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Summary 

This report gives an account of the work performed by the Department of Nuclear 

Engineering, Chalmers University of Technology, in the frame of a research contract 

with the Swedish Radiation Safety Authority (SSM), contract No. SSM 2009/2093. The 

present report is based on work performed by Imre Pázsit, Victor Dykin, Anders 

Jonsson and Christophe Demazière, with Imre Pázsit being the project leader. 

 

This report describes the results obtained during Stage 16 of a long-term research and 

development program concerning the development of diagnostics and monitoring 

methods for nuclear reactors. The long-term goals are elaborated in more detail in e.g. 

the Final Reports of Stage 1 and 2 (SKI Report 95:14 and 96:50, Pázsit et al. 1995, 

1996). Results up to Stage 15 were reported in (Pázsit et al. 1995, 1996, 1997, 1998, 

1999, 2000, 2001, 2003a, 2003b; Demazière et al, 2004; Sunde et al, 2006; Pázsit et al. 

2008, 2009). A brief proposal for the continuation of this program in Stage 17 is also 

given at the end of the report. 

 

The program executed in Stage 16 consists of four parts as follows: 

 

 An overview of the present status of experience with BWR stability; 

 An investigation of the significance of the properties of the noise source for BWR 

instability; 

 Study of the dynamics of molten salt systems: construction of the adjoint and 

calculating the space dependent noise induced by propagating perturbations in the 

fuel; 

 A specific study of some novel methods of analysis of non-linear and non-stationary 

processes. 

 

The work performed in each part is summarized below. 

 

1. An overview of the present status of experience with BWR stability 

 

This section gives an overview of the main trends in BWR stability analysis and 

monitoring for the past decade. The major line of development in this period has been 

the recognition that different types of neutronic and thermal hydraulic oscillations may 

occur (global, regional and local or channel-type), with different generation mechanisms, 

impact on core safety, and monitoring tools and needs. In particular, when any two of 

these types can occur simultaneously, it is important to separate the different 

components, otherwise the margin to instability can be misjudged severely. Any 

procedure aiming at stability monitoring should be able to detect the presence of 

simultaneous oscillations, as well as to classify their type and stability properties 

separately. In this respect global and regional type instabilities are a larger potential 

operational problem than local oscillations, because their amplitude can grow 

unbounded. Local oscillations are purely thermal hydraulics driven, and it is not so 

much the stability properties than the localisation which is of concern. 

 

This section starts with a description of the three main oscillation types and their 

properties. The concept of the most commonly used stability parameter, the decay ratio, 
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is described. The properties of simultaneous oscillations and the resulting apparent 

decay ratio obtained without separation of the components are discussed. The methods 

elaborated to separate the global and regional oscillations are described in detail. The 

noise simulator, developed at the department, is used to reconstruct some of the 

observed properties, such as the space dependence of the decay ratio in case of 

simultaneous oscillations of two different types. The localisation of a local channel-type 

instability is also described and its concrete application to the case of the Forsmark local 

instability is demonstrated. 

 

2. An investigation of the significance of the properties of the noise source for BWR 

instability 

  

In simple models used to interpret the stability properties of boiling water reactors it is 

assumed that the power or flux oscillations in the core can be described as the response 

of a damped linear oscillator, driven by a white noise driving force. Such a model 

proves useful in understanding the path to instability, especially the interplay of several 

different oscillation modes (global, regional, local). In the model it is assumed that the 

stability properties, extracted from the measured oscillations, are determined purely by 

the system transfer properties, due to the fact that the driving force has a spectrum 

which is constant in frequency. 

 

However, from other studies of BWR in-core noise, it is known that the reactivity 

perturbation corresponding to the propagating character of two-phase flow has a 

characteristic autospectrum which shows a periodic peak and sink structure, i.e. deviates 

markedly from white noise. In that case, the frequency properties, or the autocorrelation 

function of the measured detector signals, are influenced not only by the system transfer 

properties, but also by those of the driving force. Estimating the decay ratio with the 

assumption of white driving force can lead to erroneous results.  

 

The influence of the ―coloured‖ character of the driving force, as represented by the 

reactivity perturbation of propagating density fluctuations of the two-phase flow, on the 

estimation of the decay ratio is investigated. The autocorrelation function of the system 

response with such a coloured driving force is calculated analytically. Cases when the 

driving force has a peak or a sink at the system resonance frequency are investigated 

quantitatively. The results show that in the case of propagating perturbations the 

structure of the driving force is relatively smooth at the system resonance, and no 

significant error is made in the estimation of the decay ratio assuming a white noise 

driving force.  

  

3. Study of the dynamics of molten salt systems: construction of the adjoint and 

calculating the space dependent noise induced by propagating perturbations in the 

fuel 

 

In previous reports, starting with Stage 13, a simple one-dimensional model with 

propagating fuel properties was set up and studied as a model of a molten salt reactor. 

First the solution of the static eigenvalue equation was given first by expansions into 

eigenfunctions of a corresponding traditional reactor. The neutron noise, induced by 

propagating perturbations, was calculated in the point kinetic approximation, by using a 

simplified empirical model of the zero reactor transfer function 
0
( )G , suggested in the 
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literature. It was also noticed that the derivation of the point kinetic approximation with 

the flux factorisation technique is hindered by the fact that the one-group diffusion 

equations for a reactor with moving fuel are not self-adjoint. 

 

In Stage 15, the solution of the space-dependent noise problem was started with the 

calculation of the Green’s function of the problem. The space-dependent problem was 

solved for the case of infinite fuel velocity, with a new technique which separates out a 

singular and a non-singular term in the solution, similarly to the method of eliminating 

the uncollided flux in transport problems.  

 

In the present Stage, first the adjoint equations of the one-group diffusion theory are 

derived for reactors with moving fuel. The adjoint property of the suggested form is 

proven both for the differential form of the coupled neutron-precursor equations, and for 

the integro-differential form, obtained after eliminating the delayed neutron precursors. 

Then the Green’s function of the reactor is calculated for finite fuel velocities, with the 

employment of a method, suggested in the previous Stage for the solution for infinite 

fuel velocities. The space and frequency dependence of the Green’s function is 

investigated. Finally, the space-dependent noise, induced by propagating perturbations, 

are calculated and discussed. It is shown that with increasing fuel velocity, the 

behaviour of a given system at a given frequency tends to be more and more point 

kinetic, in accordance with the results for infinite fuel velocity, found in the previous 

Stage. 

 

4. A specific study of some novel methods of analysis of non-linear and non-

stationary processes 

 

New methods have been developed lately which are particularly useful to analyse non-

stationary processes in order to make a diagnosis of the state of the system. Some of the 

development has been achieved primarily in biology and medicine, for the analysis of 

ECG (heart beat) and EEG (brain activity) signals and to detect beginning and 

developed diseases. Some of these methods were transferred even to the diagnostics of 

process signals in power plants. The purpose of this pilot study is to start exploring the 

application of such methods in reactor diagnostics. 

 

One such method refers to the analysis of quasi-periodic signals, such as human ECG 

signals. Instead of analysing the raw signal, a secondary time series is derived from the 

original signal, which consists of the sequence of beat-to-beat (also called ―interbeat‖) 

time intervals. This derived sequence is apparently random, but it contains a substantial 

information on the status of the system. This information can be extracted either from 

the topology of the three dimensional vectors, formed from triplets of consecutive 

values of the interbeat intervals, of from the fractal dimension of the data series, or by 

some other intelligent identification method. 

 

In this Stage the method of peak-to-peak interval analysis is tested on measurements of 

BWR instability. The time series represented by the peak-to-peak time intervals of the 

signal variation around the instability frequency 0.5 Hz is analysed. First a method was 

developed for the extraction of the peak-to-peak series, then the topology of the three-

dimensional vectors, formed from data triplets, was investigated. A different behaviour 

was found for the cases of a stable and an unstable state of the core, although the 

information content was rather obvious. Some new algorithmic identification methods, 
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such as Principal Component Analysis (PCA) and Singular Value Decomposition (SVD), 

were also tested on the data vectors, but these yielded no further information. These 

studies will be continued with e.g. using higher dimensional data sets, to explore their 

potential in BWR stability analysis. 
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Sammanfattning 

Denna rapport redovisar det arbete som utförts inom ramen för ett forskningskontrakt 

mellan Avdelningen för Nukleär Teknik, Chalmers tekniska högskola, och 

Strålsäkerhetsmyndigheten (SSM), kontrakt Nr. SSM 2009/2093. Rapporten är baserad 

på arbetsinsatser av Imre Pázsit, Victor Dykin, Anders Jonsson och Christophe 

Demazière, med Imre Pázsit som projektledare. 

 

Rapporten beskriver de resultat som erhållits i etapp 16 av ett långsiktigt forsknings- 

och utvecklingsprogram angående utveckling av diagnostik och övervakningsmetoder 

för kärnkraftsreaktorer. De långsiktiga målen har utarbetats noggrannare i slut-

rapporterna för etapp 1 och 2 (SKI Rapport 95:14 och 96:50, Pázsit et al. 1995, 1996). 

Uppnådda resultat fram till och med etapp 15 har redovisats i referenserna (Pázsit et al. 

1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003a, 2003b; Demazière et al, 2004; Sunde 

et al, 2006; och Pázsit et al. 2008, 2009). Ett kortfattat förslag till fortsättning av pro-

grammet i etapp 17 redovisas i slutet av rapporten. 

 

Det utförda forskningsarbetet i etapp 16 består av följande fyra olika delar. 

 

 Sammanställning av kunskapsläget för BWR-instabilitet; 

 Undersökning av betydelsen av bruskällan i samband med BWR-instabilitet; 

 Fortsatta studier av neutronkinetik, dynamik och neutronbrus i reaktorer med 

flytande bränsle (MSR); 

 Undersökning och tillämpning av ―intelligent computing‖ metoder. 

 

Arbetet med varje del sammanfattas nedan. 

 

1. Sammanställning av kunskapsläget för BWR-instabilitet 

 

Denna del ger en överblick av de huvudsakliga trenderna i stabilitetsanalys och över-

vakning av BWR-reaktorer under det senaste decenniet. Den huvudsakliga utvecklingen 

under denna period har varit insikten om att olika typer av neutron- och 

termohydrauliska oscillationer kan förekomma (globala, regionala och lokala eller 

kanaltyp). Dessa genereras av olika mekanismer och har olika inverkan på härdsäkerhet, 

övervakningsinstrument och övervakningsbehov. I synnerhet när två av dessa typer kan 

uppträda samtidigt är det viktigt att separera de olika komponenterna för att inte 

marginalen till instabilitet väsentligt ska missbedömas. En metod för 

stabilitetsövervakning måste kunna upptäcka närvaron av samtidiga oscillationer samt 

klassificera dess typ och stabilitetsegenskaper var för sig. I detta avseende utgör globala 

och regionala instabiliteter troligen ett större driftsproblem än lokala oscillationer, 

eftersom deras amplitud kan växa obegränsat. Lokala oscillationer har enbart 

termohydrauliska orsaker och det handlar i detta fall inte så mycket om 

stabilitetsegenskaper som att lokalisera oscillationen. 

 

Avsnittet inleds med en beskrivning av de tre huvudsakliga oscillationstyperna och 

deras egenskaper. Begreppet dämpkvot, som är den mest använda stabilitetsparametern, 

beskrivs. Egenskaperna hos samtidiga oscillationer och den resulterande faktiska dämp-

kvot, som erhållits utan att separera komponenterna, diskuteras. Metoderna, som utarbe-
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tats för att separera globala och regionala oscillationer, beskrivs i detalj. Brussimulatorn, 

som utvecklats vid avdelningen, används för att rekonstruera några av de observerade 

egenskaperna såsom rumsberoendet hos dämpkvoten när det finns samtidiga oscilla-

tioner av två olika slag. Hur en lokal kanaltyp-instabilitet lokaliseras beskrivs också och 

dess tillämning på fallet av den lokala instabiliteten i Forsmark demonstreras. 

 

2. Undersökning av betydelsen av bruskällan i samband med BWR-instabilitet 

 

I de enkla modeller, som använts för att tolka stabilitetsegenskaperna i 

kokvattenreaktorer, antas att effekt- eller flödesoscillationerna i härden kan beskrivas 

som svaret på en dämpad linjär oscillator som drivs av vitt brus. En sådan modell visar 

sig användbar för förståelsen av hur instabilitet uppkommer, särskilt samspelet mellan 

flera olika oscillationsmoder (globala, regionala, lokala). I modellen antas att stabilitets-

egenskaperna, som konstruerats från uppmätta oscillationer, enbart bestäms av syste-

mets överföringsegenskaper p.g.a. det faktum att drivkraften har ett spektrum med kon-

stant frekvens. 

 

Från andra studier av härdbrus i BWR är det emellertid känt att de reaktivitetsstörningar, 

som svarar mot tvåfasflödets spridningsegenskap, har ett karaktäristiskt spektrum med 

en periodisk topp- och dalstruktur, dvs. avviker markant från vitt brus. I detta fall på-

verkas frekvensegenskaperna, eller autokorrelationsfunktionen till de uppmätta 

detektorsignalerna, inte enbart av systemets överföringsegenskaper, utan även av 

drivkraftens egenskaper. Beräkning av dämpkvoten med antagande om vitt brus som 

drivkraft kan leda till felaktiga resultat. 

 

Hur den ‖färgade‖ egenskapen hos drivkraften, representerad av reaktivitetsstörningar i 

tvåfasflödets icke-stationära täthetsfluktuationer, påverkar beräkningen av dämpkvoten 

undersöks. Autokorrelationsfunktionen till systemets reaktion på en sådan färgad driv-

kraft beräknas analytiskt. Fall där drivkraften har en topp eller sänka vid systemets 

resonansfrekvens undersöks kvantitativt. Resultaten visar att när vi har icke-stationära 

störningar så blir drivkraftens struktur relativt mjuk vid systemets resonans och att anta 

att vitt brus är drivkraften innebär inget signifikant fel i beräkningen av dämpkvoten. 

 

3. Fortsatta studier av neutronkinetik, dynamik och neutronbrus i reaktorer med 

flytande bränsle 
 

I tidigare rapporter, med början på etapp 13, konstruerades och studerades en enkel 

endimensionell modell av en smältsaltereaktor där bränsleegenskaperna förflyttas. Lös-

ningen till den statiska egenvärdesekvationen gavs först som utvecklingar i egenfunktio-

ner till en motsvarande traditionell reaktor. Neutronbruset, som härrör från icke-statio-

nära störningar, beräknades med den punktkinetiska approximationen genom att 

använda en förenklad empirisk modell av överföringsfunktionen 
0
( )G

 
för en 

nolleffektreaktor, som föreslagits i litteraturen. Det observerades också att härledningen 

av den punktkinetiska approximationen med faktoriseringsteknik för flödet förhindras 

av att engruppsdiffusionsekvationen för en reaktor med rörligt bränsle inte är 

självadjungerad. 

 

I etapp 15 påbörjades lösningen av det rumsberoende brusproblemet med beräkningen 

av Greens funktion för problemet. Det rumsberoende problemet löstes för fallet med 
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oändlig bränslehastighet med en ny teknik som separerar ut en singulär och en icke-

singulär term i lösningen på samma sätt som när det okolliderade flödet i transport-

problem elimineras. 

 

I denna etapp deriveras först den adjungerade ekvationen för engruppsdiffusionsteori för 

reaktorer med rörligt bränsle. Den adjungerade egenskapen av den föreslagna formen 

bevisas både för den differentiala formen av de kopplade neutron-föregångar-

ekvationerna och för integro-differentialformen, som erhållits efter eliminering av de 

fördröjda neutronföregångarna. Sedan beräknas reaktorns Greens-funktion för ändliga 

bränslehastigheter med en metod som föreslagits i den tidigare etappen för lösning vid 

oändlig bränslehastighet. Rums- och frekvensberoendet hos Greens funktion undersöks. 

Slutligen beräknas och diskuteras det rumsberoende brus, som orsakats av icke-statio-

nära störningar. Det visas att med ökande bränslehastighet blir beteendet hos ett givet 

system vid en given frekvens mer och mer punktkinetiskt, i överensstämmelse med de 

resultat för oändlig bränslehastighet, som fastställts i den tidigare etappen. 

 

4. Undersökning och tillämpning av “intelligent computing” metoder 

 

På sista tiden har nya metoder, speciellt användbara för att analysera icke-stationära 

processer, utvecklats för att diagnosticera tillståndet i ett system. Viss utveckling har 

erhållits primärt inom biologi och medicin för analys av signaler från ECG (hjärtslag) 

och EEG (hjärnaktivitet) och för att upptäcka begynnande och utvecklade sjukdomar. 

Några av dessa metoder har överförts till diagnos av processignaler i kärnkraftverk. 

Målsättningen med denna pilotstudie är att börja undersöka hur sådana metoder kan 

appliceras inom reaktordiagnostik. 

 

En sådan metod hänför sig till analysen av kvasiperiodiska signaler såsom mänskliga 

ECG-signaler. Istället för att analysera den obearbetade signalen tas en sekundär tids-

serie, som består av sekvensen av tidsintervall mellan hjärtslagen, fram ur den ursprung-

liga signalen. Denna härledda sekvens är uppenbart slumpmässig, men den innehåller 

väsentlig information om systemets tillstånd. Sådan information kan extraheras antingen 

från topologin hos de tredimensionella vektorer, som formas av tripletter av på varandra 

följande värden av hjärtslagsintervall, från dataseriens fraktala dimension eller genom 

någon annan intelligent identifieringsmetod. 

 

I denna etapp testas metoden med intervallanalys topp till topp på mätningar av 

instabiliteter i BWR. Tidsserierna, som representeras av tidsintervallen topp till topp hos 

signalvariationen runt instabilitetsfrekvensen 0.5 Hz, analyseras. Först utvecklades en 

metod för att extrahera topp till topp-serien. Sedan undersöktes topologin hos de, av 

datatripletter bildade, tredimensionella vektorerna Ett annorlunda beteende hittades för 

fallen med ett stabilt och ett instabilt tillstånd hos härden, fast informationsinnehållet 

var ganska uppenbart. Några nya algoritmmetoder för identifikation, såsom ‖Principal 

Component Analysis‖ (PCA) och ‖Singular Value Decomposition‖ (SVD), testades 

också på datavektorerna, men dessa gav ingen ytterligare information. Dessa studier ska 

fortsätta med att t.ex. undersöka vilka möjligheter dataset av högre dimension har för att 

analysera BWR-stabilitet.  
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1 An overview of the present status of experience 

with BWR stability 

1.1 Introduction 

This chapter gives an overview of the status of characterisation of the stability of BWRs 

and methods of quantifying and monitoring margins to instability. The status of the 

methods and concepts applied is described, together with a summary of the main 

concepts and the current development trends. 

 

The chapter is based on material published in a lecture note used at a Workshop at ICTP 

Trieste in 2008 (Demazière and Pázsit 2008) as well as a chapter in a current 5-volume 

Handbook of Nuclear Engineering by Springer (Pázsit and Demazière 2010). 

1.2 Determination of the Decay Ratio in BWRs  

Instability of BWRs, which is manifested by self-sustained power oscillations in the 

core, has been observed at the very early days of reactor operation, and the possibility of 

BWR instability was predicted by Thie (1959). Such instabilities are usually 

encountered during start-up conditions, i.e. at reduced core flow and relatively high 

power level. Calculations are thus performed via adequate coupled neutronic/thermal-

hydraulic codes to verify under which conditions the reactor becomes unstable. This 

defines an exclusion zone, i.e. a set of operating conditions on the power-flow map, 

which the reactor operator should always avoid. During the start-up tests of the reactor, 

measurements of the in-core neutron noise are usually performed. The goal of these 

measurements is to verify that there is a good agreement with the calculations. 

 

Monitoring the stability with measurements, as well as determining the margins to 

instability requires the existence of a reliable quantitative stability indicator. Such a 

parameter should be an integral, global parameter of the core, similar to the reactivity. 

However, as will be clear from the discussion below, the situation is more involved 

because, unlike with the definition of the reactivity, the stability cannot be characterized 

only with quantities belonging to the fundamental eigenvalue and fundamental 

eigenmode. Also, there are several possibilities for choosing a stability parameter, out of 

which we will only discuss the most common one, the Decay Ratio. 

 

BWR instability is an intriguing subject far from being fully understood, and 

accordingly it has a vast literature (for a review see D’Auria et al., 1997). To illus-trate 

the point we list here a number of references, still far from being complete, to give a 

flavor of the diversity and vibrant character of the research in the field: Hagen et al. 

(1994); Takeuchi (1994); Hennig (1999); Hotta et al. (1997); Oguma (1997); Karlsson 

and Pázsit (1999); Miro et al. (2000); Ginestar et al. (2002,2006); Munoz-Cobo et al. 

(2004) Demazière and Pázsit (2005); Zinzani et al. (2008). 

. 

Although in many cases the stability of BWRs can be investigated by small linear 

fluctuations around a stationary state of the system, in principle the dynamics of a BWR 

is a strongly non-linear system. Despite of this, in this section we will focus on stability 
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analysis in the linear regime, because the methods used in practice are based on 

techniques of linear analysis. However, characterizing and understanding non-linear 

aspects and developing non-linear diagnostics methods are also under development. 

These follow two different lines. One is setting up simple non-linear models in which 

certain aspects of the non-linear behaviour, such as bifurcations, limit cycles etc. can be 

studied with analytical or simple numerical methods (Cacuci 1983; March-Leuba et al., 

1983, 1984a, 1984b, 1986a, 1986b; Cacuci et al., 1986; Konno et al., 1999). The content 

of these works will not be described here, partly due to limitation of space, and partly 

because they mostly aim for understanding but not for practical methods of diagnostics 

and monitoring 

 

The other development line is based on the recognition that non-linear models very 

seldom have analytical solutions, hence the study of such systems must rely on 

numerical treatment of large number of coupled non-linear partial differential equations 

describing the system. So-called advanced system codes exist which describe the static 

and dynamic behaviour of the system with high accuracy. However, such codes are only 

practical for calculating particular singular cases but not a large series of calculations 

due to the large computational load. Besides, due to the large number of input-output 

variables needed to achieve high fidelity of the calculations, such system codes lend 

very little, or none, insight and understanding to identify important features in the 

development and characterisation of instability. Hence, for studying non-linear 

phenomena with insight, calculational models are used which keep the full non-linear 

relationships between the important parameters, but simplify the geometry of the 

arrangement by replacing the core with a small number, so far one or two, thermal 

hydraulic channels and corresponding lumped core regions. Such models are commonly 

used Reduced Order Models (ROMs) (March-Leuba, 1984b; Lahey 1992; Karve 1998; 

Dockhane 2004; Lange 2009). 

 

Our department has therefore become involved in the development of a ROM which 

represents an extension compared to previous work in that it contains four thermal 

hydraulic channels, whereas former models used only one or at most two channels. The 

full description of this work can be found in Dykin, Demazière, 2010a; Dykin 2010b. 

Here below we just summarize the work done, which thus will give an outline of the 

frontline of research in this area.  

 

As as first step, a reduction procedure which allows one to transform 3D space-time 

dependent two-group diffusion equations into the point kinetic time-dependent 

equations is performed (Bell, Glasstone, 1970; Lamarsh 2002). Only the first three 

modes, namely the fundamental, first and second azimuthal modes are taken into 

consideration. As a second step, the general energy balance equations for the fuel rod 

heat conductivity are reduced to ordinary differential equations, assuming the two 

piecewise quadratic spatial approximation for the fuel pellet temperature and applying 

the variational principle approach (Karve 1998). As a last step, the reduced ordinary 

differential equations (ODEs) are derived for the two coolant phase regions (single and 

two phase regions) (Karve 1998). One starts from the general flow cross-section 

averaged balance equations (Todreas, Kazimi, 1990), assuming the proper spatial 

quadratic distribution for the enthalpy and equality, respectively, and applies the 

variational method to approach the final goal. Further, the corresponding ODE for the 

inlet coolant velocity is demonstrated, based on the pressure balance equation where a 

simple downcomer model, as a unheated channel, is introduced as well (Dockhane 2004, 
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Lange, 2009). In order to properly simulate azimuthal modes, one introduces a four 

heated channel model (Dykin, Demazière, 2010a; Dykin 2010b). An adjusting 

procedure is used for the steady-state ROM parameters, needed to reproduce the correct 

operational conditions (Lange 2009). This model is capable to investigate concrete 

instability events, such as the Forsmark-1 channel instability event, with ROM analysis. 

This work is on-going and results will be reported in the continuation. 

1.3 Stability indicator  

The most commonly used stability indicator is the so-called Decay Ratio (DR). One of 

the basic assumptions in the use of the DR is that the system dynamics can be modelled 

by a second-order oscillator, i.e. any fluctuation   related to BWR instabilities obeys the 

following equation 

 2

0 0
( ) 2 ( ) ( ) ( )t t t f t  (1) 

where ( )f t  represents the driving force of the oscillation, usually assumed to be a white 

noise, 
0
 is the resonance frequency, and  characterizes the damping of the system. 

The general solution to this equation is given by: 

 2

0 0
( ) exp( )cos 1t A t  (2) 

The DR gives a measurement of the damping of the system and is defined as the ratio 

between two consecutive maxima of the signal form given above and found to be given, 

in the case of a second-order system, as 

 
2

2
exp

1
DR  (3) 

In practice, it is not the signal itself, but the Auto-Correlation Function (ACF) of the 

normalized neutron density, or alternatively the Impulse Response Function (IRF) as 

calculated by using an Autoregressive Moving-Average (ARMA) or an Autoregressive 

model (AR), are used. In case of a white noise driving force, these functions all have the 

same oscillatory and decaying properties as the determines-tic solution (2). Hence the 

DR is usually determined from the ratio between two consecutive maxima Ai and Ai+1 

of any of these two functions. The ACF and IRF obtained in the case of a second-order 

system are represented in Fig. 1. The DR gives therefore a measure of the inherent 

damping properties of the sys-tem. Using each detector separately allows estimating the 

Decay Ratio (DR) ac-cording to the following standard method (for a review, see 

D’Auria, et al., 1997) 

 1 ,i

i

A
DR i

A
 (4) 

If the dynamics of the system does not correspond to a pure second-order system, the 

above formula gives different results depending on which consecutive peaks of the ACF 

or of the IRF one considers. 

1.4  Stability mechanism of a BWR  

Nuclear reactors must be designed such that they have a negative feedback mechanism, 

i.e. any perturbation leading to off-normal conditions should be counteracted by some 
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feedback, which thus brings the system back to steady-state conditions. Instabilities can 

arise from the fact that in a dynamic case, such feedback mechanisms act with some 

time delay. If the feedback was always exactly counteracting the original perturbation 

without time delay, the phase shift between the perturbation and the feedback should 

be -180 deg (i.e. out-of-phase). Nevertheless, in most cases, the phase shift differs 

from -180 deg. As a result, the feedback reinforces the original perturbation instead of 

damping it during some parts of a period. 

  

Several physical mechanisms are responsible for the feedback in a BWR. The ones that 

might give rise to instabilities are the channel thermal-hydraulics (Density Wave 

Oscillation, DWO) and the void-reactivity feedback. In the following, these two 

mechanisms are detailed. How these processes are driving instabilities will be explained 

in the next subsection. 

 

A DWO corresponds to a change of the density of the coolant within one or several fuel 

assemblies. For illustration purposes, one can consider a perturbation induced by an 

inlet flow perturbation to a fuel assembly. Such an inlet perturbation will create a 

modification of the single-phase pressure drop in the single-phase region of the heated 

channel. This perturbation will travel upwards with the flow and will itself generate a 

modification of the two-phase pressure drop in the two-phase region of the heated 

channel. 

 

The void-reactivity feedback comes from the fact that any modification of the density of 

the coolant affects the neutron moderation. More specifically, any decrease in the 

moderator density leads to a worsening of the neutron moderation. Such an effect is 

typically represented by the void coefficient of reactivity, i.e. 

   (5) 

where  represents the change of reactivity of the system due to a change  of the 

void fraction, with the void fraction being defined as the relative volume of vapour 

 

Fig. 1. ACF and IRF of a second-order system (on the left and right hand-sides, 

respectively) 
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contained in a specific volume. Such a reactivity coefficient is strongly negative for 

BWRs. 

 

Any perturbation of the reactivity of the system will lead to a perturbation of the reactor 

power and of the produced heat, which in turn will create a modification of the fuel 

temperature and of the void fraction. Because of the Doppler fuel temperature effect and 

of the void-reactivity feedback, such perturbations will affect the reactivity of the 

system. This feedback loop is called the direct loop. Further, a so-called recirculation 

loop is connected to the downcomer of a BWR. Such a loop has its own dynamical 

properties. As a consequence, any perturbation of the core outlet pressure will give rise 

to perturbation of the core inlet flow via the recirculation loop dynamics. Such a 

feedback loop is called the indirect loop. Finally, each fuel channel has its own 

dynamical properties from a thermal-hydraulic point-of-view. Any perturbation to the 

channel thermal-hydraulics will give rise to DWOs, and this corresponds to the so-

called DWO loop in the stability mechanism of a BWR. 

1.5  Types of BWR instabilities  

Three types of instabilities are usually encountered in forced-circulation BWRs: pure 

DWOs or local oscillations, global (or in-phase) oscillations, and re-gional (or out-of-

phase) oscillations. Whereas the global and regional oscillations also involve DWOs in 

the core, the instabilities are driven by the void-reactivity feedback, as will be explained 

in the following. The stability mechanism of a BWR is shown in Fig. 2. 

 

Instabilities due to pure DWOs might occur when the boundary conditions of the heated 

channel(s) are imposed, as is the case for the pressure drop between the inlet and outlet 

 

Fig. 2. Stability mechanism of a BWR 
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of the channels. Such instabilities are usually referred to as pure DWO or local 

oscillations. Due to this imposed boundary condition, the two-phase pressure drop in the 

perturbed fuel channel will create a feedback pressure perturbation of the opposite sign 

in the single-phase region, either reinforcing or damping the initial perturbation (see 

Yadigaroglu and Bergles, 1972) This pressure drop oscillation can also be translated 

into a perturbation of the coolant density (explaining the name of DWO for this kind of 

perturbation). The typical frequency at which such oscillations are encountered is 

around 0.5 Hz, which is related to the transit time of perturbations from the inlet to the 

outlet of the fuel assemblies. This type of oscillation typically occurs when a fuel 

assembly is unseated, i.e. does not sit properly on the lower fuel tie plate of the core. 

Since each fuel assembly in a BWR is contained in a fuel box, the fuel channels are 

independent from each other. Therefore, in case of an unseated fuel assembly, some of 

the coolant bypasses the fuel channel. This reduces the single-phase pressure drop at the 

inlet of the channel, and destabilizes it. Radially, this perturbation is equivalent to a 

local noise source, or a so-called absorber of variable strength-type of noise source and 

can be modelled by the neutron noise simulator developed at the Department of Nuclear 

Engineering, Chalmers (Demazière, 2004). An example of the results of such a 

modelling is presented in Fig. 3. The induced neutron noise has thus its largest 

amplitude at the position of the noise source, and has a fast spatial decay away from it. 

 

Instabilities due to the void-reactivity feedback may also occur in a BWR. The 

mechanism driving this kind of oscillation is mainly the time-delay between a given 

power perturbation and the corresponding reactivity response due to the void/pressure 

coefficient. In some cases, the initial perturbation can be reinforced by the void/pressure 

feedback if the phase of this delayed response coincides with the phase of the power 

perturbation. It has to be emphasized that these instabilities also involve density waves 

through the core, but such waves alone are not responsible for the oscillations. Two 

types of instabilities involving such a coupling between the neutron kinetics and the 

thermal-hydraulics are usually encountered: in-phase (or global) oscillations, and out-

of-phase (or regional) oscillations. In order to better understand the spatial dependence 

of such oscillations, the neutron flux can be expanded on the eigenfunctions of the 

system as: 

 

Fig. 3. Space-dependence of the neutron noise induced by a local oscillation as 

calculated by the neutron noise simulator 
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 ( , ) ( ) ( )
n n

n

t a tr r  (6) 

where ( )
n
r  represents the eigenfunction of the system of order n. For the sake of 

simplicity, assuming one group of delayed neutrons, a homogeneous reactor, and one-

group diffusion theory, one could demonstrate that (the interested reader is referred to 

Lamarsh (2002) for the derivation of the following equations): 

 ( ) exp( )
n n n
a t A t  (7) 

where 
n
A   is a constant, and 

n
  fulfils the following ―in-hour‖ equation: 

 
1 1

n
n

n n

t

t t
 (8) 

with 

 
2

1

( )n

a n

t
v B D

 (9) 

and 2

n
B   is the geometrical buckling corresponding to the eigenmode n. One can easily 

show that  

 
1 0  

 (10) 

 
2 1

... 0  (11) 

and 
0
  is the only of the 

n
 that can be positive. 

 

For the global (in-phase) oscillation, the flux is oscillating over the whole core at a 

typical frequency of 0.5 Hz, and only the first neutronic mode (fundamental mode), i.e. 

 
 

Fig. 4. Space-dependence of the neutron noise induced by a global oscillation as 

calculated by the neutron noise simulator (on the left hand-side) and conceptual 

illustration of the in-phase behavior of the flow and power oscillations (on the right 

hand-side) (from Siralkar, 2005) 
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0n , is excited. This is explained by the fact that the reactivity 
0
 of the fundamental 

mode is the only one that can be larger than zero and correspondingly 
0
w  can be positive. 

The space-dependence of the flux is thus following the first neutronic mode. Due to the 

global character of the perturbation, the flow oscillations induced by the void/pressure 

oscillations are damped by the friction in the recirculation loop, and the recirculation 

loop dynamics has a stabilizing effect. The neutron noise induced by such an instability 

can be modelled by the neutron noise simulator, since the different eigenfunctions can 

be estimated by this tool. An example of the results of such a modelling is presented in 

Fig. 4. 

 

For the out-of-phase (regional) oscillation, the second and third neutronic mode (first 

and second azimuthal modes), i.e. n = 1 and 2, are excited. Such modes are subcritical 

and should decay in time in an exponential manner. Nevertheless, the excitation of such 

modes leads to positive flow rate perturbations in one half of the core counterbalanced 

by negative flow rate perturbations in the other half of the core at any time in such a 

way that the boundary conditions imposed by the recirculation loop are always fulfilled. 

As a consequence, such oscillations are self-sustained by the thermal-hydraulics. The 

neutron noise induced by such an instability can also be modelled by the neutron noise 

simulator. An example of the results of such a modelling is presented in Fig. 5. One 

characteristics of the regional oscillation is that several higher modes can be excited, 

compared to only one for the in-phase oscillation. Typically, the second and third modes, 

i.e. first and second azimuthal modes respectively, are excited. Even if these modes are 

subcritical, the thermal-hydraulics might self-sustain the oscillations. The oscillation 

frequency of these two modes, although typically close to 0.5 Hz, might be slightly 

different from each other. Thus, the resulting oscillation, which is the sum of these two 

modes, might exhibit a rotating neutral line, with the neutral line being defined as the 

 
 

Fig. 5. Space dependence of the neutron noise induced by a regional oscillation as 

calculated by the neutron noise simulator (on the left hand-side) and conceptual 

illustration of the out-of-phase behavior of the flow and power oscillations (on the right 

hand-side) (from Siralkar, 2005) 
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line separating the positive and the negative lobes of the oscillation. An equivalent 

formulation is to say that there exists a phase shift between the first and second 

azimuthal modes, and that this phase shift is time-dependent, as illustrated in Fig. 6. 

Very often, a fourth mode, i.e. the first axial mode, can also be excited. The regional or 

out-of-phase oscillation is thus a complicated oscillation due to its spatial intermittence, 

i.e. the neutral line might be stable or it might rotate. 

 

1.6 Combined types of oscillations  

When instability events occur at nuclear power plants, several types of oscillations are 

usually excited simultaneously, even if typically only one is predominant. This 

complicates significantly the estimation of the DR, since as explained earlier, the DR is 

 

Fig. 6. Definition of the time-dependent phase shift  between the first and second 

azimuthal modes 
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based on the assumption that only one type of oscillation exists. Furthermore, it is 

customary to estimate the DR from the LPRMs, i.e. a value of the DR is estimated for 

each LPRM. One direct consequence of using local measurements for estimating a 

global parameter such as the DR is that the estimations might exhibit a space-

dependence. 

 

If only one type of oscillation is excited, then the DR is the same throughout the core. If 

several types are excited, the DR might become space-dependent. This can be 

demonstrated by assuming that the oscillations of the neutron flux can be written as a 

sum of the contributions of two oscillating modes, due to two different noise sources i  

( 1,2)i , each of them being factorized into a temporal part only and spatial part only 

( ( ))
i
r . In such a case, the DR, defined as the ratio of the first and the second maxima of 

the ACF, is given by (Pázsit, 1995): 

 
2

1

( ) ( )
i i

i

DR c DRr r  (12) 

with 

 
1

( ) ,
( ) In( )

1
( ) In( )

i

j i

i j

c i j
DR

C
DR

r
r

r

 (13) 

This expression was obtained assuming that each oscillation mode i has the same 

resonance frequency but different stability properties, i.e. DRs. Furthermore, it was 

supposed that the CPSD between the two noise sources is negligible, and that the DR of 

any of the two noise sources was larger than 0.4. ( )
i
r  represents the radial space-

dependence of the neutron noise induced by the noise source i. This spatial dependence 

can be estimated by the neutron noise simulator for all types of BWR instabilities 

 

Fig. 7. Simulated radial space-dependence of the Decay Ratio in case of a local noise 

source and a global noise source (the white square represents the location of the local 

noise source) 
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(global, regional, or local oscillations). The coefficient C represents the ratio between 

the strength of the noise sources and is a normalization coefficient. The DR exhibits a 

strong radial space-dependence only when there are at least two types or sources of 

instabilities in the core with different stability properties, and at least one of those 

correspond to a local oscillation. 

  

The case of a local oscillation coexisting with a global oscillation is shown in Fig. 7. 

The reason of the sharp boundary between the two stability regions when at least one 

local noise source exists is the fast spatial decay of the amplitude of the local 

oscillations. Such a pattern for the spatial dependence of the DR was actually noticed at 

the Forsmark-1 BWR, as can be seen in Fig. 8, during the channel instability event 

already mentioned in 2.5c(i) (the interested reader is referred to Oguma, 1997). Eqs (12) 

and (13) allow explaining the space-dependence of the DR in the Forsmark case, since a 

local oscillation could be triggered by an unseated fuel assembly. 

 

In order to correctly estimate the stability properties of a BWR, it is thus essential to 

separate the different types of oscillations from each other. Thereafter, the stability of 

each mode can be characterized by a DR per oscillation mode. Different techniques 

have been elaborated for monitoring the stability of BWRs and for separating the 

different modes of oscillations. 

 

Whereas the global oscillations can be properly detected by the Average-Power Range 

Monitors (APRMs), the LPRMs are necessary to characterize the regional oscillations. 

The monitoring techniques that are capable of detecting different types of oscillations 

can basically be classified into three categories, which are briefly explained in the 

following in increasing order of sophistication. 

 

 

Fig. 8. Radial space-dependence of the DR determined at the Forsmark-1 BWR during 

the 1996/1997 channel instability (derived from Oguma, 1997) 
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The first class of techniques aims at monitoring the phase difference between pairs of 

symmetrically-located LPRM detectors. A phase shift approaching 180 deg indicates 

out-of-phase oscillations, whereas a negligible phase shift indicates in-phase oscillations. 

The drawback of these techniques is the difficulty in monitoring combined modes of 

oscillations. 

 

The second category of techniques is based on the determination of the part of the 

LPRM signals related to the in-phase oscillations, using for instance the property of 

orthogonality between the fluctuations of the shape function of the neutron noise and 

the static flux. This leads to 

 
0

2
0 0 0

( , ) ( )( ) ( , )

( ) ( )

pk t dP t t

P d

r r rr

r r r
 (14) 

   

Subtracting this in-phase component to each of the LPRM signals also allows detecting 

possible out-of-phase oscillations. 

 

The last class of techniques is based on modal decomposition of the neutron noise. In 

this procedure, the neutron flux is expanded in the eigenfunctions of the system as: 

 ( ) ( )
n n

n

t a t  (15) 

   

with 

 

†

†

, ( )
( )

,

n

n

n n

F t
a t

F
 (16) 

 

Fig. 9. Time-dependence of the expansion coefficients for the three first modes applied 

to the LPRM signals during a stability test at the Ringhals-1 BWR 
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In these equations, the vector ( )t   represents the space- and time-dependent neutron 

flux (where each element of the vector represents the value of the time-dependent flux 

at a spatial point in the system), 
n

  represents the space-dependent eigenfunction of 

mode n, †

n
 is its adjoint, and F  is the fission operator. This decomposition can be 

performed either with the prior determination of the different modes of the static 

neutron flux or without it. An example of such a modal decomposition applied to a 

stability test performed at the Swedish Ringhals-1 BWR is represented in Fig. 9. As can 

be seen in this figure, both the global and the regional oscillation patterns are excited in 

the analysed stability test. It is interesting to notice that both the global and regional 

oscillations are clearly intermittent, and that they sometimes exhibit growing amplitudes 

over a couple of periods. Furthermore, it can also be seen that the phase shift between 

the first and second azimuthal modes is varying with time. As a consequence, the 

regional oscillation, which is a combination of these two azimuthal modes, will be 

characterized by a rotating neutral (nodal) line. 
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2 An investigation of the significance of the 

properties of the noise source for BWR instability 

2.1 Introduction 

In conceptual interpretation of the stability properties of boiling water reactors often a 

simplified model is used which assumes that the power or flux oscillations in the core 

can be described as the response of a damped linear oscillator, driven by a white noise 

driving force. It is obvious that such a model describes the behaviour of the system only 

in the linear regime, whereas fully developed instabilities are non-linear in character. 

However, such a model still proves useful in understanding the path to instability, 

especially the interplay of several different oscillation modes (global, regional, local) 

(Pázsit, 1995; Demazière and Pázsit, 2005). In such models of the BWR dynamics, it is 

always assumed that the driving force has a white noise spectrum, i.e. it is constant in 

frequency. However, the situation becomes different if the APSD of the driving force 

has a frequency dependence (``coloured noise''). In principle there are two situations 

when estimating system properties with the assumption of white driving source can lead 

to erroneous estimation of the decay ratio. One is if the driving force has resonances of 

its own, which can be interpreted as system resonances. Such resonances are known to 

occur in form of standing waves in the primary circuit of PWRs, and their presence can 

complicate the understanding of the properties of the flow induced vibrations of PWR 

internal structures. A slight resonance of the driving force close to the oscillation 

frequency of the system resonance can shift into the system frequency due to change in 

the parameters determining the force properties. This would then occur as a change in 

the system properties (stability). Another possibility is if the driving force has a sink 

(dip) at the system resonance that leads to a resulting system response which, when 

interpreted as only due to system properties as induced with a white driving force, 

would indicate a stable system. This should be a potentially dangerous situation, since 

the presence of an instability would not be observed until there is a shift in the sink 

frequency of the driving force, leading then to a much more unstable system behaviour. 

 

The driving force in our model is represented by the reactivity perturbation, which are 

generated by the propagating density fluctuations of the two-phase flow. The thought on 

the possible role of the changed properties of a none-white driving force is supported by 

the fact that the instability occurs at a certain point of flow and power values on the 

power-flow map, and disappears when the operational point is moved on the map. This 

may be primarily due to the dependence of the system properties on the flow conditions. 

However, according to the above reasoning, the properties, and in particular the sink 

structure of the driving force, are also changing with the changes in flow velocity. Then, 

the change in the stability properties of the system response may be influenced also by 

the properties of the driving force. 

 

Assuming that the driving force has a frequency spectrum equal to that of the reactivity 

effect of propagating two-phase flow the system response to such a perturbation, and in 

particular the ACF (auto-correlation function) of the response can be calculated 

analytically. This will be described in the following sections. The response is then 

compared to that obtained from the same system with a white driving force, and the 
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possible error in the estimation of the system response by assuming a white driving 

force is calculated. 

2.2 Calculations for a white noise driving force 

The solution of this classic case has known been long, and one re-derivation is found e.g. 

in (Pázsit I. (1995)). Since a similar methodology will be used for the case of a coloured 

noise driving force, we briefly repeat here the main steps of the calculation. The damped 

oscillator is described by the second order equation: 

 2

0 0
( ) 2 ( ) ( ) ( ).t t t f t  (17) 

where ( )f t  stands for the driving force. With a temporal Fourier transform of (17) and 

using the Wiener-Khinchin theorem, one obtains APSD of ( , )tr  as: 

 2

2 2 2 2 2 2

0 0

( ) | ( ) | ,
( ) 4

f
APSD APSD H

C
 (18) 

where C  stands for the constant APSD of the driving force and ( )H  is the system 

transfer function. The autocorrelation function is obtained by an inverse Fourier 

transform of ( )APSD , for which the poles of 2
| ( ) |H  need to be determined. If one 

only considers cases when the decay ratio 2
0.5e , then neglecting terms of 

2
( )O  besides unity, the APSD poles can be presented as: 

 1,2,3,4 0
(1 ).i  

The ACF can now easily be calculated by the theorem of residues. The details are not 

given here since the calculation is straightforward. For the numerical values of  that 

are usually encountered, the result is given as 

 
0| |

03

0

( ) cos( ).
4

C e
ACF  (19) 

The form Eq.(19) will be used to determine the decay ratio and resonance frequency 

from the noise induced by a coloured driving force in the forthcoming analysis. 

2.3 The reactivity effect of propagating perturbations: a non-white 

driving force. 

Now we consider the case of a driving force with non-constant spectral content. The 

spectral form of the driving force will be taken as the reactivity effect induced by a 

propagating perturbation with a white noise at the inlet. This type of driving force was 

studied extensively in the early 70'es as a model for the reactivity perturbations induced 

by the inlet temperature fluctuations of the coolant in a PWR (Kosály. and Williams, 

1971; Kosály and Meskó, 1972; Pázsit, 2002). The model used in the above publications 

assumes that the perturbations entering the inlet propagate axially along the whole 

height of the core unchanged which is not really valid for two-phase flow. However, 

some basic features of the perturbation, such as the presence of peaks and sinks (will be 

seen below), are expected also from the boiling noise. At any rate, this appears to be a 

suitable model for a non-white driving force with some relevance to realistic cases. 

 

As is described in the above publications, the propagating perturbation is defined by the 

relationship: 

SSM 2010:22



25 (61) 

 ( , ) 0, .a a

z
z t t

v
 (20) 

From here it follows that the frequency dependence of ( , )a z t  is given as: 

 ( , ) (0, ) .

i
z

v
a az e  (21) 

Then, the reactivity in first order perturbation theory is defined as: 

 2

0

1
( ) ( ) ( , ) ,

H

a

f

t z z t dz  (22) 

which in the frequency domain becomes: 

 2

0

(0, )
( ) ( ) .

H i
z

a v

f

z e dz  (23) 

From here, with an application of the Wiener-Khinchin theorem and using the 

normalized flux 
2

( ) sin ,z z
H H

 , one obtains the following expression for 

reactivity APSD: 

 
2 4 6

2
2 4 2 2 2

32 (1 cos )
( ) .

( )f T

k v T
APSD

H
 (24) 

where /T H v  and 2 / 2 /T T v H . Here T  stands for the transit time of the 

perturbation in the core and 
T

 is the corresponding angular frequency. As is easy to 

show, the function above has no poles at 0  and 
T

. On the other hand, 

( )APSD has a sink structure, i.e. has zeros at: 

 ; 2,3,n Tn n  (25) 

An illustration of this APSD is shown in Fig. 10 as a function of the frequency. 

 

The transit time was selected as 2T  sec, which is a typical value of the coolant in 

BWRs, leading to the characteristic frequency 0.5
2

T
Tf  Hz. Hence the sink 

frequencies 
n

f are equal to , 2,3n Tf n f n . According to experience, the core 

resonance frequency 
0

f  is also equal to the inverse of the transit time of the coolant in 

the core, so that
0Tf f , or

0T
. However, in the investigation of the properties of 

the induced noise, we will decouple these two variables and investigate cases when they 

are not equal to each other. 

 

Interestingly, the autocorrelation function of this reactivity APSD of the propagating 

perturbations was never written down. One way to do that is the Fourier-inversion of 

(24) which is not trivial, and will be implemented in the next Section. Alternative way is 

based on the observation that the white noise character of (0, )a t  can be expressed 

by: 
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Fig. 10. APSD of the reactivity fluctuations due to propagating perturbations T 2 s,

0.5
T

f  Hz. 

 2
(0, ) (0, ) ( ).a at t k t t  (26) 

Then, writing t t  and utilizing the traditional definition of ACF as a time 

convolution, one has: 

 

2
2 2

2

0

( ) ( | | ) if | | .
( )

( )

0 if | |

H

f

vk
dz z z v T

ACF

T

 (27) 

 Physically, this means that since the perturbation enters at the inlet with a zero 

correlation time (white noise), spatial correlations of the noise can only be found 

between points that belong to the same entry, and such can only be found for time 

differences less or equal to the time T of the perturbation passing the core, which is 

therefore the maximum correlation time of the driving force.  

Performing the integral leads to the final result: 

 
2

2 2

3
( ) ( | | )(2 cos ) sin | | ( | |).

2( ) 2
T T

f

vk H
ACF H v T

H
 (28) 

Some examples of this autocorrelation function are shown in Fig. 11. 

 

2.4 Calculations for the non-white driving force. 

We will now assume that the APSD of the driving force ( )f t of Eq. (17) has the same 

functional form, i.e. the same frequency dependence as that of the reactivity 
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perturbations, but we omit the constant factors such that the notations become simpler. 

Then one has: 

 
2 2 2 2

1 cos
( ) .

( )
f

T

T
APSD  (29) 

With this APSD of the driving force one obtains for APSD  the expression: 

 2

2 2 2 2 2 2 2 2 2 2

0 0

(1 cos( ))
( ) ( ) | ( ) | ,

( ) 4 ( )
f

T

T
APSD APSD H  (30) 

where f
APSD is given by (29), and the transfer function ( ) |H  is the same as given 

before. 

Determination of the ACF from (30) with inverse Fourier transform goes along the same 

lines as before. One needs to determine the poles of APSD . These come partly from 

the poles of 2
| ( ) |H which are the same as before and partly from f

APSD , which are 

quite specific and create some peculiarities in ACF function. 

 

Namely, it can be shown that for the asymptotic part of the ACF, defined as the part of 

the curve for T , the ACF will show exactly the same decaying oscillation character, 

and hence also lead to the same decay ratio, as with a white noise driving force. 

Consequently, it will also show the true decay ratio. That happens since f
APSD  doesn’t 

give any contributions into poles for T  but does for T . In a general setting this 

result means that the ACF of the noise oscillations induced by a coloured driving force 

will deviate from those induced by a white driving force over the correlation time of the 

driving force. We will call this the transient part of the ACF. If this correlation time is 

finite, as in the present case, then the transient part will be finite, followed by an 

asymptotic part of the ACF of the induced neutron noise which will not differ from that 

induced by a white noise driving force.  

 

Fig. 11. The ACF of the reactivity effect of propagating perturbations for two different 

transit times. 
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The calculations needed for the Fourier inversion of (30) were performed by using 

Mathematica. After extensive algebra, for the case of small as in the case of the white 

driving force, one obtains: 

 

0

0

0

| |

0

| |

0

| |

0

4

5 4

0

( ) cos | | [| |]

0.5 cos | | [| |]

0.5 cos | | [| |]

4
( | |)( cos ) sin | | [ | |],

128

T

T

T T

ACF e A

e A T T

e A T T

T
T F Y T

 (31) 

Where 
1 1, , ,A B F Y  are complicated functions of system parameters 0

,, T .  

The correctness of the above solution was checked both by Fourier-transforming it back 

to the frequency domain by Mathematica, and by calculating the inverse Fourier 

transform of (30) with a numerical FFT routine and comparing it with (31). 

2.5 Analysis of the results 

We shall now analyse the results both qualitatively and quantitatively for case when 

0 0.5Tf f  Hz, corresponding to a transit time of 2T sec. The corresponding APSD 

of the driving force was shown in Fig. 10. From the stability point of view this 

frequency spectra can demonstrate two interesting cases: one when we have a strongly 

damped system (fast decaying ACF, low decay ratio) corresponds to a wide peak in the 

system transfer APSD, and an unstable system (slowly decaying ACF) corresponds to a 

narrow resonance. At the same time, the corresponding ―measured‖ ACF will be 

different from that of the transfer function alone. We shall call this the virtual APSD or 

ACF, as opposed to the ``true'' one which belongs to the transfer function. Namely, if the 

driving force has a narrow resonance around the peak frequency of the system 

resonance, then the "virtual" APSD will be narrower (higher decay ratio), than that of 

the true system, meaning better system stability than the one deduced from the 

measurements. From the operating point of view, on the other hand, this situation is 

disadvantageous, since the load on the system due to the large amplitude power 

oscillations is just as large as in the case of high true DR. 

 

The other possibility of a significant difference between the virtual and the true stability 

is when the APSD of the driving force has a deep local minimum at the peak frequency 

of the system resonance. In that case the peak of the induced noise APSD will be 

broader than that of the system resonance, hence the stability deduced from the 

measurements is larger than the true one (the virtual DR is smaller than the true one). 

This means that the driving force in this case suppresses the power oscillations, which is 

advantageous for the operation. The potential danger of the situation is that a possibly 

highly unstable state of the system goes unnoticed. However, none of the above cases 

occurs in our model (
0 T

,
0 Tf f ) which can be seen in Fig. 12 with a true DR of 

the system being equal to 0.8. As seen from the Figure, since the driving force has the 

first sink at 2
T

f , the frequency dependence of the driving force is smooth over the 

resonance frequency 
0

f , without any peaks. Consequently, the width of the resonance of 

the measured signal (the ``virtual'' resonance) is very similar to that of the system 
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resonance. In that case, having DR=0.8, the resonances for both the system and the 

arising noise are relatively narrow. 

 

One can study various further cases by keeping 
0

f constant and changing
T

f .Increasing 

T
f  will not yield any qualitatively new result simply giving smoother behaviour of the 

noise source APSD over the system resonance at 
0

f . A more interesting case is when 
T

f

is decreased, such that the first sink of the driving force starts to approach the resonance 

of the transfer function. At 
0 / 2Tf f  the first sink of the APSD of the driving force 

 

 

Fig. 12. APSD and ACF of the system transfer and the total resulting noise for 

0 0.5Tf f  Hz for the case of 0.8DR . 
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coincides with the resonance of the system transfer function. In that case the resulting 

noise will actually have a dip instead of a maximum (Fig. 13, upper figure). In these 

cases, on the face of it, the ACF indicates a high stability in that the ACF actually does 

not even show oscillations (Fig. 13). (Due to the large difference between the ``true'' and 

the ``virtual'' ACFs, only the latter is shown in this case). Such curves are actually 

observed in some measurements. According to the model cases studied here, this can 

happen with a coloured driving force even in cases when the system DR is relatively 

high. 

 

In practice such a situation might cause a problem. Although, as it was mentioned 

earlier, the asymptotic decay ratio even for this case is equal to the true one, in a 

realistic case of using measured data, the oscillations of the asymptotic part of the ACF 

would be completely masked with measurement scatter and background noise. This 

 

 

Fig. 13. APSD and ACF of the system transfer and the total resulting noise for 

0
0.51

T
f f  for the case of 0.8DR . 
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means that the asymptotic decay ratio cannot be determined, only the virtual one based 

on the first part of the ACF, making the presence of an unstable system dynamics 

impossible to discover. The problem with such a situation is that a change in the thermal 

hydraulic parameters such that 
T

f moves away from its value will result in the fact that 

the possible unstable state of the system is uncovered. This could appear as one possible 

explanation of a decay ratio strongly dependent on the coolant velocity in certain cases. 

 

Finally we show the case of 
02.5Tf f  (Fig. 14), in which case the first local maximum 

of the driving force APSD coincides with a system resonance. Due to the relatively 

large value of T  as compared to
0

T , several oscillations of the ACF of the system 

transfer function are now covered by the transient part of the curve. 

 

 

Fig. 14. APSD and ACF of the system transfer and the total resulting noise for 

0
/ 2.5

T
f f for the case of 0.8DR . 
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As mentioned earlier, although the asymptotic decay ratio asyDR , defined as the decay 

ratio determined from the asymptotic part of the ACF, i.e. for T , would yield a 

correct result, in practice there are several circumstances that might make the 

determination of this parameter complicated. One is the fact that in a measurement it is 

not known in advance how large the transient region of the ACF is. The second is that 

the asymptotic part can have a small amplitude and the only way of determining the 

decay ratio is to use the whole ACF. For this reason it might be interesting to investigate 

the magnitude of the error of determining the decay ratio from the measured ACF in 

case of a coloured driving force. Thus a series of calculations were made for various 

values of the true DR and various values of T (and hence
T

f ) of the model of the 

driving force. The decay ratio was determined from the ACF of the induced noise by 

curve fitting in two ways: partly for the whole curve, including the transient part 

(denoted as
tr

DR ), and partly from the asymptotic part of the ACF only, denoted as

asyDR . 

 

The results for the various cases are summarized in Table 1. As can be expected, in the 

idealised case of having access to the whole ACF without measurement uncertainties, 

interfering processes etc., the asymptotic decay ratio always coincides with the true one. 

The fitting to the whole curve, on the other hand, can lead to large deviations from the 

true DR, significantly underestimating it. Hence the presence of the coloured driving 

force has a tendency of inducing a non-conservative error in the estimate. The fitting 

also serves the resonance frequency, kept constant at 0.5 Hz in these calculations, which 

is always correctly obtained by both curve fitting procedures. 

2.6 Conclusions 

Through a simplified model of the non-white character of the driving force for global 

BWR oscillations, i.e. the reactivity noise of propagating perturbations, the deviation of 

the system response from that induced by a white noise driving force, resulting in a 

response identical with the system transfer function, was quantified. It was found that 

for the cases observed in practice so far, where the system resonance frequency is equal 

to the inverse of the transit time of coolant through the core, the non-white character of 

the driving force induces negligible changes in the induced neutron flux oscillations as 

compared to those induced by a white noise driving force. However, it was shown that 

in the somewhat pathological case when a dip of the driving force coincides with the 

system resonance, the induced noise indicates a completely stable system even in case 

of an unstable one. 

 

One conclusion is that at least with the model of the driving force chosen, in practical 

cases the deviation from the noise induced by a white noise driving force is negligible. 

However, other types of non-white driving force cannot be excluded, hence the 

investigations in this work might give some hint of the effects that can be expected. It is 

also interesting to note that in reality the measured ACFs often deviate from the ideal 

second order system, and the ACFs calculated here with the non-white driving force 

managed to reproduce such features. 
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Table 1. Results of curve fitting with the ACF of white driving force, Eq. (19), to the 

ACFs with non-white driving force spectra. 

 

 Decay ratio Frequency, Hz 

DR  
tr

DR  asyDR  
0

f  
T

f  p
f  

Case1. 0.6DR        

0 0.5Tf f  Hz 0.6 0.57 0.6 0.5 0.5 0.5 

0

2
0.33

3
Tf f  Hz 

0.6 0.38 0.6 0.5 0.49 0.5 

00.55 0.29Tf f  Hz 0.6 0.11 0.6 0.5 0.5 0.5 

00.51 0.26Tf f  Hz 0.6 0.085 0.6 0.5 0.49 0.5 

0
0.5 0.25

T
f f  Hz 0.6 0.059 0.6 0.5 0.5 0.5 

02.5 0.2Tf f  Hz 0.6 0.15 0.6 0.5 0.49 0.5 

       

Case2. 0.8DR        

0 0.5Tf f  Hz 0.8 0.8 0.8 0.5 0.5 0.5 

0

2
0.33

3
Tf f  Hz 

0.8 0.65 0.8 0.5 0.51 0.5 

00.55 0.29Tf f  Hz 0.8 0.21 0.8 0.5 0.5 0.5 

00.51 0.26Tf f  Hz 0.8 0.14 0.8 0.5 0.5 0.5 

0
0.5 0.25

T
f f  Hz 0.8 0.1 0.8 0.5 0.5 0.5 

02.5 0.2Tf f  Hz 0.8 0.31 0.8 0.5 0.5 0.5 

       

Case3. 0.98DR        

0 0.5Tf f  Hz 0.98 0.98 0.98 0.5 0.5 0.5 

0

2
0.33

3
Tf f  Hz 

0.98 0.97 0.98 0.5 0.5 0.5 

00.55 0.29Tf f  Hz 0.98 0.53 0.98 0.5 0.5 0.5 

00.51 0.26Tf f  Hz 0.98 0.23 0.98 0.5 0.52 0.5 

0
0.5 0.25

T
f f  Hz 0.98 0.11 0.98 0.5 0.5 0.5 

02.5 0.2Tf f  Hz 0.98 0.61 0.98 0.5 0.51 0.5 
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3 Study of the dynamics of molten salt systems: 

construction of the adjoint and calculating the space 

dependent noise induced by propagating perturbations 

in the fuel 

3.1 Introduction 

In a previous report, Stage 13, a simple one-dimensional model with propagating fuel 

properties was set up and studied as a model of a molten salt reactor. The solution of the 

static eigenvalue equation was given first by expansions into eigenfunctions of a 

corresponding traditional reactor, i.e. an MSR with fuel velocity 0u . Then the 

neutron noise generated by propagating perturbations was calculated in the point kinetic 

approximation. For this calculation, a simplified empirical model of the zero reactor 

transfer function 
0
( )G , suggested by MacPhee (1958) and used by Dulla (2005), was 

investigated. The noise in the point kinetic approximation was studied in systems with 

propagating perturbations in the past, and it is known that this approximation predicts a 

periodic sequence of peaks and sinks in the frequency domain, arising from the 

properties of the perturbation.  

 

The goal in Stage 14 was therefore to perform a quantitative analysis of the noise in the 

point kinetic approximation, with an extension to the case when there are several 

channels with different velocities, to see how the co-existence of several velocities 

distorts the known sink structure. At the same time we noted that the empirical model of  

the 
0
( )G  for MSR contains some ripples which were not noted in the previous Stage. 

These are related to the recirculation time of the fuel, and to the transit time of the fuel 

in the core. The work in Stage 14 consists of both a quantitative analysis of the fine 

structure of the zero power reactor transfer function for MSR, and the frequency 

dependence of the noise induced by propagating perturbations in the point kinetic 

approximation. Several cases with different radial velocity distributions were 

investigated quantitatively. 

 

In Stage 15 we turned to the solution of the space-dependent equations. A first idea was 

a rigorous derivation of the point kinetic approximation with the Henry factorisation 

procedure, but this was postponed because it requires the knowledge of the adjoint 

function. It turns out that the one-group diffusion equations for an MSR are not self-

adjoint, due to the directed flow of the fuel. Hence for the MSR a method has to be 

found to define the adjoint, and this was postponed to the next Stage. The space-

dependent equations were then solved for the Green’s function of the system by the 

same eigenfunction expansion technique as in the static case. It turned out, however, 

that due to the discontinuity of the Green’s function at the point of the perturbation, the 

solution for the noise equations with this method is much more complicated than in the 

static case. The quantitative results showed that the space dependence of the induced 

noise was not reliably reconstructed by the method, because of the need of very many 

terms to satisfy the discontinuity. The frequency dependence, on the other hand, was 

reliably reconstructed. 
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In Stage 15 therefore two paths were followed. Partly, the frequency dependence of the 

space-dependent Green’s function was investigated in a few spatial points. A 

comparison with the empirical suggestion for the 
0
( )G  showed that for cases where 

the space-dependent solution is expected to behave in a point kinetic way, i.e. for small 

reactors at low frequencies, the two solutions still differ significantly. This indicates the 

insufficiency of the empirical model.  

 

The other path was to calculate the Green’s function for infinite fuel velocity. For such a 

case, a compact analytical solution can be found with a method which is similar to the 

elimination of the uncollided flux in transport problems. The significance and use of 

such a solution arises from the fact that the case of infinite velocity can be considered as 

the maximum deviation from the traditional reactors in some sense, thinking of the fact 

that the 
eff
k  of an MSR with all material and geometrical parameters constant behaves 

monotonically as a function of the fuel velocity. Hence the behaviour of the system as a 

function of system size and perturbation frequency can be studied and compared with 

traditional systems. The comparison showed that an MSR behaves point kinetically for 

higher frequencies or system sizes than a traditional reactor of equivalent parameters. 

 

In Stage 16 first first the adjoint equations of the one-group diffusion theory are derived 

for reactors with moving fuel. The adjoint property of the suggested form is proven both 

for the differential form of the coupled neutron-precursor equations, and for the integro-

differential form, obtained after eliminating the delayed neutron precursors. Then the 

Green’s function of the reactor is calculated for finite fuel velocities, with the 

employment of a method, suggested in the previous Stage for the solution for infinite 

fuel velocities. The space and frequency dependence of the Green’s function is 

investigated. Finally, the space-dependent noise, induced by propagating perturbations, 

are calculated and discussed. It is shown that with increasing fuel velocity, the 

behaviour of a given system at a given frequency tends to be more and more point 

kinetic, in accordance with the results for infinite fuel velocity, found in the previous 

Stage. 

3.2 The adjoint function 

The fact that the equations are not self-adjoint can be easily seen by writing the 

equations in matrix form: 

 

2

0

0

0

(1 )
( )

( ) 0
( )

f a

f

D
z

z
C zu

z

 (32) 

Then, it is easy to see that 

 0 0 0 0
( ) ( ) ( ) ( )z z z z  (33) 

where the brackets indicate integration over the core, i.e. 

 0 0 0 0
0

( ) ( ) ( ) ( )
H

z z z z dz  (34) 

The problem here is with the convection term for the precursors; all other terms 

SSM 2010:22



36 (61) 

give equal contributions. Similarly to the case of the transport equation, in order to 

construct the adjoint equation and the adjoint flux, it is not sufficient to construct an 

adjoint operator; one also needs to specify boundary conditions for the adjoint flux (in 

the present case for the precursor densities). 

 

Hence we seek a matrix 
†

 such that 

 
†

† †

0 0 0 0
( ) ( ) ( ) ( )z z z z  (35) 

From considering that the adjoint equation is related to time-reversal, the adjoint 

operator can be written as 

 

2

†
(1 )f a fD

u
z

 (36) 

whereas the boundary condition for the adjoint precursors will now read as 

 † †

0 0
( ) (0) LC H C e  (37) 

It is easy to prove that with this construction, Eq (35) holds. It is seen that the terms 

resulting from the off-diagonal and constants elements are equal, only the convection 

terms need to be checked. Taking the difference between the terms from the two sides of 

Eq. (35) one has 

 

†
† †

00

† † † †

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) (0) (0) ( ) ( ) ( ) ( ) 0L L

H H

z

dC z dC z
u C z C z dz C z C z

dz dz

C H C H C C C H C H C H e C H e

 (38) 

This proves that the adjoint property is fulfilled by the operator (36) and the boundary 

conditions for the adjoint precursor density (37). 

 

Similarly to what was done for the direct equation (see previous report), the adjoint 

precursors can be eliminated from the coupled equations by quadrature, and an integro-

differential equation can be derived for the adjoint flux alone. The direct equation can 

be also cast into operator form, 

 
0 ( ) 0,z  

where 

 

2

0 0 0

0 0
0 0

( ) ( ) (1 ) ( )

1
( ) ( ) .

1

f a

z z z
H z

fu u u

z D z z

e e z dz e z dz
u e

 (39) 

The derivation of the adjoint equation goes on similar lines, the result being 

 

†
† 2 † †

0 0 0

† †

0 0
0 0

( ) ( ) (1 ) ( )

1
( ) ( ) 0.

1

f a

z z z
H zfu u u

z D z z

e e z dz e z dz
u e

 (40) 
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The proof of the adjoint property, based on (39) and (40), is a much more complicated 

task than the previous form on the coupled equations where the flux and precursor 

densities were kept explicit in both the forward and the backward form.  

 

The proof of the fact that the adjoint operator and adjoint flux indeed fulfil the adjoint 

property in this form implies that 

 
†

† †

0 0 0 0
| | .  (41) 

The first two terms in the equations, i.e. the Laplace operator and the constant terms, 

obviously cause no difficulties. It is the last two terms, in the second lines of the 

equations, which are troublesome. Actually the two terms do not fulfil separately the 

adjoint property, only together. In order to prove the equality, the following actions are 

necessary: 

 in the third term, the order of integration has to be changed; 

 † †

0 0 0 0
0 0 0 0

( ) ( ) ( ) ( )

z z z z
H H H H

u u u ue z e z dz dz e z e z dz dz  (42) 

 in the fourth term, the changing of the order of the integrations requires the 

application of the identities 

 
0 0 0

( ) ( ) ( ) ( )
H z H H

z
A z B z dz dz B z A z dz dz  (43) 

and 

 
0 0

( ) ( ) ( )
H H z

z
A z dz A z dz A z dz  (44) 

Then one has 

 

†

0 0
0 0 00

†

0 0 0
0 0 0

† †

0 0 0
0 0 0

1
( ) ( ) ( )

1

1
( ) 1 ( ) ( )

1

1
( ) ( ) ( )

1

z z z
H H z

u u u

z z z
H H z

u u u

z z z
H H z

u u u

z e e z dz e z dz
e

z e e z dz e z dz
e

z e e z dz e z dz
e

 (45) 

where in the first equality equations (43) and (44) were used. This proves that Eq. (41) 

indeed holds. 

3.3 The Green’s function 

In the previous report, two Green’s functions were presented: one analytical for infinite 

fuel velocity, and a numerical solution for finite fuel velocity. The latter of these 

suffered from some distinct problems: at high frequencies, the truncated series 

expansion showed some distinctly unphysical behaviour, with undulating space 

dependence. Increasing the number of terms can make it valid for higher frequencies, 

but is computationally costly and thus not an attractive solution. Instead, we will present 

a solution inspired by that of the infinite fuel velocity, where the Greens function was 

divided into two parts: one which can be seen as a prompt system, and one which 
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incorporates the effects of the delayed neutrons. The first part will be represented 

analytically, and the second by a series expansion. 

 

We start with a recapitulation of the original idea: the static flux is represented by a 

series expansion 

 
0

1

( ) sin
N

n n

n

z a B z  (46) 

and the Green’s function by 

 ( , , ) ( )sin ,
p n n

n

G z z a B z  (47) 

where 
n

n
B

H
.  This leads to the following equation 

 
2

(1 ) ( ( ) ( )) ( ) ,
( )

f

n f a mn mn mn n m

n

i
DB b c a d

v H L
 (48) 

where 

 
( ) ( )

( ) 2 2

2 2

(( 1) 1)(( 1) 1)1
( )

1

C C

L

i in m

m n
mn i

m n

e e B B
b

e i i
B B

u u

, (49) 

 

 

( ) 2

2 22
22

2

2 2

2 2

2 2 2 2

(1 ( 1) ) ( )

2

1 ( 1) ( 1)
( )

C im

m C

mm

m n m n

m n m n

mn

m n n m

m n

e B i
n m

ii BB
uu

i
B B B B

uc

i i
B B B B

u u

B B
( )

2 2

2 2

( 1) Ci im

m n

e
n m

i i
B B

u u

 (50) 

and 

 sinm m pd B z  (51) 

 

The expansion of the static flux is still valid and will be kept. However, the expansion 

of the Green’s function requires many terms to capture the expected spike-like shape at 

high frequencies, so we shall try to use the following instead: 
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 ( , , ) ( , , ) ( , , ).p i p h pG z z G z z G z z  (52) 

where 

 ( , , ) ( )sin ,
h p n n

n

G z z a B z  (53) 

and ( , , )i pG z z satisfies 

 2
( , , ) (1 ) ( , , ) ( ).i p f a i p p

i
D G z z G z z z z

v
 (54) 

The equations for the delayed neutrons will then be 

 

2

( ) ( ) ( )

( ) 0 0

( ) ( ) ( )

( ) 0 0

( , , ) ( (1 ) ) ( , , )

1
( , , ) ( , , )

1

1
( , , )

1

h p f a h p

i z i z i z
H z

fu u u
h p h pi

i z i z i z
H zfu u u

i pi

i
D G z z G z z

v

e e G z z dz e G z z dz
u e

e e G z z dz e
u e

( , , )
i p

G z z dz

 (55) 
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The left hand side of this equation is the same as that of the original equation for 

( , , )pG z z , only the right hand side changed from the Dirac delta to a smooth function. 

This shows the analogy with the solution of the transport equation with eliminating the 

singular uncollided flux and solving an equation for the much smoother flux of collided 

particles. This means also that the matrix equation for the expansion coefficients ( )na  

will have the same form as (48)- (50), while the expression for md  will be substantially 

more involved. However, the solution goes the same way by inverting the matrix on the 

l.h.s. 

 

Numerical results are shown in Figs 15 and 16. 

 

Fig. 15 shows the frequency dependence of the amplitude of the Green's function in the 

smaller system for various fuel velocities. At the lowest velocity, the frequency 

dependence is the same as that of the amplitude of the zero power transfer function 

0 ( )G : a plateau at medium frequencies, and an 1/  behaviour at low and high 

frequencies. At higher frequencies, some multiple ripples appear. The frequencies where 

these appear correspond to the inverse of the recirculation time of the fuel. With higher 

velocities, these appear at higher frequencies. 

 

 

Fig. 15. Frequency dependence of the Green's function for a few different fuel velocities 

in the small system. 

 

Fig. 16. Green's function space dependence for some different velocities. Analytical 

solution for 0u  and u . 300H  cm, 10  rad/s. 
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Fig. 16 shows the space dependence of the amplitude of the Green's function in the large 

system, for 
0 / 2z H  and a frequency of 10  rad/s, which is in the middle of the 

plateau region, for a few different velocities. For 0u , that is a traditional reactor, the 

Green's function is relatively localised and indicates substantial deviation from the point 

kinetic behaviour. For increasing fuel velocities, partly the amplitude of the Green's 

function increases, and partly its shape is changed towards a more point-kinetic type 

behaviour. The reasons of these effects were already touched upon; the increase of the 

amplitude is due to the loss of neutrons decaying from precursors outside the core, and 

the point kinetic behaviour is due to the increased neutronic coupling between various 

parts of the core, due to the fuel flow and the movement of the precursors. 

3.4 Propagating perturbations 

In traditional light water reactors, the propagation of the coolant, through its non-

completely homogeneous structure, represents a perturbation which has the property of 

propagating through the core. In pressurized water reactors (PWRs), the small 

fluctuations of the inlet temperature, affecting e.g. the absorption cross sections, 

represents a propagating perturbation whose effect on the neutron flux can be measured. 

Such propagating perturbations and their effect on the neutron noise were studied before 

(Kosály, 1971; Kosály, 1972, Wach, 1974) as well as recently (Dykin, 2010). In the 

earlier works, the neutron noise was only calculated in the point kinetic approximation. 

The space dependence was calculated only very recently (Dykin, 2010). This interest 

was clearly triggered by the renewed interest in Molten Salt Reactors, in which such 

perturbations will be present in a stronger from than in a PWR, since it will be the 

properties of the propagating fuel that will have some random variations in contrast to 

those of the coolant in a PWR. However, the neutronic response of the MSR will also be 

different, as we have already seen at the level of the Green's function. So the space-

dependent neutron noise due to propagating perturbations is interesting both in 

traditional reactors and in the MSR. 

The propagating perturbation can be represented as 

 ( , ) (0, / )a az t t z u  (56) 

and thus in the frequency domain one has 

 ( , ) (0, ).

i z

u
a az e  (57) 

Here the process ( 0, )a z t , i.e. the perturbation at the inlet of the core, is usually 

considered as a white noise process, so the frequency dependence of its autospectrum is 

constant. This is often represented such that (0, )a
 is taken as a constant, although 

strictly speaking it is only valid for its autospectrum. This latter is, however, calculated 

by the Wiener-Khinchin theorem as its own absolute value squared, so the assumption 

of (0, )a
 being constant does not lead to any contradictions. Hence in the 

continuation we set (0, ) 1.a
 

 

As is known (Kosály, 1972) the reactivity effect of such a perturbation, calculated as 

 

2

0

2

0

( ) ( , )
( )

( )

a

f

z z dz

z dz
 (58) 
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shows a characteristic, periodic sink structure, i.e. it has zeros (``sinks'') at 

 
2 2

; 2,3
c

u
n n n

H
 (59) 

where 
c
 is the transit time of the fuel (coolant) through the core. This sink structure of 

the reactivity, which immediately affects the frequency dependence of the induced 

neutron noise, especially in the case of point kinetic behaviour, will be used to interpret 

the results from the space dependent calculations. 

 

The space dependent noise can be calculated by the help of the Green's function, which 

we determined earlier. The noise is then given as 

 
0

0 0 0 0
( , ) ( , , ) ( )

i z
a

u

a
z G z z e z dz  (60) 

A few characteristic results will be shown for illustration. 

 

The frequency dependence of the noise in a small system is shown in Fig. 17 as 

measured in the centre of the system. Such a small system is assumed to behave in a 

point kinetic manner up to high frequencies (especially in the MSR which, as it was 

noticed, behaves more point kinetically as a corresponding traditional system). Hence 

the resulting noise shows the sink structure of the reactivity, modulated by the frequency 

dependence of the transfer function, which is seen in Fig. 15. Also the ripples at low 

 

Fig. 17. The frequency dependence of the neutron noise induced by a propagating 

perturbation in a small system ( H =50 cm) 
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frequency can be seen, although less visibly, due to the linear plot in the x -axis in this 

figure. For the large system (Fig. 18), the situation is rather different. At low frequencies, 

the ripples due to the fuel recirculation are still visible. However, the sink structure at 

higher frequencies is rather different and less marked. Moreover, the frequency 

dependence is different in different parts of the reactor, as is seen in the figure which 

shows the noise in two different points of the reactor. 

 

The diminishing of the sink structure is largely due to the less dominant contribution 

from the point kinetic components, since it is only this component which has the sink 

structure. The further deviations below the plateau frequencies can be partly understood 

from the interference between the point kinetic and space dependent components of the 

induced noise, as it was discussed in a companion paper, dealing with the space-

dependent effect of propagating perturbations in traditional reactors (Dykin, 2010). This 

interference arises from the fact that the point kinetic component has a uniform phase 

across the whole core, whereas the phase of the space dependent term follows that of the 

perturbation. As seen from (57), the phase of the latter is 

 ,z
u

 

i.e. it changes linearly with the position in the core. Hence the two components are in 

certain points in-phase, at some other point out-of-phase, leading to constructive and 

destructive interference, respectively. The result is the somewhat complicated frequency 

behaviour seen in Fig. 18. 

 

Fig. 18. The frequency dependence of the neutron noise induced by a propagating 

perturbation in two different points in a large system ( H =300 cm). 
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Further insight can be gained by investigating the space dependence of the noise for 

different frequencies. We show this space dependence in the large system at two 

different frequencies. In Fig. 19 the space dependence is shown for low and medium 

frequencies. At low frequencies, the system behaves in a point kinetic manner; hence 

the amplitude of the noise follows the shape of the static flux. 

 

At the higher frequency of 10  rad/s, which is in the middle of the plateau region, 

the space dependence suddenly shows local maxima and minima, although the space 

dependence of both the point kinetic and the space-dependent parts is smooth and 

similar to the static flux. As it was mentioned before and is discussed in detail in (Dykin, 

2010), the maxima correspond to the core positions where the point kinetic and space 

dependent terms are in-phase, and the local minima to the points where they are out of 

phase. The reason that no such non-monotonic behaviour is seen at low frequency is 

partly that at lower frequency the spatial oscillations of the phase of the space-

dependent term are much slower and more important, the point kinetic component 

dominates and hence the interference has no effect. At the plateau frequency, the point 

kinetic component has decreased such that the two components are comparable in 

amplitude. This is why the spatially oscillatory behaviour of the noise is so marked. At 

even higher frequencies, the point kinetic term decreases further, and the spatial 

behaviour becomes smooth again, because it is dominated by the space-dependent 

component alone. 
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It is also interesting to make a comparison with traditional systems. As is shown in 

(Dykin, 2010), in a traditional system of the same size, at the plateau frequency, the 

noise is dominated by the space-dependent component, hence the interference and the 

spatially oscillatory behaviour of the noise is largely absent. It can only be observed at 

much lower frequencies in the large system. The fact that this interference of the two 

components exists at plateau frequencies in an MSR is a further indication of the fact 

that an MSR behaves in a more point kinetic manner than a corresponding traditional 

system. 

 

Fig. 19. Comparison between the neutron noice space dependence for different 

frequencies in a large system ( 500H  cm, 250v  cm/s). 
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4 A specific study of the novel methods of analysis of 

non-linear and non-stationary processes 

4.1 Introduction 

This section gives a brief overview of the first, preliminary results obtained with the 

application of some new data analysis techniques to neutron noise measurements, such 

as peak-to-peak interval analysis, as well as Principal Component Analysis (PCA) and 

Singular Value Decomposition (SVD). These methods are supposed to be suitable for 

the analysis of non-linear and non-stationary processes, and we chose the analysis of 

BWR stability measurements, as one application. The measurements analysed were 

taken under different operational conditions, i.e. at two different operational points on 

the power-flow map. The chosen operational points contain one stable and one unstable 

point. One long-term objective of the investigations is to see whether application of 

these methods might lead to the development of new indicators to the margin to 

instability. However, in this first pilot study, the ambition is clearly lower, and is 

restricted to a comparison of the results of the peak-to-peak, PCA and SVD analysis of 

data corresponding to a stable and an unstable point, to see if one can find any 

qualitative and quantitative differences between the two cases.  

 

These techniques are not applied directly to the time series signals, rather to a derived 

quantity, which was also used in connection with other quasi-periodic and non-

stationary signals, such as heart rate analysis. Namely, the time series to be analysed is 

the sequence of peak-to-peak time intervals, where the peaks correspond to the maxima 

(or minima) of the quasi-periodic part of the signal, represented by the unstable 

oscillations. Unlike in the case of heart beat signals where the peaks are very visible 

directly in the time series signal, in case of in-core neutron signals, the large energy 

low-frequency component of the signal usually covers and hides the quasi-periodic 

oscillations around 0.5 Hz. Hence the extraction of the peak-to-peak time intervals is an 

interesting first task to be solved. 

4.2 Principles 

The principles of the method of applying peak-to-peak analysis with a direct visual way, 

without further algorithmic processing, are described in an article by Morfill and Bunk 

(2001). The method is also illustrated in Fig. 20. The time intervals between the maxima 

of the ECG signal, denoted in the Figure as 
i

RR  with i being the sequential number, are 

taken as digitized samples of a signal. Plotting such a time series, as will be seen later 

on in our calculations, behaves like a true random process without visible strong 

periodic components. Such a time series carries important diagnostic information about 

the system, which can be unfolded in many ways. The one used in the work by Morfill 

and Bunk (2001) is based on constructing three-dimensional vectors from three 

consecutive values of the RR sequence, i.e. 
1 1 2 3
{ , , },V RR RR RR

2 2 3 4
{ , , },V RR RR RR  etc., and investigate the topological properties of the data set 

{ }, 1,2....
i
V i  As is shown in the article and is illustrated in Fig. 20, such a vector 
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data set has very different properties for healthy persons and for persons with a certain 

type of heart disease. 

 

This is the method whose application will be attempted to BWR data to explore its 

potentials for BWR stability characterization. The long-term purpose is finding a new 

potential stability indicator. There have already been attempts by others to use the same 

method, but the details are not published, for commercial reasons. 

 

In the quantitative work, the measurement data taken from cycle 14 of Ringhals-1 in 

1991 were used. As it is known, in these measurements both global and regional 

oscillations occurred simultaneously, and in measurement point G, a full instability was 

developed.  

4.3 Peak-to-peak time interval analysis of BWR in-core neutron noise 

signals 

BWR in-core neutron noise signals differ significantly from the quasi-periodic character 

of ECG signals seen in Fig. 20. Except for fully developed instabilities, the oscillation at 

around 0.5 Hz is masked by a large energy low frequency background. The idea is to 

use the information in the maxima and/or minima of this 0.5 Hz oscillation to construct 

the peak-to-peak series. This is a relatively straightforward task for the strongly quasi-

periodic ECG signals, but in the case of BWR signal, first the quasi-periodic component 

has us, our first step is to identify the time-positions of the maxima and minima.  

  

The first step is a bandpass filtering of the initial measurement signal, such that the 

bandpass filter is centred on the 0.5 Hz oscillation. This can be achieved by digital 

filtering techniques. Bandpass filters with a frequency band 0.1 – 1 Hz, as well as 0.45 – 

 

Fig. 20. Principles of peak-to-peak time series analysis for heartbeat signals. 
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0.6 Hz were used. The comparison between the unfiltered and filtered signals with the 

wider bandpass filter is shown in Figs. 21 and 22 for two radial positions in the reactor 

core. The signals were taken in the stable operational point D from the detectors LPRM-

024 and LPRM-104. 
 
 

 

Fig. 21. Raw and filtered signals in the operational point D from LPRM 024. 
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Fig. 22. Raw and filtered signals in the operational point D from LPRM 104. 
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In Figs. 23 and 24 the APSDs of the filtered and unfiltered signals are shown. They 

show how the large amplitude low frequency part of the spectra is eliminated by the 

filtering.  
 

 

Fig. 23. APSDs of the raw and the filtered signals in the operational point D from 

LPRM 024 
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Fig. 24. APSDs of the raw and the filtered signals in the operational point D from 

LPRM 104 
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The next step is to extract the time instants of the minima and maxima of the filtered 

signal. Here, various methods were tested, such as the sign change of the derivative of 

the signal, or finding local maxima and minima etc. Some results are shown in Figs. 25 

and 26. Since the oscillation frequency is 0.5 Hz, the mean value of the peak-to-peak 

signals between the maxima or the minima is 2 sec. As one can see the distance between 

two consecutive minima as well as two consecutive maxima varies around the mean 

 

Fig. 26. The peak-to-peak time series for LPRM 104 in operational point D 
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Fig. 25. The peak-to-peak time series for LPRM 024 in operational point D 
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value of 2. Fig. 27 shows the result when the filtering was performed with 0.45<f<0.6 

Hz. The reduction of the filter bandwidth reduces the amplitude of variations around the 

mean value but does not change  the distribution structure significantly. As expected, the 

peak-to-peak signals show a random behaviour.  

 

It is now interesting to compare the peak-to-peak sequences for two different 

operational points: one for the more stable point D and for the unstable point G. The 

time series sequences are shown in Figs. 25 and 28, respectively, for the same detector. 

It is seen that the variation of the peak-to-peak series is significantly larger for the stable 

point than for the unstable one. This corresponds to the fact that the signal is much more 

periodic (the peak of the APSD much narrower) for the unstable signal than for the 

stable one.  

 

Next, we construct the set of three-dimensional vectors from the peak-to-peak interval 

series, as described in the previous section. A 3-D plot of these vector sets is shown in 

Figs. 29 and 30 for the measurements in the operational points D and G, respectively. In 

both cases, the data points constitute one data cluster, centred around the diagonal 

component {2,2,2}.  

 

As one can see from these figures, the behaviour of the 3D measurement points reflects 

what was already seen on the peak-to-peak time series, Figs. 25 and 28. Namely, the 

spread of the data is larger for the more stable point D than for the unstable point G. 

Beyond that, no further structure, such as sub-clustering, can be seen in any of the 

vector sets, and the information contained seems to be limited to what can already be 

determined by the conventional methods. However, so far this is a very preliminary 

 

Fig. 27. The peak-to-peak time series for LPRM 024 in operational point D, with a 

narrow band-pass filter. 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

 N

A
m

p
li
tu

d
e
 [

s
]

Time difference, 0.45<f<0.6 Hz, LPRMD024, reduced number of points

Max

Min

SSM 2010:22



52 (61) 

analysis, based on a limited data set. Further investigations, with a larger data base, and 

possibly with the use of higher dimensional vectors will be pursued in the continuation. 

4.4 Principal Component Analysis and Singular Value Decomposition 

It has been planned already in previous Stages to apply Principal Component Analysis 

(PCA) and Singular Value Decomposition (SVD) in noise diagnostics. Both methods are 

based on the reduction of the dimension of the measurement data, which helps to 

separate the valuable data from the redundant ones and to reveal the hidden structure of 

the data. The potential benefit of these methods would be if after such a reduction, 

performed for both the stable and the unstable points, one could correlate the stability 

properties to the data structure. 

 

The basic idea of the PCA is to find an orthogonal basis through a transformation of the 

measurement data, such that unnecessary information and redundancy are eliminated. 

One can illustrate this concept with the following example. A classification of a 2-D 

random motion of an object (such as the core-barrel, or a vibrating control rod or fuel 

assembly) can be characterized by the auto- and cross correlations between the x and y 

components of the motion (or the APSD and CPSD of the vibration components).  

Assume now that for a 2-D random motion, the displacements in the x and y directions 

are uncorrelated, but with different amplitudes (the APSDs have different magnitudes at 

the vibration frequency). In such a case the 2-D motion is not isotropic, and the axes of 

the co-ordinate system in which the motion is observed, coincide with the principal axes 

of the motion. It is easy to show that, describing the same motion in another coordinate 

system which is obtained from the original with a rotation which is not equal to 90 

degrees or its multiples, then the x and y components in the new system become 

correlated. This is because due to the rotation, the new coordinates will be a linear 

 

Fig. 28. The peak-to-peak time series for LPRM 024 in operational point G. 
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combination of the old components. Hence the cross-correlation of the new components 

will contain auto-correlations of the old components, which are not zero. Since in a 

measurement one cannot grant that the observation system coincides with the principal 

axes of the motion, generally there will be a non-zero cross-correlation between the two 

components. It is important to know whether these correlations are only due to the 

―mixing‖ of otherwise uncorrelated components of the motion due to non-optimum 

choice of the observation system, or indeed there is a physical correlation between the 

vibration components irrespective of the choice of the coordinate system. A search for a 

transformation that eliminates the cross-correlation, which is the essence of the PCA, 

can give the answer. 

 

In order to perform PCA, firstly one needs to transform the measurement data into a 

vector/matrix form where the column number corresponds to the experimental trial (the 

measurement number ) and the row number corresponds to the  measurement type. In 

our case, the matrix will be constructed such that the rows are given by the 3-D vectors 

of the peak-to-peak time interval values, and the row number is the sequential number 

of the vector. 

 

The next step is to construct the covariance matrix from these measurement data. The 

non-diagonal elements of the covariance matrix are minimized by finding a new basis. 

In the new basis the covariance matrix should have a different form, such that the non-

diagonal elements are minimized and the diagonal ones maximized. After the 

transformation one obtains the set of independent components of the measurement data 

or the most important ones, as well as the information about the importance of each 

component (diagonal components of the covariance matrix.). From linear algebra, it is 

known that the searched basis can be constructed from the eigenvectors of the 

 

Fig. 29. Plot of the 3-D data vectors, constructed from the peak-to-peak series for 

measurement D. 
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covariance matrix. The matrix can be transformed into the diagonal form with the 

eigenvalues on its main diagonal. In the following considerations, this method is simply 

denoted as  traditional ―PCA method‖. 

 

Another way to perform such analysis is first to use the so-called Singular Value 

Decomposition (SVD) method and then apply the PCA. The SVD technique allows one 

to decompose the square matrix into three matrices in such a way that the consecutive 

multiplication of these matrices yields the initial matrix. The advantage of this method 

is that it allows to transform the initial matrix into diagonal. Further, this method is 

referred  as ―SVD method‖. 

 

We have applied the PCA method without and with SVD, on a data matrix composed 

from the 3-D vector sets arranged into a matrix. Existing MATLAB software was used 

for the purpose. The mean value was previously subtracted from the original data. The 

application of both ―traditional‖ PCA and the one with SVD transformed the original 3-

D data sets, shown in Figs. 29 and 30, into a new data set.  The results are shown in Figs. 

31 - 35, also including the stable point H. There is no significant difference in the data 

sets before and after the application of both PCA methods what regards the 

dimensionality of the data vectors, either for the stable or for the unstable point. 

However, what regards the data values themselves, the traditional PCA and the one with 

SVD application yield the same results for the stable points, but yield values with much 

less spread in the unstable point. It will be investigated whether such a difference could 

be used as a sufficiently sensitive indicator of the development of instability. 

  

 

Fig. 30. Plot of the 3-D data vectors, constructed from the peak-to-peak series for 

measurement G. 
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Fig. 31. Distribution of the vector points for LPRM 024 in operational point D, before 

(blue points) and after (red points) the application of PCA. 
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Fig. 32. Distribution of the vector points for LPRM 024 in operational point D, before 

(blue points) and after (red points) the application of PCA (SVD method). 
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Fig. 33. Distribution of the vector points for LPRM 024  in operational point G, before 

(blue points) and after (red points) the application of PCA. 
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Fig. 34. Distribution of the vector points for LPRM 024 in operational point G, before 

(blue points) and after (red points) the application of PCA (SVD method). 
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4.5 Conclusions 

This preliminary study served as kind of a warming up for the investigations of the 

applicability of some new methods for the stability analysis of BWRs. The goal was 

rather to get some acquaintance with the techniques applied, and to take into use some 

necessary steps (filtering and deriving the peak-to-peak time series) in order to apply the 

more advanced methods. These modest objectives were fulfilled and the potentials of 

the methods will be explored in further work. Among others the same method will be 

tried with a higher dimension of the data vectors formed from the peak-to-peak interval 

series. 

 

Fig. 35. Distribution of the vector points for LPRM 024 in operational point H, before 

(blue points) and after (red points) the application of PCA (SVD method). 
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Plans for the continuation 

In stage 17 we plan to include the following parts in the current R&D program: 

 Further development of the noise simulator, CoreSim, to be able to correctly model 

the noise induced by vibrating fuel assemblies, for the calculation of ex-core 

detector noise; 

 Extension of the traditional Feynman-alpha and Rossi-alpha methods to two energy 

groups; 

 Study of the dynamics of liquid fuel systems: extension of the model to two energy 

groups. 
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