
effectively interact with and oversee Al recommendations. Understanding the dynamics between
human decision and Al outputs is critical to ensuring that Al systems in nuclear safety are both re-
liable and trustworthy.

Overall, further research is needed before the nuclear industry can harness the full potential of Al
technologies and ML algorithms. By focusing on these areas, the nuclear industry can leverage the
full potential of ML while addressing the unique safety, ethical, and regulatory challenges that this
field presents.
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6 Conclusions

In conclusion, exploring Al and ML applications in the nuclear industry has shown significant
promise as well as notable challenges. The ongoing research and implementation efforts highlight
the transformative impact these technologies could have or already has on various aspects of nu-
clear plant operations, including application areas such as predictive maintenance and safety analy-
sis. This chapter aims to conclude the insights of this project.

Chapter 3 presents the literature review of the project. It includes examples and case studies of ML
applications in various areas in the nuclear industry, such as safety and risk analysis, plant opera-
tion, and maintenance. The chapter highlights the potential of ML to enhance nuclear safety proac-
tively. It emphasizes the international community's keen interest in adopting and/or further estab-
lishing novel approaches to enhance safety. However, it also identifies challenges such as data is-
sues and the "black box" nature of some methods that need to be solved to achieve general ac-
ceptance of these advanced methods for nuclear safety.

One conclusion from the literature review is that there is perhaps a need for a more harmonized
classification/categorization of applications. More importantly, the lack of guidance of which algo-
rithm or method to use, data considerations and availability, depending on the application is evi-
dent and this could be a challenge in the future adoption or transition to ML approaches or to es-
tablish them further. Benchmark exercises as studied in [66], where different ML methods and
models are trained and validated for a specific application, could be very beneficial and aid the
adoption (or establish them further) of Al technologies and ML in the nuclear industry.

Key insights from the review of applications are:

e Al and ML can support risk analysis and risk-informed decision-making.

e Al and ML can enhance event and scenario analyses, i.e., aid the analysis to understand
specific accident or event scenarios as well as identify events.

e Al and ML can enhance human reliability analysis by identification of strongly correlated
contributing factors, which gives greater insight into both why the events occurred as well
as possible improvements.

e Al and ML can be applied in prognostics and health management to predict and manage
the health of systems and components.

Chapter 4 discusses the challenges and the future of AI and ML in the nuclear industry. It identi-
fies the main barriers and limitations for applying ML techniques to complex and safety-critical
systems, such as data availability and quality, model validation and verification, explainability,
and ethics. The interpretability of Al technologies and ML is essential for their application in
safety-critical environments.

While ML holds great promise for enhancing nuclear safety through improved decision-making,
predictive analysis, and real-time monitoring, several challenges remain that must be addressed to
fully realize its potential:

e Data availability and quality: As discussed in sections 3.1.4, 3.1.5 and chapter 4, the
availability of high-quality, labelled data is a significant limitation. Many ML algorithms,
particularly in supervised learning, rely on extensive datasets that are not always accessi-
ble. Efforts are needed to curate robust datasets, standardize data collection, and over-
come challenges associated with sensitive or proprietary information.

e Explainability (transparency and interpretability): The "black box" nature of many ad-
vanced ML models, especially in DL, poses challenges in highly regulated environments
such as nuclear safety. It is critical that ML models provide interpretable results, particu-
larly when their outputs directly impact operational decisions or risk-informed decisions.
Integrating XAl techniques could resolve this issue by offering a more transparent deci-
sion-making model while ensuring regulatory compliance.
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e Regulatory and ethical considerations: Nuclear safety is governed by regulatory frame-
works, which must be updated to accommodate the inclusion of Al technologies and ML
models. Chapter 4 also highlights the importance of ethical considerations, such as ensur-
ing that Al technologies do not introduce new risks. Collaborative efforts between regula-
tory bodies and Al developers will be essential to establish.

e  Human factors and trust: Lastly, operators and decision-makers must be able to trust Al
technologies. Addressing the human factors involved, such as how operators interact with
and rely on these, is key to successful implementation. Future work should focus on inte-
grating human oversight with Al technologies, providing operators with transparent, ac-
tionable insights without undermining their authority or expertise.

The initiatives by well-known organisations like the NRC and the IAEA are perhaps the key to
successfully accelerate the development and adoption of Al and ML methods for the nuclear in-
dustry.

Concerning regulatory requirements, many activities are ongoing, and it is expected that this area
will be improved in the future and will be able to provide more guidance for adoption of Al and
ML. One observation is that, depending on the application area, the level and necessity of require-
ments to be fulfilled will vary significantly. For example, adoption of ML in fault diagnosis and
predictive maintenance will not have the same restriction on transparency compared to if ML is
used for safety analysis. Thus, it will be important that the regulatory bodies emphasize this in
their work of developing regulatory requirements.

Maintaining continuous monitoring of developments in Al and ML within the nuclear industry is
recommended. These technologies are advancing rapidly and offer significant opportunities to en-
hance safety, efficiency, and maintenance processes. By staying informed about the latest research
advancements and applications, organizations can not only remain competitive but also identify
and adopt innovative solutions that strengthen safety and reduce the risk.

The use of modern research accelerators that allow for discussion and collaborations in innovation
is encouraged. These platforms can provide the infrastructure needed for researchers to share data,
tools, and insights, accelerating the pace of innovation. By fostering a collaborative environment,
it can be ensured that advancements in Al are quickly translated into practical applications in the
nuclear industry. Ultimately, the goal is safe and effective applications of machine learning-based
methods in the nuclear industry.
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8 Abbreviations

Table 4 Machine learning and Al abbreviations.

Acronym Description

Al Artificial Intelligence

ANN Artificial Neural Network

BoW Bag-of-Words

CNN Convolutional Neural Network
DL Deep Learning

DNN Deep Neural Network

DT Digial Towin

FNN Fuzzy Neural Network

GA Genetic Algorithm

GP Gaussian Process

LLM Large Language Model

LST™M Long Short-Term Memory

ML Machine Learning

NB Naive Bayes

NLP Natural Language Processing

RL Reinforcement Learning

RNN Recurrent Neural Network
SARSA State-Action-Reward-State-Action
SVM Support Vector Machine

TF-IDF Term Frequency — Inverse Document Frequency
XAI Explainable Artificial Intelligence

Table 5 Nuclear and safety assessment abbreviations.

Acronym Description

FD Fault Detection

FDDP Fault Detection, Diagnosis, and Prognosis
HOF Human and Organisational Factors

HRA Human Reliability Analysis

NPP Nuclear Power Plant

PHM Prognostics and Health Management
PSA Probabilistic Safety Assessment

RUL Remaining Useful Life

SSC Structures, Systems, and Components
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Table 6 Organisational abbreviations.

Acronym Description

IAEA International Atomic Energy Agency

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers
INL Idaho National Laboratory

ISO International Organization for Standardization
NEA Nuclear Energy Agency

NRC Nuclear Regulatory Commission (United States)
OECD Organisation for Economic Co-operation and Development
ONR Office for Nuclear Regulation (United Kingdom)
PSAM Probabilistic Safety Assessment and Management
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