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SKI perspective

Background

During the last decade, SKI has supported research to develop a model for the non
destructive test situation based on ultrasonic technique. Such a model is important in
many ways, for example to complement and plan experimental studies in qualification
situations or as a tool in technical justifications. During the years, many functions have
been added to the model and in this step propagation of ultrasound in cladding is
studied.

Purpose of the project

Pipes and components in nuclear power plants are often equipped with a cladding
material to prevent material degradation from media influence from the surface. This
cladding material, often anisotropic, makes the ultrasonic test situation harder. To better
understand the phenomenon and model the propagation of the ultrasonic signal through
the material and the cladding this project was set up.

Results

The report describes, in the 2D and 3D case, the propagation of ultrasonic waves in a
cladding that is both anisotropic and corrugated in the boundary between ground
material and cladding.

The results and numerical examples show that the tilt and skew of the austenitic
cladding has strong effects on the transmission of the waves. The results also show that
the corrugated surface, in this case approximated as a sinusoidal function, also effects
the transmission for certain values. This effect, in this approximation only valid for
small corrugated heights, gives us guidance in understanding the complication of
propagation through such a boundary.

Project information

Responsible for the project at SKI has been Lars Skdnberg and Peter Merck.
SKI reference: 14.43-010276/99179.
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Summary

Nondestructive testing with ultrasound is a standard procedure in the nuclear power indu-
stry. To develop and qualify testing procedures extensive experimental work on test blocks
is usually required. This can take a lot of time and therefore be quite costly. A good
mathematical model of the testing situation is therefore of great value as it can reduce
the experimental work to a great extent. A good model can be very useful for parametric
studies, as a pedagogical tool, and for the qualification of testing procedures.

In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes
much more complicated as compared to isotropic materials. Therefore, modelling is even
more useful for anisotropic materials. The present project has been concerned with the
propagation of ultrasound in claddings, i.e. a layer of material used for corrosion protection.
This is often an austenitic steel that is welded onto the surface to be protected. For
modelling purposes it may be a valid assumption to take the cladding as homogeneous but
anisotropic. A complicating factor with a cladding is, however, that the interface between
the cladding and the interface is often corrugated. This corrugation can have pronounced
effects on the transmission of ultrasound through the interface and can thus change the
detectability of defects in the cladding.

To model the propagation of ultrasound in claddings the null field approach is adopted.
This has the advantage that the problem is reduced to a type of integral equations on
the interface, which is further reduced to one period of the interface if it is periodic. The
interface has, in fact, been taken as sinusoidal, both because this is reasonably realistic and
because it simplifies the computations. Altarnative methods, primarily FEM and EFIT,
use volume discretizations and in 3D this often leads to very large problems and excessive
execution times.

The modelling is performed both in 2D and 3D, and in addition one part of the project
has been concerned with the derivation and evaluation of approximate boundary conditions
to simulate the corrugated interface with periodic boundary conditions on a (fictitious) flat
interface. This simplifies the computations and could be of particular value when modelling
defects in the cladding by integral equation techniques.

Some numerical results are given showing the capabilities of the programs. Only a
combination with an isotropic ferritic base material and an anisotropic austenitic cladding
is considered, but both the tilt and skew of the austenite and the height of the corrugations
are varied. Only a 45° 1 MHz SV probe is used to excite waves in the structure. To get
a good overview of the wave propagation field plots of the ultrasound are given. These
are given at a fixed frequency and thus show the wavefronts, wavelengths, and direction of
propagation. But the travel time information is of course missing. The results show that
both the tilt and the skew of the anisotropy have very important effects on the transmission
of the ultrasound into the cladding (and thus on the detectability of defects there). The
height of the corrugation is also of importance, and the heights that are found in practice
will in many cases have strong effects on the transmission of ultrasound into the cladding.

The approximate boundary conditions are evaluated by comparisons with the exact
calculations, and the conclusion is that they are useful for small corrugation heights. The



heights that are found in practice will often violate the range of applicability of the ap-
proximate boundary conditions.
This project has been supported by the Swedish Nuclear Power Inspectorate (SKI).



Sammanfattning

Of6rstorande provning med ultraljud tillimpas industriellt i karnkraftsindustrin vid sokandet
efter defekter. For att utveckla och verifiera testprocedurer behévs normalt omfattande
arbete med testblock. Detta kan ta mycket tid och darmed bli dyrbart. En god mate-
matisk model av testsituationen kan darfor vara vardefull eftersom den kan reducera det
experimentella arbetet avsevart. En bra modell kan vara mycket anvandbar vid parame-
terstudier, som ett pedagogiskt hjalpmedel och vid procedurkvalificering.

I anisotropa material, t.ex. austenitiska svetsar, ar utbredningen av ultraljud mycket
mer komplicerad an i isotropa material. Darfor ar modellering annu mer anvandbart
for anisotropa material. Foreliggande projekt har som syfte att studera utbredningen av
ultraljud i plateringar, dvs. ett lager av ett material som ar pasatt som korrosionsskydd.
Detta ar ofta ett austenitiskt stal som ar pasvetsat. For modelleringen kan det vara rimligt
att antaga att pliateringen ar homogen men anisotrop. En komplikation med en pasvetsad
platering ar att gransytan mellan plateringen och grundmaterialet ofta ar korrugerad.
Denna korrugering kan ha stora effekter pa transmissionen av ultraljud genom gransytan
och darfor pa detekterbarheten hos defekter i plateringen.

For att berdkna ultraljudsutbredningen i en platering anviands nollfaltsmetoden. Detta
har fordelen att problemet reduceras till en typ av integralekvationer pa gransytan, som
reduceras vidare till en period av gransytan om denna &ar periodisk. Gransytan har valts
som en sinusfunktion, bade darfor att detta ar ratt realistiskt och darfor att det forenklar
berdkningarna. Alternativa metoder, framfor allt FEM och EFIT, anvénder volymdiskreti-
seringar, och i 3D leder detta ofta till mycket stora problem med orimliga exekveringstider.

Modelleringen utfors bade i 2D och 3D, och dessutom har en del i projektet gatt ut pa
att harleda och verifiera approximativa randvillkor som kan simulera den korrugerade ytan
med periodiska randvillkor pa en (fiktiv) plan yta. Detta férenklar berdkningarna och kan
vara speciellt vardefullt om defekter i plateringen skall behandlas med integralekvations-
metoder.

For att illustrera mojligheterna ges en del numeriska resultat. Bara en kombination med
ett isotropt ferritiskt grundmaterial och en anisotrop austenitisk platering tas upp, men
orienteringen hos anisotropin varieras i tva riktningar och dven hojden pa korrugeringarna
varieras. Bara en 45° 1 MHz SV sokare anvands for att excitera ultraljudet i strukturen.
For att ge en bra oversikt 6ver ultraljudets utbredning ges graskaleplottar av filtet. Dessa
ges vid fix frekvens, vilket visar vagfronter, vaglangder och utbredningsriktningar bra.
Déaremot finns naturligtvis ingen gangtidsinformation med. Orienteringen hos anisotropin
har stora effekter pa transmissionen av ultraljud genom grinsytan (och dirigenom pa
detekterbarheten av defekter i plateringen). Korrugeringshéjden ar ocksa viktig och héjder
som ar vanliga i praktiken har i manga fall stor inverkan pa transmissionen av ultraljud in
1 plateringen.

De approximativa randvillkoren utvarderas genom jamforelse med exakta berdkningar,
och slutsatsen ar att de ar anviandbara for sma korrugeringshojder. Hojder som forekommer
i praktiken &r ofta storre dn de som de approximativa randvillkoren tillater.

Detta projekt har bekostats av SKI.



1 Introduction

Nondestructive testing with ultrasound is a standard procedure in the nuclear power in-
dustry when searching for defects. To develop and qualify testing procedures extensive
experimental work on test blocks is usually required. This can take a lot of time and
therefore be quite costly. A good mathematical model of the testing situation is therefore
of great value as it can reduce the experimental work to a great extent. A good model can
be very useful for parametric studies and as a pedagogical tool. A further use of a model
is as a tool in the qualification of testing procedures.

The computer program UTDefect and the mathematical model behind it has been deve-
loped for a decade. The program models the ultrasonic testing of isotropic and anisotropic
thick-walled components with a single defect. Conventional contact and immersion probes
can be modelled. The calibration is performed by a side-drilled or flat-bottomed hole. The
list of possible defects is rather long and primarily includes some simply shaped cracks,
but also a few volumetric defects. Some of the cracks can have rough faces and one can be
partly closed due to a compressive stress. The defects can also be located close to a planar
back wall of the component and surface-breaking cracks can be modelled. The output from
UTDefect is in the form of conventional A-, B- and C-scans. The developments have been
documented in a number of reports, see Bostrom (1995, 1997, 2001, 2002), Bostrém and
Jansson (1997, 2000), and and Eriksson et al. (1997), as well as in many scientific journal
publications and doctoral theses.

The modelling of anisotropic components is troublesome in several ways. The model
must include all the essential effects of a real component. This in particular includes the
anisotropy, but even if the anisotropy is homogeneous it is not a trivial matter to accurately
determine all the stiffness constants (five for a transversely isotropic medium, nine for an
orthotropic medium). In addition, in nuclear power plant components the anisotropy is
often inhomogeneous and this is problematic in two ways. Firstly, the inhomogeneity
must be known accurately enough and presently there seems to be no way to do this
in a nondestructive way. So on old components it may be a more or less impossible
task to determine the inhomogeneous structure, in a weld for instance. Secondly, even
if the inhomogeneity is accurately known, it is difficult to model this. Ray tracing is
possible (using RAYTRAIM for example) and this gives some insight into the ultrasonic
propagation, but it is hard to assess how accurate this method really is. Otherwise one
must resort to purely numerical techniques like FEM or EFIT, but these become very
computer intensive in three dimensions. See Halkjaer (2000) and Hannemann (2001) for
examples of using EFIT in two dimensions for an inhomogeneous and anisotropic weld
model.

A common anisotropic part in nuclear power components is a cladding, i.e. a layer
of material used for corrosion protection. This is often an austenitic steel that is welded
onto the surface to be protected. The handbook by Hudgell (1994) gives a discussion
of the problems with this and gives guidelines for the ultrasonic testing of components
with claddings. Due to the processing a welded cladding is both anisotropic and also
somewhat inhomogeneous, but for modelling purposes it may be a valid assumption to



take the material as homogeneous. Another complication is that the surface between the
cladding and the base material is corrugated, typically with a wavelength around 5 mm
and a peak-to-peak amplitude of 1-2 mm. These properties of claddings can have a large
impact on the ultrasonic wave propagation, leading to high noise levels and an increased
attenuation. It can also lead to unexpected beam directions and to difficulties to detect
and size defects inside the cladding.

The present project is concerned with the modelling of the ultrasonic wave propagation
in claddings, taking both the anisotropy and the corrugated interface into account. Both
two-dimensional and three-dimensional computations are performed. The cladding is taken
to be homogeneous so the anisotropy is constant throughout. The results are presented as
field plots so that it is possible to see how the whole ultrasonic field behaves with different
kinds of reflections and scattering. However, no defects are included in the computations,
this is instead taken up in a just started project. This also means that the present models
and computational methods are not integrated into UTDefect as this program is only
concerned with the modelling of the recieved signals from defect scattering and does not
produce any field plots.

The work presented here is more fully described in three papers, where full mathe-
matical details are given, see Krasnova et al. (2003), Krasnova and Jansson (2004), and
Krasnova (2004), and also in the coming thesis of Krasnova (2004).



2 Theoretical considerations

To model the testing situation with a probe transmitting ultrasonic waves into a component
with a cladding a geometry as shown in Fig. 1 is appropriate. The component is locally
modelled as a thick plate consisting of two different materials, both of which are allowed
to be anisotropic. The interface between the materials is assumed to be corrugated. As a
special case the interface is instead taken to be flat but with boundary conditions that are
periodic so as to try to simulate the corrugations. With the chosen geometry it is possible
to model the testing from both sides of a clad component by chosing the material closest
to the probe as the base material or the cladding as appropriate.

Both 2D and 3D computations are performed, the 2D case is exactly depicted in Fig.
1. It should be noted that to obtain a really 2D situation the probe must be assumed
to be infinitely extended in the third direction. Nevertheless, 2D computations can give
a good idea of what is going on. But exact values on amplitudes should not be trusted
(there are ways to try to correct the amplitudes), particularly because waves are decaying
like the inverse distance in 3D but as the inverse square root of the distance in 2D. When
3D problems are considered, Fig. 1 is still valid with the specification that the interface
does not have any variations in the third dimension. But the probe is of course taken to
have a finite width in the third direction, and because of this the field distribution is 3D
although the geometry is in a sense 2D.

The base material and the cladding can both be anisotropic, either transversely isotropic
(five stiffness constants, two angles to specify the symmetry axis) or orthotropic (nine
stiffness constants, three angles to specify the orientation). This should cover all materials
of interest in the nuclear power industry (the computations are, however, performed with
the full stiffness matrix, so it is only to change the input to allow for arbitrary anisotropy).
Also damping is included, this is of the viscoelastic type, and in the frequency domain this
means that the stiffness constants (and thereby the the wave speeds) are complex with an
(usually small) imaginary part representing the damping. For a 2D problem the 2D plane
must be a plane of elastic symmetry and this reduces the number of stiffness constants to
four for a transversely isotropic material and to six for an orthotropic material. In addition
one angle is needed to specify the orientation of the anisotropy. It should be stressed that
this is a good reason to perform also 3D computations as the limitation on the orientation
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Figure 1: The geometry of a clad component with wavy interface.



of the anisotropy in 2D may be unrealistic in some situations. In the cladding, for example,
it is expected that one of the crystal axes is skewed into the plane in Fig. 1 and this gives
a truly 3D situation.

Ultrasonic probes have been modelled in previous projects. This is essentially followed
here, although the simplest version is chosen. It is easy to change to other probe models
should reasons for this appear. As chosen, the model prescribes the pressure on the probe’s
contact area. This pressure is constant except for a phase that accounts for the angle of the
probe (this phase in the frequency domain corresponds to a time lag in the time domain).
The probe is thus characterized by the type (P or SV), frequency, angle, and size. The
bandwidth is also of importance, but to give a better overview of the fields (and to speed
up the computations) all results will be given at a fixed frequency. Frequency results also
have the benefit of reducing the number of figures as one figure at the centre frequency
corresponds to a number of figures at different times. But the cost for this is of course
that the travel time information is lost and that it may be more difficult to identify the
different wave types.

To solve the wave propagation problem in the two anisotropic media with the wavy
interface the null field approach is adopted. This method starts from surface integral
representations including the Green’s tensor. After some manipulations this reduces the
problem to finding the unknown displacement and stress on the interface. This is effective
because it reduces the problem from unknowns in a volume to unknowns on a surface.
The corrugated surface is specialized to a sinusoidal one, this seems to be reasonably
realistic, see Hudgell (1994), and it leads to great simplifications in the calculations. The
periodicity and the particular shape of the surface lead to a reduction to one period of the
surface and that all integrals can be computed analytically. The resulting linear system
of equations for the expansion coefficients of the surface displacement and stress is rather
small and easily solved. Having obtained the surface fields, the fields everywhere can be
obtained from the integral representation, this probably being the most heavy part of the
computations. However, it is more difficult to obtain the fields inside the grooves of the
corrugated interface. This has not been pursued here, so the fields in the grooves are not
computed at all and this will be seen in the numerical examples.

The 2D and 3D cases are treated in essentially the same way. The 3D case involves
an additional Fourier type integral in the third direction and this leads to much longer
execution times (hours).

One part of the project involves the investigation of a simplified type of boundary
condition that can be used instead of the exact ones on the corrugated interface. The
continuity of dispacement and stress on the corrugated interface is then exchanged to
approximate boundary conditions at a fictitious flat interface. This is achieved by Taylor
expansions of relevant quantities, assuming that the height of the corrugations is small and
that only linear terms in this height need be kept. The boundary conditions look more
complicated, but the great advantage is that they are applied on a flat surface. This is
useful already for the propagation problems considered here, but it should be even more
useful when considering the scattering by a defect in the cladding (at least when integral
equation methods are applied). For the approximate boundary condition the solution
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procedure is straightforward. Upgoing and downgoing waves are assumed in both the base
material and the cladding and all expansion coefficients are determined by applying all the
boundary conditions. The only complication is that the approximate boundary condition
depends on the coordinate along the interface in a periodic manner, but particularly for a
sinusoidal interface this is easily coped with.



3 Numerical examples

In this section some numerical examples are given to show a little what type of results that
can be obtained. There are then a lot of parameters to vary, so obviously a comprehensive
study is not possible and most of the parameters are fixed. The only parameters that will
be varied are the tilt (and skew) of the anisotropy and the corrugation period and height
of the interface.

The geometry is given in Fig. 1. The upper base material is chosen as an isotropic steel
and the lower cladding as an anisotropic austenitic steel (weld material). The thickness of
the base material is 15 mm and the thickness of the cladding is 10 mm. Only an SV probe
with the fixed angle 45° and frequency 1 MHz is used. The probe is square with side 10
mm (in 2D only the length of the probe is relevant). The near field length of the probe is
thus only about 8 mm.

The upper material is chosen as a ferritic steel which is isotropic with Lamé constants
A = 114 GPa and p = 82.6 GPa and density p = 8420 kg/m3. The lower material is
an austenitic steel, with material parameters that correspond to a typical weld material.
This material is transversely isotropic with stiffnesses Cs3 = 216.0, C; = Cyy = 262.7,
066 = 822, 044 = 055 = 1290, 013 = 023 = 145.0 and 012 = 982, all measured in GPa,
given in the crystal system. As usual in a transversely isotropic material with symmetry
axis in the 3-direction Cgs = (C1; — Ci2)/2. The density is 8120 kg/m3. In addition the
orientation (of the crystam system) of the material must be specified. In 2D problems only
one angle is needed and that is the tilt of the material, which is given counterclockwise
relative a vertical 3-direction. In 3D the orientation can be specified by three Euler angles.
For a transversely isotropic material only two angles are needed, namely the tilt as in 2D
and the skew, which is the rotation around the horizontal axis in Fig. 1.

The slowness surfaces of the austenitic steel are given in Fig. 2 and the corresponding
wave surfaces in Fig. 3. Due to the isotropy in the 12-plane, it is sufficient to show the
surfaces in the 13-plane. In Fig. 2 three curves are seen, the innermost is the slowness
for the qP wave, the middle one is for the SH wave (in a transversely isotropic material
a pure SH wave exists) and the outermost nonconvex curve is for the qSV wave. These
nonconvexities lead to the wellknown cusps that are seen on the corresponding curve in
Fig. 3, where the outermost curve is for the qP wave. The slowness and wave surfaces are
very helpful when interpretation of numerical or experimental results are performed. In
particular the slowness surfaces show the relation between the phase and group velocities,
i.e. between the wave front and energy propagation, as the slowness is the inverse of the
phase velocity and the group velocity is normal to the slowness curve. The wave surfaces
in Fig. 3 give the group velocities as a function of direction of propagation and it is in
particular noted that the cusps give rise to three SV group velocities in some directions.
The wave surfaces can be viewed as the waves due to an impulsive point source.

To illustrate the ultrasonic fields, the absolute value of the real part of the displacement
vector is plotted in linear greyscale in the z;z3-plane of Fig. 1 (for various reasons these
axes have different names in the field plots). Black is the strongest field and white is a
practically vanishing field. As the fields are plotted at fixed frequency this gives a good
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Figure 3: The wave curves for the austenitic steel.

overall picture where the wavefronts, wavelengths, and direction of propagation are directly
seen. The only information that is missing is the travel time, and thereby the wave speeds.

Figure 4 shows a field plot for a 2D case with a flat interface. The weld material in the
cladding is tilted 45° and this tilt angle is kept the same in the following four figures. In Fig.
4 (and in all the following figures) the probe is situated at the left upper corner, centred
around z; = 0 and with width 10 mm. The direct field from the probe, the transmission
into the cladding, and a reflectid field are all easily identified. The energy velocity is almost
vertical in the cladding in this case and as the back wall gives a total reflection this results
in a standing wave in the cladding. In Figs. 5 and 6 the interface is corrugated with
period 5 mm and height 0.3 and 1 mm, respectively, with all other conditions the same
as in Fig. 4. The small corrugation height 0.3 mm gives only minor effects on the field,
but for the height 1 mm there are clear effects. The reflection is weaker and there is also
a clear reflection back towards the probe. In Fig. 6 the part of the materials within the
corrugated region is left white. The reason for this was discussed above. However, for
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Figure 4: Field plot for flat interface with anisotropy tilted 45° in 2D
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Figure 5: Field plot for corrugated interface with period 5 mm and height 0.3 mm and the
anisotropy tilted 45° in 2D.
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Figure 6: Field plot for corrugated interface with period 5 mm and height 1 mm and the
anisotropy tilted 45° in 2D.
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small corrugations as in Fig. 5, the field can be directly continued into the grooves and
thereby given everywhere.
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Figure 7: Field plot for corrugated interface with period 10 mm and height 1 mm and the
anisotropy tilted 45° in 2D.
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Figure 8: Field plot for corrugated interface with period 10 mm and height 2 mm and the
anisotropy tilted 45° in 2D.

In Figs. 7 and 8 the interface is corrugated with period 10 mm and height 1 and 2 mm,
respectively. For the height 1 mm the effects are similar to the ones in Fig. 6, which is for
the same height but half the period. For the larger height in Fig. 8 the field distribution
is much more scattered with only a weak reflection. Is seems like the field in the cladding

is more or less propagating sideways. For this combination of interface and probe it would
be more or less impossible to detect a defect in the lower material.
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Figure 9: Field plot for flat interface with anisotropy tilted 45° in 3D.
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Figure 10: Field plot for corrugated interface with period 5 mm and height 1 mm and the
anisotropy tilted 45° in 3D.

Turning to 3D results, Figs. 9 and 10 show field plots for the same cases as in Figs. 4
and 6, respectively, i.e. the anisotropy is tilted 45° and the interface is flat or corrugated
with period 5 mm and height 1 mm, respectively. At first glance the differences between
2D and 3D seem to be large. At closer examination, however, it is realised that this is due
to the different incoming fields. The 3D field decays faster with distance and it also has
stronger sidelobes. The directly reflected wave at the interface in 3D in Figs. 9 and 10 looks
very weak, but this is partly an illusion because of the interference with a sidelobe that
”hids” this wave. Also the back wall reflection may seem weaker, but this is probably due
to the faster decay of the fields with distance. There is of course no common normalization
between 2D and 3D so it is only meaningful to compare relative amplitudes.

In a real cladding the tilt of the anisotropy is expected to be more or less small. A
number of plots are now shown to illustrate this with tilt and skew 0° and/or 15° and
varying corrugation height (but corrugation length fixed to 5 mm). The untilted case
with a flat interface is shown in Fig. 11. There is a relatively weak transmission into the
cladding in this case. The reflection also looks weak, but this is again an illusion which is
due to the interference with a sidelobe. If the corrugation is small, b = 0.3 mm, in Fig.
12, the field distribution is only altered a little. For a stronger corrugation, b = 1 mm, in
Fig. 13, the field distribution is more disturbed with a somewhat stronger transmission
into the cladding.
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Figure 12: Field plot for corrugated interface with period 5 mm and height 0.3 mm and
untilted anisotropy in 3D.
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Figure 13: Field plot for corrugated interface with period 5 mm and height 1 mm and
untilted anisotropy in 3D.
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Figure 14: Field plot for flat interface with anisotropy tilted 15° in 3D.
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Figure 15: Field plot for corrugated interface with period 5 mm and height 0.3 mm and
the anisotropy tilted 15° in 3D.

If the anisotropy is tilted 15° the fields are clearly modified, see Figs. 14-16 for b = 0,
0.3, and 1 mm, respectively. For the flat interface in Fig. 14 the field is strongly trans-
mitted through the interface without change in propagation direction and the reflection is
correspondingly rather weak.
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Figure 16: Field plot for corrugated interface with period 5 mm and height 1 mm and the
anisotropy tilted 15° in 3D.
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Figure 17: Field plot for flat interface with anisotropy skewed 15° in 3D.
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Figure 18: Field plot for corrugated
the anisotropy skewed 15° in 3D.

45

interface with period 5 mm and height 0.3 mm and

If the anisotropy is skewed 15° instead of tilted 15° the fields are only somewhat mo-
dified, see Figs. 17-19. In general both the reflection and transmission seem to be weaker
and more spread out. It should be noted that in the skewed cases in Figs. 17-19 (and in
Figs.20-22 below) it is not wholly appropriate to plot the fields only in one plane because
the group (energy) velocity in the cladding is not in the plotted plane. Instead the group
velocity has a component out of the plane and therefore the transmission into the cladding
may look weaker than it really is, although in this case with a rather small skew this effect
is not expected to be strong. To fully illustrate this situation where all the group velocities
no longer lie in a common plane it is necessary to perform computations in several planes.
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Figure 19: Field plot for corrugated interface with period 5 mm and height 1 mm and the

anisotropy skewed 15° in 3D.
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Figure 21: Field plot for corrugated interface with period 5 mm and height 0.3 mm and
the anisotropy tilted 15° and skewed 15° in 3D.

The results when the material is both tilted 15° and skewed 15° are shown in Figs.
20-22, again for b = 0, 0.3, and 1 mm, respectively. For the flat and almost flat interfaces
in Figs. 20 and 21 the transmission into the cladding is strong with the waves travelling
more or less horisontally in the cladding. For the stronger corrugation in Fig. 22 the field
distribution is more scattered and it is particularly noticed that a rather strong reflection
is obtained in the back direction towards the probe.
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Figure 22: Field plot for corrugated interface with period 5 mm and height 1 mm and the
anisotropy tilted 15° and skewed 15° in 3D.
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Figure 23: Field plot for flat interface with anisotropy tilted 50° in 2D
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Figure 24: Field plot for corrugated interface with period 10 mm and height 0.6 mm and
the anisotropy tilted 50° in 2D, exact solution.
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Figure 25: Field plot for corrugated interface with period 10 mm and height 0.6 mm and
the anisotropy tilted 50° in 2D, approximate solution.
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Figure 26: Field plot for corrugated interface with period 5 mm and height 1 mm and the
anisotropy tilted 50° in 2D, exact solution.

Figure 27: Field plot for corrugated interface with period 5 mm and height 1 mm and the
anisotropy tilted 50° in 2D, approximate solution.

Finally, to investigate the approximate boundary conditions described a little in the
previous section, Figs. 23-27 give exact and approximate field plots for the anisotropy
tilted 50° and varying corrugation height. In Fig. 23 the interface is flat and the exact
and approximate boundary conditions of course coincide in this case; this figure is almost
identical to Fig. 4, the only difference is the tilt that is 45° or 50°. In Figs. 24 and 25
the corrugation period is 10 mm and the height is 0.3 mm, but the difference between the
exact computation in Fig. 24 and the approximate one in Fig. 25 is negligible and the
approximate boundary condition thus works well in this case. Still, it should be observed
that there are some differences between Fig. 23 on one hand and Figs. 24 and 25 on the
other. In particular it can be seen that the reflection from the interface is much wider for
the flat case in Fig. 23 compared to the corrugated case in Figs. 24 and 25. In Figs. 26
and 27 the corrugation period is 5 mm and the height is 1 mm and in this case it is clear
that the approximate boundary conditions used in Fig. 27 give a completely different and
thus useless solution compared to Fig. 26.
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4 Conclusions

In this report the propagation of ultrasonic waves in a cladding that is both anisotropic
and has a corrugated interface to the base material is considered. Both 2D and 3D cases
are treated and in addition an approximation of the corrugated surface is investigated in
2D. The problems are solved using the null field method, this has the virtue of reducing the
problem to a type of integral equations on the interface, thus reducing the dimensionality
of the problem and giving a relatively effective numerical procedure. In contrast, FEM
or EFIT, that discretize directly in 3D, lead to very large problems with time-consuming
numerical procedures.

Some numerical results are given showing the capabilities ot the programs. Only a
combination with an isotropic ferritic base material and an anisotropic austenitic cladding
is considered, but both the tilt and skew of the austenite and the height of the corrugations
are varied. The results show that both the tilt and the skew have very important effects
on the transmission of the ultrasound into the cladding (and thus on the detectability of
defects there). The height of the corrugation also has important effects. The small height
0.3 mm has only minor effects in most cases, but the height 1 mm usually has strong effects.
One noteworthy effect is that the ultrasound can be directly back-scattered towards the
probe for this corrugation and in a pulse-echo setup this can of course lead to complications
such as false events.

The approximate boundary conditions are evaluated by comparisons with the exact
calculations in 2D, and the conclusion is that they are useful for small corrugation heights.
The validity of the approximate boundary conditions should depend on both the height of
the corrugations relative the ultrasonic wavelength and the slope (a dimensionless quantity)
of the corrugations. Both these quantities must be small, typically in the range 0.1-0.3.
The heights that are of practical interest often violate these restrictions.

The interest in ultrasound propagation in claddings of course emanates from the need
of nondestructive testing of claddings, typically to detect defects in the cladding. The
results of the present project can be directly useful in this respect as they show when the
transmission into the cladding is weak or when other complications occur. But the results
can also be used as the starting point for the modelling of the whole ultrasonic testing
situation with a defect in the cladding. A project with this goal has recently been started.
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