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The project was set up to investigate the potential of nonlinear scattering phenomena as new
tools to detect and localize stress-corrosion cracks in components of nuclear power plants.
Partial contact between the faces of a crack reduces the linear acoustic contrast such a defect
offers when it is completely open, and, thus, it often tends to make the crack transparent to
inspecting waves used in conventional methods.  However, the two-dimensional distribution
of contacts between asperities of the crack surfaces forms a physical system with nonlinear
mechanical properties.  The latter are determined both by the force law governing the
interaction between individual asperities in contact and by the topographical properties of the
distribution.  Therefore, the generation of nonlinear wave components upon ultrasound
scattering becomes a conceivable alternative to linear scattering phenomena to detect partially
closed cracks.

Purpose of the project
The main purpose of this project has been the theoretical and experimental investigation of
the conditions under which nonlinear scattering of ultrasonic waves by partially closed
surface-breaking cracks may occur and be observed.

Results
These results demonstrate the potential offered by nonlinear scattering phenomena as new
tools to inspect material components in search of partially closed cracks.  They also give clear
indications on the design of the experimental set-ups which better realize such potential.
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Summary
This project has investigated the potential offered by nonlinear scattering

phenomena to detect stress-corrosion, surface-breaking cracks, and regions of extended
interfaces which are often invisible to conventional inspection methods because of their
partial closure and/or the high background noise generated by the surrounding
microstructure.

The investigation has looked into the basic physics of the interaction between
ultrasonic waves and rough surfaces in contact, since the latter offers a prototypical
example of a mechanical system which is characterized by a dynamics similar to that of
a partially closed crack.  To this end, three fundamental mechanisms which may be
activated by an inspecting ultrasonic wave have been considered.  The first mechanism
is described by the Hertz force law which governs the interaction between asperities in
contact that are subjected to a normal load.  The second mechanism considers the
dynamics of two spherical asperities subjected to an oscillating tangential load.  To this
end, the model developed by Mindlin and Deresiewizc (1953) have been used.  The
third mechanism accounts for the effect of forces of adhesion, and can be described by a
model developed by Greenwood and Johnson (1998).  The validity of this model is
rather general and covers the extreme cases of very soft and very rigid contacts.  This
model aims at describing the effect of fluid layers with thickness of atomic size, which
may be present within a crack.

Statistical models accounting for the topography of the two rough surfaces in
contact have been developed, and the macroscopic stiffness of the interface recovered.
These results have been used to formulate effective boundary conditions to be enforced
at the interface, and the reflection and transmission problem has been solved in a variety
of situations of experimental significance.

The main conclusion of this part of the project is that the second harmonic
component is the dominant feature of the nonlinear response of an interface formed by
two rough surfaces in contact.  The amplitude of the second harmonic wave is shown to
reach a maximum value when the interface normal stiffness, KN, is approximately equal
to the product of shear acoustic impedance of the material and the wave’s angular
frequency, ω.  For increasing values of KN the nonlinear response of the interface is
shown to slowly decrease.

The boundary conditions for elastic interfaces have been used to investigate the
scattering of a two-dimensional surface-breaking crack which is insonified by either a
shear-vertical (SV) wave or a Rayleigh wave.  A mathematical model describing these
phenomena has been developed, and several parametric studies have been carried out.
The numerical results indicate that the largest nonlinear response is obtained when an
SV wave insonifies the crack at angles of incidence which are just above the critical
angle for longitudinal waves.  A simple explanation for this finding has been provided
in terms of the dependence of the total stress field acting on the plane containing the
crack.  As already observed for infinite interfaces, even the acoustic response of a
partially closed surface-breaking crack shows a sharp rise when the crack begins to
close, reaches a maximum value and slowly decreases as the closure of the interface
progressively increases.

A series of experiments have been conducted to assess the magnitude of the
nonlinear generation of interfaces formed by two rough steel surfaces in contact.
Preliminary results show a general qualitative agreement with the theoretical models
earlier developed in this project.  Above all, the amplitude of the second harmonic
component reaches values that are at least 20 dB above the threshold of the noise.
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Signals having amplitudes of that order of magnitude have been recorded also for
applied pressure values comparable to the largest residual stresses measured in welds.
These finding provide a solid ground on which the future development of nonlinear
ultrasonic methods for the detection of partially closed cracks embedded into a medium
with coarse microstructure can be based.
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Sammanfattning
Detta projekt undersöker det icke linjära spridningsfenomenet och dess möjligheter att
detektera ytbrytande, spänningskorrosion sprickor. Dessa kan vara osynliga för
konventionella metoder då sprickorna delvis eller helt är slutna och/eller att brusnivån
från mikrostrukturella effekter överröstar signalen.

Fysikaliska fenomen som beskriver växelverkan mellan ultraljudsvågor och skrovliga
ytor i kontakt har undersökts. Detta mekaniska system innehåller liknande dynamik som
en partiellt sluten spricka och utgör därför ett bra prototypexempel. Tre olika
mekanismer har undersökts. Den första beskrivs av Hertz kraftlag för växelverkan
mellan sfäriska skrovligheter i kontakt utsatta för en last i linje med kontaktytans
normal. Den andra mekanismen bestämmer dynamiken mellan två sfäriska skrovligheter
utsatta för en oscillerande tangentiell kraft. Här har en modell utvecklad av Mindlin och
Deresiewizc (1953) använts. Den tredje mekanismen beaktar effekten av krafter som
uppkommer vid vidhäftning, vilken kan beskrivas av en modell utvecklad av
Greenwood och Jonsson (1998). Giltigheten för denna modell är tämligen generell och
omfattar flera situationer från mycket mjuk till rigid kontakt. Denna modell syftar till att
beskriva effekten av fluida lager med tjocklekar på atomnivå vilket kan vara fallet i en
spricka.

Statistiska modeller som beaktar topologin för de två skrovliga ytorna i kontakt har
utvecklats varifrån gränsskiktets makroskopiska styvhet beräknats. Resultaten har
använts för att skapa effektiva randvillkor som krav vid ytorna, och reflexion och
transmissionsproblemen har lösts för en rad olika fall.

Huvudslutsatsen så här långt är att andra ordningens harmoniska komponent är
dominerande för den icke linjära responsen från en gränsyta formad av två skrovliga
ytor i kontakt med varandra. Amplituden från andra ordningens harmoniska våg visas
nå sitt maximum när gränsytans normaliserade styvhet, KN, är approximativt lika med
produkten av materialets akustiska skjuvimpedans och vågens vinkelfrekvens, ω. För
ökande värden på KN avtar den ickelinjära responsen långsamt.

Randvillkoren för elastiska gränsytor har använts för att undersöka spridningen av en
två-dimensionell ytbrytande spricka vilken träffas av antingen en vertikal skjuv våg
(SV) eller en Rayleigh våg. En matematisk modell som beskriver dessa fenomen har
utvecklats, och ett antal parameterstudier har gjorts. De numeriska resultaten indikerar
att den största icke linjära respons fås när en SV våg träffar sprickan med en
infallsvinkel som är omkring den kritiska vinkeln för longitudinella vågor. En enkel
förklaring till detta har åskådliggjorts i termer av det totala spänningsfältet över sprickan
och dess avhängighet till infallsvinkeln. Den icke linjära responsen från sprickan ökar
när sprickan börjar slutas, når ett maxvärde och avtar långsamt då avståndet mellan
gränsytorna progressivt minskar. Detta uppträdande har tidigare visats för infinita
gränsytor.

En rad experiment har utförts för att fastställa storleken på den icke linjära genereringen
från två skrovliga gränsytor i kontakt. Preliminära resultat visar ett generellt kvalitativt
överensstämmande med de teoretiska modeller som utvecklats. Utöver detta, når
amplituden av andra ordningens harmoniska komponent värden som är minst 20 dB
över brusets tröskelvärde. Signaler med amplituder av dessa storlekar har uppmätts för
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ihoptryckta ytor där spänningarna kan jämföras med de högsta residuala
spänningsvärden som uppmätts i svetsar. Dessa upptäckter ger en solid grund för vidare
utveckling av icke linjära ultraljudsmetoder för detektering av partiellt slutna sprickor i
medium med grov mikrostruktur.
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1 Introduction
The project “Nonlinear Scattering from Partially Closed Cracks and Imperfect

Interfaces” was set up to investigate the potential of nonlinear scattering phenomena as
new tools to detect and localize stress-corrosion cracks in components of nuclear power
plants.  The rationale supporting the expectation that such phenomena may appear when
stress-corrosion cracks are insonified by an ultrasonic wave relies on the same fact that
decreases their probability of detection by means of conventional techniques: under the
conditions in which routine inspections are carried out, the faces of a stress-corrosion
crack are in partial contact.

Partial contact between the faces of a crack reduces the linear acoustic contrast
such a defect offers when it is completely open, and, thus, it tends to make the crack
transparent to inspecting waves used in conventional methods.  However, the two-
dimensional distribution of contacts between asperities of the crack surfaces forms a
physical system with nonlinear mechanical properties.  The latter are determined both
by the force law governing the interaction between individual asperities in contact and
by the topographical properties of the distribution.  Therefore, the generation of
nonlinear wave components upon ultrasound scattering becomes a conceivable
alternative to linear scattering phenomena to detect partially closed cracks.

The main purpose of this project, therefore, has been the theoretical and
experimental investigation of the conditions under which nonlinear scattering of
ultrasonic waves by partially closed surface-breaking cracks may occur and be
observed.

The report is structured in two main sections.  The first one gives an account of
the results obtained in the theoretical investigation of this problem.  In particular, two
models are presented in which the nonlinear mechanical properties of two types of
interfaces of infinite extent are modelled.  The first model deals with contacts that are
purely elastic, while the second one considers contacts which are subjected also to the
effect of forces of adhesion.  As explained in the text with more details, the motivation
behind the second model resides in the fact that stress-corrosion cracks develop in wet
environments. The outcome of this part of the study has been the formulation of new
effective nonlinear boundary conditions to be enforced at the crack surface.  The
boundary conditions for purely elastic contacts have been implemented in a new model
dealing with the linear and nonlinear scattering of a surface-braking crack with faces in
partial contact.  In this work both Rayleigh wave incidence and shear vertical (SV)
incidence have been considered.

Finally, the second part of the project reports the experimental results that have
been obtained on steel-steel rough interfaces in contact.  In particular, the generation of
the second harmonic wave is investigated as a function of the interface conditions.  It is
shown that, depending on the interface properties, second harmonic signals can be
measured having amplitude values more than 30 dB above the threshold of the noise.
The experimental part of the project could not be developed as planned in the original
proposal because of serious difficulties in obtaining the funds necessary to the
acquisition of the instrumentation required by this type of work.  Therefore, the author
is particularly grateful to the Swedish Centre for Nuclear Technologies (SKC) for its
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financial support which allowed the purchase of the instrumentation necessary to
achieve the results presented next, and for sponsoring a scholarship on the issues dealt
with in this project.

The material generated in this project has been published (Pecorari (2003)) or is
under review in three publications in the Journal of the Acoustical Society of America
(JASA) (Pecorari (2004a), and Pecorari and Poznic (2004b)), and has been presented in
six international conferences.  Additionally, a fourth one, reporting the preliminary
experimental results on the generation of nonlinear waves by imperfect interfaces is in
preparation.  Also under preparation is a joint contribution with Prof. Igor Solodov of
the State University of Moscow to a book entitled The universality of Nonclassical
nonlinearity which will be published with the support of the European Science
Foundation and as a part of the activity of the network NATEMIS.  This network offers
a forum to European researchers involved with scientific and applied issues related to
nonlinear acoustic phenomena in materials with mesoscopic structure and damage.

2 Theory

2.1 Introduction

The first theoretical task tackled in this project has been the derivation of
effective boundary conditions which include the nonlinear dynamics of the contacting
crack’s surfaces.  To this end, two micromechanical models have been derived which
deal with two physical situations that may plausibly be encountered when dealing with
stress corrosion cracks.  In the first model the nonlinear macroscopic behaviour
emerging from the purely elastic interaction between surface asperities in contact is
examined.  In the second model, the addition of forces of adhesion is considered in
order to model the effect of a thin fluid layer that may be present within the crack.  Such
an expectation is justified by the fact that stress-corrosion cracks develop in wet
environments.

The simplest available framework to treat the problem of wave scattering from
imperfect interfaces is the spring model (Baik and Thompson, 1984), an effective
medium approach in which the actual interface is substituted by a distribution of springs
having no thickness, and stiffness, K, with values ranging between 0 and infinity.  For K
= 0, the materials forming the interface are completely detached from each other and the
total stress at their surfaces is null (no bond).  For K = ∞, a prefect bond is realized
between the materials, and the continuity of the displacement field across the interface
is satisfied.  This approach provides no information regarding the physical nature of the
interfacial defects, leaving the problem of linking the spring model to the physics of a
specific real system to some additional and independent micromechanical description of
the latter.  The validity of the spring model is limited to frequencies at which the
individual nature of the scatterers is not manifested.  As the frequency of the inspecting
wave increases, the individual nature of the defects becomes apparent, and the spring
model ceases to be valid.
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In the following, the above mentioned models and the associate acoustic
phenomena which are of some relevance for this investigation are presented.

2.2 Rough surfaces in contact: elastic case

2.2.1 Normal interfacial stiffness

By using Greenwood and Williamson’s model (Greenwood and Williamson,
1966), and Hertz analysis of the contact between two elastic spheres (Johnson, 1985),
the relationship between the normal pressure, P, and the relative approach, δ, between
the mean planes of the contacting surfaces is found to be (Greenwood and Williamson,
1966, Brown and Scholz, 1985, Baltazar et al. 2002)

         ( ) ( )∫ −
−

=
δ

ϕδ
ν 0

2/32/1
2 ;

13
2 dzNzzREnP , (1)

In this approach, the load-bearing asperities are assumed to be independent of each
other, limiting the validity of the model to those situations in which only a small
fraction of the total number of asperities are in contact.  From eq. (1), Baltazar et al.
(2002) derived the following expression for the normal interface stiffness, KN,

  ( ) ( )∫ −
−

=
∂
∂=

δ

ϕδ
νδ 0

2/12/1
2 ;

1
dzNzzREnPK N . (2)

In eq. (1) and (2), ϕ is the height distribution of the asperities of the composite surface
(Fig. 1).  The latter is defined by an appropriate algebraic combination of the profiles of
the two rough surfaces of interest, which maps the individual contacts between the
asperities of the two surfaces into the peaks of the composite one.  The variable z is
defined by the transformation z = Zo – z', where Zo is the coordinate of the highest
asperities of the composite surface, and z' is the actual coordinate of the asperity
measured from the surface mean plane. Thus, ϕ(z)dz, which gives the number of peaks
with height between  z and z + dz above the mean plane of the composite surface, that is
to say, the number of contacts formed in this interval.  Note that ϕ( z) = 0 for z’> Zo.  n
is the number of contacts per unit area, E and ν are the Young modulus and the Poisson
ratio of the material, respectively, and R is the radius of curvature of the asperities.

Following Adler and Firman (1981), and Brown and Scholz (1985), this function
is properly modelled by an inverted chi-squared distribution that depends on an integer
parameter, N ≥ 2, known as the 'number of degrees of freedom' (see also Baltazar et al.
2002),
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The symbol ( ) 212
2

2
1 σσ +=Σ represents the rms roughness of the composite interface,

while σ1 and σ2 are those of the individual surfaces.  For N = 2, ϕ( z,N)  is an
exponential function with an absolute maximum at z = 0, while it approaches a Gaussian
distribution as N increases.  This choice for ( )Nz;ϕ  provides the required flexibility to
model the topographical properties of the two surfaces.  The nonlinear nature of the

Figure 1.  Coordinates systems for the profile of the composite surface and for the
probability density function of its asperities.  The inset explains the relation between the
coordinate of the flat rigid surface pressed against the composite one, the deformation
of a given asperity, and the coordinates of the profile.

dependence of KN can be accounted for by considering the expansion of KN in powers of
∆δ in which the first order term is retained,

( ) ( ) δδ
δ

δδδ ∆+=∆
∂

∂
+=∆+ 1,0, NN

N
NN KK

K
KK . (4)

In eq. (4), the constant KN,0 (δ ) can be evaluated by means of eq. (2), while KN,1 is given
by

( ) ( )∫ −−
−

=
∂

∂
=

δ
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νδ 0

2/12/1
2

0,
1, ;

12
dzNzzREnK

K N
N , (5)

The variation of the relative approach ∆δ is positive when the distance between the
mean planes of the two surfaces decreases.  Using eq. (5), it can be shown that KN,1,
although more slowly than KN,0, tends to zero for vanishing values of δ, i.e., when the
contacts are removed.

Zo-z’

Zo

z’
Zo-δ

z
δ

ϕ
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2.2.2 Tangential interfacial stiffness

Mindlin and Deresiewicz (1953) derived the relationship between an oscillating
tangential force, Ftan , and the relative tangential displacement, ∆u, of two spheres that
are maintained in contact by a normal load, L.  Their result, recast in a form suitable for
the present work, is
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where, as before, δ is the relative approach caused by the normal load applied to the two
surfaces, f is the material static coefficient of friction, and ∆umax is the maximum, positive
tangential displacement reached during a cycle.  The function sgn(.) is equal to 1 when its
argument is positive, and to –1 when it is negative.  Equation (6) describes a hysteretic
loop, the origin of which rests in the relative partial slipping of the contacting spheres.
Such a relative displacement occurs within an annulus that extends from the edge of the
contact area towards its centre as the strength of the tangential force, Ftan, increases.  The
two spheres undergo complete sliding when Ftan = f L.  For small tangential
displacements, eq. (6) can be approximated by
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To account for the effect of a possible modulation of the normal load, eq. (7) can
be further generalized by including a term that is proportional to the product of ∆δ ∆u,
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Within the framework of the Greenwood and Williamson approach, eq. (8) can be
extended to the whole interface,
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where Σ is the shear stress acting on the interface, and KT,0 , KT,N , and KT,1 are defined
by
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respectively.  A comparison between eq. (5), (11) and (12) shows that KT,N , and KT,1 are
proportional to KN,1.  In addition, the expression found for KT,0 is found to be identical to
that given by Baltazar et al. (2002), and, as discussed in that work, requires a correction
factor ξ of the order of 0.5.  A correction to eq. (10) is necessary to account for the
effect of the angle of misalignment between the centres of the spherical contacts with
respect to the line of action of the normal load.  Henceforth, such a factor will be
included in the definition of the above coefficients.

2.2.3 Effective nonlinear boundary conditions

In this section, the boundary conditions to be enforced at a nonlinear interface
between two rough surfaces in elastic contact are formulated.  They are
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2
1,0,33 vKvK NN ∆∆σ −=+ , (13.b)

−+ = 3131 σσ (13.c)
−+ = 3333 σσ , (13.d)

In eq. (13), the superscripts ‘+’ and ‘-’ refer to the positive and negative sides of the
interface, and the subscripts 1 and 3 identify the direction parallel and normal to the
interface, respectively.  Similarly, u and v are the displacement components parallel and
normal to the interface, respectively.  The latter is assumed to lie in the plane of
equation x3 = 0.  Eq. (13.a) is derived from eq. (9) by identifying the variation of the
relative approach, ∆δ, with -∆v, i.e., the out-of-plane displacement discontinuity at the
interface.  This equation accounts for the hysteretic behaviour of the interface when it is
subjected to a shear stress.  Eq. (13.b) describes the behaviour of an interface that
softens as it opens.  The stress fields are continuous at the interface.  In eq. (13.a-d), all
the field quantities must be understood to be functions of the position along the x-axis,
and of time, t.
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2.2.4 Reflection and transmission of plane waves

In the following, the boundary value problem posed by eq. (13.a-d) is solved for
an incident plane having an arbitrary angle of incidence and polarization.  To this end, a
simple perturbation approach is used which exploits the harmonic balance method.

2.2.4.1 Longitudinal wave at normal incidence

Let  ( ) ( )[ ]333 expˆ, xktjxAtxv Linin −= ω  be the incident longitudinal wave of
angular frequency ω and wavenumber Lk  = ω / LC , where LC  is the phase velocity of
the wave.  Let ( )txv ,3

−  and ( )txv ,3
+  be the total displacement fields in the negative (x3

< 0) and positive (x3 > 0) half-space, respectively.  By introducing these field variables
in eq. (13), and by using appropriate normalization constants, the boundary conditions
for this problem become

( )2
2

0,

3

VV
K

X
V

N
N ∆ε∆

κ
−=

∂
∂ +

  , (14.a)

33 X
V

X
V

∂
∂=

∂
∂ −+

 , (14.b)

In eq. (14), −+−+ = ,, VAv in , −+ −= VVV∆ , TL CC=κ , where TC is the shear phase
velocity, TkXx 33 = , where kT = ω / CT is the shear wavenumber, ωTNN ZKK 0,0, = ,
where ZT is the shear acoustic impedance of the medium, and, finally,

0,1, NNinN KKA=ε .  Furthermore, a new normalized time variable, τ, is introduced,
which is defined by tωτ = .  Note that the coefficient Nε  does not represent an intrinsic
property of the interface.  Rather, it measures the variation of the interfacial stiffness
caused by a variation of the relative approach, δ, equal to the amplitude of the incident
wave, Ain.  Figure 2 shows plots of Nε  versus the normalized interfacial stiffness 0,NK
for two steel interfaces characterized by the parameters of Table 1, where the parameter

M = ( ) 2/121
3
2 REn ν− .  Of the parameters in Table 1, those that are related to the
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Figure 2.  Dependence of the parameter εN on the normalized interfacial stiffness for
the two interfaces characterized by the parameter of Table 1.

  Roughness (µm)  M (GPa/(µm 3/2) Degrees of Freedom

Interface 1 0.68  5.4          3

Interface 2 0.23            76.8          5

Table 1.  Statistical parameters of the interfaces (adapted from Baltazar et al.
(2002))

interface geometry are obtained from Baltazar et al. (2002), while those relating to the
material properties have been adapted from the same reference to the case of interest
here.  The parameters reported by Baltazar et al. (2002) were obtained by either direct
measurements or best fitting experimental results.  Therefore, they can be considered as
realistic.  The quantity Nε  is evaluated assuming the amplitude and frequency of the
incident wave to be Ain = 3 nm, and 1 MHz, respectively.  Thus, the strain produced by
this wave is of the order of 3.x10-6.  Except for a very small region near the origin
within which the interface is essentially open, the parameter Nε  is always much smaller
than unity.  Furthermore, the coefficient Nε  increases as the roughness of the surfaces
in contact decreases.

The solution of this problem is searched in terms of a series expansion of the
displacement components in the small parameter Nε :

( ) ( )∑
∞

=

−+−+ =
0

,,

m
m

m
N VV τετ  . (15)
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Introducing eq. (15) into the boundary conditions of eq. (14), and collecting terms
according to their expansion order, m, the following systems of boundary conditions are
obtained for the zero-th and first order solutions, respectively:

,002
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X
V N ∆

κ
(16.a)
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   (17.b)

The solutions of the zero-th order system are waves with the same angular frequency as
the incident wave, and complex amplitudes that are proportional to the complex
reflection and transmission coefficients for an imperfect interface (Baik and Thompson,
1984),

κ021
1

,NKj
R

−
−=  ,   

κ
κ

0

0

21
2

,N

,N

Kj
Kj

T
−

−=  . (18)

The solutions of eq. (17) are determined by the square of the displacement discontinuity
between the zero-th order solutions.  The latter can be written as a linear combination of
a term that is time-independent and describes an increase of the interface opening, and a
second one that is proportional to ( )τ2exp j , i.e., it contains the second harmonic of the
incident wave.  The complex amplitude of the reflected and transmitted second
harmonic can be shown to be equal, and are given by

        ( ) ( )2

0

0

1 1
1

4
2 RT

K
j

K
j

VA
,N

,N

N,
N +−

−
−== −+

κ

κεεω . (19)

According to eq. (18), ( )ω2A  is a linear function of Ain through Nε .  Therefore, the
amplitude of the physical solution is proportional to the square of the amplitude of the
incident wave, 2

inA .  Figure 3 illustrates the dependence of the second harmonic
amplitude, ( )ω2A , on the normalized interfacial stiffness.  As expected, after reaching a
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Figure 3.  Amplitude of the second harmonic components, ( )ω2A , versus the
normalized interfacial stiffness for the two interfaces characterized by the parameter of
Table 1.

maximum value in the neighbourhood of 0,NK = 1, the nonlinear response of the
interface is drastically reduced as the interface becomes stiffer.  For the interface with
smaller roughness, ( )ω2A  reaches values that are only 30 dB below that of the incident
wave.  Finally, since 0,NK  can be viewed as a function of either R or T, eq. (19) shows
that ( )ω2A  is the only additional quantity that must be determined experimentally in
order to estimate the parameter Nε .

The next higher-order components in eq. (15) can be shown to contain terms that
depend on ω and 3ω, and, thus, do not affect the amplitude of the second harmonic.
Therefore, the results of Figure 3 are valid up to the third order in Nε .    

2.2.4.2 Shear wave at normal incidence

A shear wave at normal incidence is considered next.   The incident wave is
given by ( ) ( )[ ]313 expˆ, xktjxAtxu Tinin −−= ω .  As in the previous case, sample results
are obtained for Ain = 3 nm, and ω = 2π MHz x rad.  The boundary conditions enforced
at the interface are
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. (20.b)
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To obtain eq. (20.a, b) from eq. (13.b, d), the normalization constants used in the
previous case have been employed.  Here again, the perturbation parameter

0,1, TTinT KKA=ε can be shown to be much smaller than unity, and, more precisely,

smaller then Nε  by a factor of the order of 
ν
ν

−
−

2
11

f
, which, for steel, is roughly equal to

0.7.  Given such a link between Nε  and Tε , the dependence of Tε on the interface
condition is shown to closely resemble that in Fig. 2, apart from a proper scaling factor
of the vertical coordinates.  The nonlinear term proportional to the product vu ∆∆  is not
present in this problem.

The solution is sought by using again the same perturbation expansion as in eq.
(15), which leads to the following boundary conditions for the zero-th and first order
solutions:
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for the zero-th order, and
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for the first order.   In order to obtain eq. (22.a) form eq. (20.a), the function
( )τ∆ ∂∂ Usgn  has been approximated by ( )τ∆ ∂∂ 0sgn U on the ground that the first

order solutions are much smaller that those of the zero-th order.

The solutions of the zero-th order system are obtained from those of the previous
case (see eq. (18)) by replacing κ0,NK  with 0,TK .  With these terms, the right-hand
side of eq. (22.b) can be evaluated, and its time dependence examined in terms of its
harmonic content.  Expanded in a Fourier series, this source function is shown to be odd
with respect to time.  Therefore, no even harmonic of the incident wave is generated
upon reflection and transmission of a shear wave at normal incidence.  A similar result
was found by O’Neil et al. (2001) for an interface formed by two surfaces coupled by
friction.  The amplitudes of the odd harmonic waves generated by the nonlinear
response of the interface are found by introducing the Fourier representation of the
source function on the right-hand side of eq. (22.b) and by solving the partial linear
problems into which the original one can be decomposed.  The amplitudes are
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2
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−
−= εω  ,  n = 1, 3, 5, … (23)

where Cn is the n-th complex coefficient of the Fourier series of the source function.
Figure 4 presents plots of the first and higher harmonics generated by the interfaces of
Table 1.  The third harmonic generated by the interface having a r.m.s. roughness of
0.68 µm is more than 60 dB below the amplitude of the incident wave, while that
generated by the interface with the smaller roughness reaches –50 dB.  The reduced
nonlinear response of this kind of interface to a shear excitation, compared to the
response to longitudinal wave, can be partly explained by the higher order nonlinearity
at which the effect appears, and partly by the magnitude of the coefficient Tε  compared
to Nε .  These results indicate that the magnitude of the nonlinear response of interfaces
formed by rough surfaces in contact to a longitudinal wave exceeds that to a shear wave
by about 20 dB.
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Figure 4.   Amplitude of the first three odd harmonic components, ( )ωnA , n = 1, 3, 5,
versus the normalized interfacial shear stiffness for the two interfaces characterized by
the parameter of Table 1: a) Interface 1, b) Interface 2.

2.2.4.3 Oblique incidence

In this section, the cases of both longitudinal and shear oblique incidence are
considered.  For both problems, the boundary conditions for the normalized
displacement fields are
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A comparison between eq. (13.a) and eq. (24.a) shows that, upon normalization, the
coefficient TNK  leads to Nε , reducing the number of parameters required to describe
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the nonlinearities of the interface to two.  The solution of the problem is sought by
expanding the displacement field components on both sides of the interface in a double
series in the small parameters Nε and Tε ,

( )TNTTNN OUUUU εεεε ,,
,1

,
,1

,
0

, +++= −+−+−+−+ , (25.a)

( )TNTTNN OVVVV εεεε ,,
,1

,
,1

,
0

, +++= −+−+−+−+ . (25.b)

Following the perturbation procedure previously employed, the reflected and
transmitted waves can be easily found, though they cannot be given by simple analytical
expression.

Figure 5 illustrates the first order, nonlinear response of the interface with r.m.s.
roughness equal to 0.23 µm (see Table 1) as a function of the angle of incidence.  The
incident wave is longitudinally polarized.  Figure 5.a refers to the longitudinal second
harmonic component, while Fig. 5.b to the shear second harmonic wave.  Similar to the
results at normal incidence, the amplitude is shown to initially increase, and rapidly fall
as the normalized normal stiffness, NK , becomes greater than 1.  Of interest is the
relatively small variation of the amplitude of the second harmonic longitudinal wave
with the angle of incidence, in view of which the angular dependence of the nonlinear
response of a partially closed crack may be expected to resemble that of the linear
response.  As for the second harmonic shear wave (Fig. (5.b)), its amplitude remains
below that of the longitudinal component for all the values of the angle of incidence.
The same observation can be made for the amplitude of the third harmonics generated
by the hysteretic behaviour of the interface, which, therefore, seems not to play a
relevant role.
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Figure 5.  Longitudinal a) and shear b) second harmonic amplitude versus angle of
incidence generated upon scattering of a longitudinal incident wave for various values
of the normalized normal stiffness.
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Figure 6.  Longitudinal a) and shear b) second harmonic amplitude versus angle of
incidence generated upon scattering of a shear incident wave for various values of the
normalized normal stiffness.
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Figure 6 presents sample results for a shear incident wave.  They illustrate the
remarkable feature of the amplitude of the longitudinal second harmonic in the
neighbourhood of the longitudinal critical angle, which approaches the –20 dB level
below the amplitude on the incident wave (Fig. (6a)).  Such a result can be explained by
the localization of the energy carried by the longitudinal waves in proximity of the
interface occurring for values of the angle of incidence near the longitudinal critical
angle.  Although above the longitudinal critical angle the nonlinear scattered waves may
not be used for detection purposes since they do not propagate away from the interface,
this result suggests an efficient way to inject energy into the interface in order to
enhance its nonlinear response to a second inspecting wave.  The shear second harmonic
wave (Fig. (6.b)), on the other hand, maintains its propagating character over the whole
range of angles of incidence.  A similar phenomenon was previously predicted for a
perfect interface between two nonlinear materials by Shui et al. (1987).

2.3 Rough surfaces in contact: adhesive interface

In the following, a micromechanical model developed by Greenwood and Johnson
(1998) (GJ model) to describe the contact between two spherical bodies interacting via
both elastic forces and forces of adhesion is presented first.  Next, the micromechanics
of interacting asperities predicted by the GJ model is incorporated into the framework
developed by Greenwood and Williamson (1966) to derive the mechanics of two
nominally flat, nonconforming rough surfaces in contact.  The case of an interface
subjected to a cyclic load is examined in detail.  Adhesion between the surfaces in
contact is shown to lead to hysteresis with end-point memory in the relationship
between the applied stress and the relative approach of the two surfaces.  The results of
this section are then used to formulate effective boundary conditions to be enforced on
the acoustic field of a longitudinal wave at normal incidence.  This boundary value
problem is finally solved by means of a classical perturbation approach in which two
small parameters measuring the nonlinearity of the interface are used as perturbation
parameters.  The amplitude of higher harmonics is shown to display the features that
have previously found in materials with distributed damage and in geomaterials (Guyer
and Johnson (1999), Ostrovsky and Johnson (2001), TenCate et al. (1996), Meegan et
al. (1992)).  A series of critical remarks on the present work concludes this
communication.

2.3.1 Micromechanics of a single contact

The interaction between two spheres, or a sphere and a flat surface, involving
both elastic and adhesive forces is controlled by a single parameter, µ, known as the
Tabor parameter.  In this work, the definition of µ given by Greenwood and Johnson
(1998) is adopted: ( )( ) 312 γσµ ∆′= ERo  (Note 1).  The symbol oσ is the maximum
adhesive stress acting on the contact, R is the composite radius of curvature, which is
defined by ( ) 11

2
1

1
−−− += RRR , where R1 and R2 are the radii of curvature of the two

spheres, E’ is the reduced Young modulus of the contact,
( ) ( )( ) 1

2
2
21

2
1 11

−
−+−=′ EEE νν , and ∆γ is the surface energy.  The symbols Ei and νi,

with i = 1, 2, are the Young and the Poisson moduli of the two materials, respectively.
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In the GJ model, the interaction between the two bodies in contact is described by
superimposing two Hertzian stress distributions of opposite sign.  The compressive
Hertzian stress, as in the original model by Hertz, acts over a circular area of radius a.
The tensile stress, which simulates the effect of adhesion, acts also over a surrounding
circular annulus with external radius c > a.  The Hertzian character of the two
distributions allows their superposition to yield a uniform displacement of the points in
contact over the area r < a.  Therefore, like in the original theory by Hertz, the force
applied to the centers of the spheres, ( )µδFF =  (Note 2), can be related to the
relative approach of such points, δ. However, no simple direct mathematical
relationship exists between the two quantities.  Rather, four equations are given to link δ
and F, which involve four additional model parameters: a, c, µ, and k.  The latter
parameter, which controls the intensity of the tensile stress, is introduced in the model to
obtain a uniform displacement distribution of points for which r < a.

By varying the Tabor parameter between 0 and ∞, the whole spectrum of cases
ranging from that of two rigid spheres in contact (Bradley (1932), µ = 0) to that
contemplated by Johnson, Kendall and Roberts (1971) (the JKR model, µ → ∞) can be
covered.  The latter properly describes the case of a contact characterized by large
values of R and surface energy, and/or between rather soft materials.  For a thorough
discussion and rigorous analysis of the interaction of two spheres the reader is referred
to the work of Greenwood (1998).

Fuller and Tabor (1975) described the adhesion between nominally flat, rough
surfaces of Perspex and rubber by implementing the JKR model into the Greenwood
and Williamson framework (1966) that will be discussed later.  Their results on a
Perspex-rubber interface are used here to set an arbitrarily large reference value of µ,
i.e., µ = 100, from which that of other material interfaces can be derived under the
additional assumption that the maximum adhesive stress, oσ , remains constant.  In
particular, a value as small as µ = 0.079 is obtained for contacts between Perspex and
steel with relevant parameter values shown in Table 2.  This approach is motivated by
the lack of sufficient information on the physical parameters characterizing the
micromechanics of contacts considered in this work, that is to say, contacts with µ < 1.
Figure 7 illustrates the dependence of the normalized force, ( ) ( ) cFFF µδµδ *** = ,

on the normalized relative approach, cδδδ =* , where ( )γπ ∆= RFc 2 , ( )Rc
2βδ = ,

and ( ) 312 ER ′∆= γβ , for µ =0.079.  With this normalization, the maximum
normalized tensile force, F , varies from 1 for µ =0 to F  = 0.75 for µ → ∞.  In
particular, for µ =0.079, F ≅ 0.981, that is to say, it differs from the value typical of a
rigid contact by about 2 percent.

According to the GJ model, there is no long-range interaction.  Thus, during
approach, the first contact between the spheres is established when δ∗ = 0.  At that point,
an attractive force draws the two bodies together, and a new equilibrium configuration
characterized by a finite contact area, and, thus, a finite approach, is established by the
balance between the attractive adhesive force and the elastic reaction to it.  The
application of an additional external compressive force increases the relative approach
as in the Hertzian case.  Upon unloading, the force-approach relationship retraces the
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µ R (µm) ∆γ (mJ m-2) cδ  (nm) cF  (10-6 N)
0.079 1 40. 0.37 0.25

Table 2.  Physical and geometrical parameters defining the contact.
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Figure 7.  Plot of the force-displacement relationship for a contact between Perspex
and steel spheres characterized by the parameters of Table I according to the
Greenwood and Johnson model.

loading curve in the opposite direction.  Upon unloading, the force-approach
relationship retraces the loading curve in the opposite direction.  At δ∗ = 0, however, the
area of the contact as well as its stiffness are still finite.  Therefore, in order for a
complete detachment to occur, the applied tensile force must be further increased and
the contact must be stretched beyond the point at which it was established.  If the load
on the contact is transmitted by a device having infinite compliance, then the contact
breaks when its stiffness becomes null, that is to say, when the tangent to the curve in
Fig. 7, is parallel to the δ∗ axis.  At this point, δδ =*  and ( ) FF =µδ* .  This
situation closely resembles that occurring during a wave scattering event in which an
interface is partially closed by an instrument controlling the load, and the contacts are
formed and broken by the stress carried by the wave field.

2.3.2 Rough surfaces in contact

The Greenwood and Williamson’s (1966) model is reviewed here to be adapted
to the case of present interest.  Following Brown and Scholz (1985), the original
problem is transformed into that of an auxiliary surface (the composite surface) pressed
against an infinitely rigid flat (see Fig. 1).  The relationship between the applied
pressure, P, and the relative approach, ∆, between the mean planes of the rough surfaces
in contact can be written as follows
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In Eq. (26), ϕ(.) is the probability density function of the peaks of the auxiliary,
composite surface.  The latter is defined by an appropriate algebraic combination of the
profiles of the two rough surfaces of interest, which maps the individual contacts
between the asperities of the two surfaces into the peaks of the composite one.  Thus,
ϕ(Zo-z)dz, which gives the number of peaks with height between  z and z + dz above the
mean plane of the composite surface, represents also the number of contacts formed in
this interval.  Zo is the maximum height of the asperities of the composite surface, and,
thus, ϕ( Zo-z) = 0 for z> Zo.    In equation (1), n is the number of contacts per unit area,
and F(.) is the force law between asperities, which depends on their relative approach, δ
= z-Zo+∆, as well as on additional contact parameters, λi, i = 1, 2, ….  The values of the
latter for each contact are generally unknown, and, thus, are to be considered stochastic
variables with probability density functions φ(.), η(.), ..., respectively.  The integration
over z is carried out between the actual position of the flat surface with respect to the
mean plane of the composite surface, Zo-∆, and the initial position of the same surface
for P = 0, Zo.  The integrals over the other stochastic variables are also evaluated over
appropriate ranges of values.

Introducing the force law of the GJ model in Eq. (26), the latter becomes
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In Eq. (27), the new non-dimensional variable t* = (Zo-z) / δc has been introduced, and
λi, i = 1, 2, have been identified with R and ∆γ, respectively.  Consistently, ∆* = ∆ / δc.
For the sake of conciseness, the Tabor parameter has replaced R and ∆γ in the
expression of the force law.  The distribution of the values of R has been assumed to be
independent of the asperity height z, and the surface energy ∆γ, which depends only on
the nature of the materials, has been taken to be the same for all the contacts.  Thus, η(.)
= δ(.), where δ(.) is the delta of Dirac, and Eq. (27) becomes

( ) ( ) ( ) ( )∫
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dRdtRttFRnP φϕµγπ . (28)

Fuller and Tabor (1975) developed a similar model in which the force law of the JKR
model was used.  In their work, they implicitly assumed that all the contacts have the
same composite radius of curvature, R.  Although this is a rather drastic approximation,
the effects of which will be discussed later, it will be adopted even in this work for the
sake of simplicity.  Therefore, setting φ(.) = δ(.) in Eq. (28) yields

( ) ( ) ( )∫
∆

−∆∆=∆
*

0

*****2* dtttFRnP ϕµγπ . (29)

Following Baltazar et al. (2002), the probability density ϕ( t* ) is chosen to be a chi-
squared probability density function as given by Eq. (3) in Section 2.2.1.
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   Having brought the two surfaces to a maximum normalized approach
∗∆max at the end of loading phase of the first cycle, the relationship between the

applied pressure, P, and the normalized relative approach, ∆∗, during unloading  is
given by

( ) ( ) ( )∫
+∆

−∆∆=∆
D

dtttFRnP
*

0

*****2* ϕµγπ , (30)

where D = ∗∆max  - ∆*, if 0 < ∗∆max  - ∆* < δ , and D = 0, if ∗∆max  - ∆* > δ .  The inclusion
of D in the upper limit of integration is to account for the stretching of the peaks that
had been formed last during the preceding loading phase of the cycle.

The main interest of this investigation is in the dynamic behavior of the interface
when it is subjected to a cyclic loading.  Thus, if  ∗∆min  is the relative approach at the
end of the unloading phase of the cycle, the pressure-approach relationship during all
the following loading phases is given by

( ) ( ) ( )∫
+∆

−∆∆=∆
D

dtttFRnP
*

0

*****2* ϕµγπ , (31)

where D = δ -∆* + ∗∆min , if 0 <  ∆* - ∗∆min < δ , and D = 0, if ∆* - ∗∆min  > δ .  The lower
limit of integration accounts for the effect of contacts that are under tension at the end of
the unloading cycle, and are now progressively set under increasing compression again
during the current compressive phase of the cycle.

Let the interface be subjected to a static load Po upon which an oscillating
component, ∆P, is superimposed.  Figure 8 illustrates an example of such a pressure-
approach relationship for an interface between Perspex and steel.  The Young modulus
of the Perspex is E1 = 2.85 GPa, and that of steel is E2 = 192 GPa, while the values of
the Poisson modulus are ν1 = 0.4 and ν2 = 0.28, respectively.  The value of ∆γ = 40
mJ/m2 for the surface energy change is used (Fuller and Tabor, 1975), while that of the
peak density, n, of the composite surface is obtained by employing the approximation

σRn 1.0= , which was found experimentally by Fuller and Tabor (1975).  In addition,

the rms roughness of the composite surface is 2
2

2
1 σσσ += = 30 nm, where 1σ  and

2σ  are the rms roughness of the two surfaces.  A number of degrees of freedom, n,
equal to 10 completes the characterization of the probability distribution density of the
composite asperities.  The parameter values characterizing the individual contacts are
those reported in Table 2.  In Fig. 8, the pressure, P, is normalized by Pc = 2π n R ∆γ :
P * =  P/ Pc.

For the purpose of the present investigation, the most important feature
displayed by Fig. 8 is the hysteresis with end-point memory displayed by the plot of the
normalized pressure, P*, versus the normalized relative approach, ∆∗.  Such hysteretic
behavior is caused by the forces of adhesion.  This fact can be better understood by the
analysis of the interfacial stiffness, KN, as a function of the relative approach (Fig. 9).
The stiffness, KN, which in Figure 4 is normalized with respect to K’ = Fc / δc, is
defined mathematically by the first derivative of the pressure with respect to the relative
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approach, ( )
o

PK oN ∆∆∂∂=,  at ∆ = ∆o, where ∆o is the value of the approach at
equilibrium.  In Fig. 8, the behavior of KN as the interface reaches its equilibrium during
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Figure 8.  An example of the hysteresis loop displayed by the pressure-relative
approach relationship of an interface between two rough surfaces in contact when
subjected to a cyclic load.  The interface separates two halfspaces of Perspex and steel,
and the parameters characterizing the contacts are given in Table 2.

the first loading is illustrated by the dotted line.  When probed dynamically by a
periodic perturbation producing a variation of the normalized approach at equilibrium
not exceeding the normalized distance 22 δδ c=∆ , the stiffness of the interface
undergoes a discontinuous positive variation after reaching its maximum value at the
end of the first compressive phase.  After such an event, it varies continuously along the
upper side of the unloading cycle (path between the points A and B in Fig. 9).  Thus, for
small variations of the instantaneous relative approach from its value at equilibrium, the
stiffness displayed by the interface during the following cycles is larger than that at
equilibrium, KN,o, and can be approximated by a linear expansion in δ∆:

 ∆+≅ δ1KKK oN .  The constant term Ko can still be evaluated as the first derivative of
the pressure with respect to the relative approach, as in the case of KN,o,

( )
00 ∆∆∂∂= PK .  However, care must be taken to perform this derivative after the first

compressive cycle has terminated.  Similarly, ( )
0

22
1 ∆∆∂∂= PK .

For variations of the instantaneous relative approach having amplitude δ∆ such
that 2∆=∆δ , at each turning point in a cycle and at a distance equal to ∆  from them,
the stiffness undergoes sudden discontinuous variations during all cycles following the
first one.  The positive jump at the beginning of the unloading phase is due to the
stiffening reaction accompanying the stretching of the contacts last formed during the
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previous loading phase; that at the opposite end of the cycle is determined by the onset
of the removal of the contacts under tension.  The negative jump during unloading
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Figure 9.  Dependence of the normal interfacial stiffness on the interface relative
approach.  The normalization constant is K’ = N pc / δc, where N is the number of
contacts per unit area.  The points A and B indicate the path along which the system
evolves when the maximum variation of the interface opening displacement is smaller
than 2∆ .  The interface is that of the previous figure.

occurs when the first rupture of contacts takes place, while that during the loading cycle
is determined by the completion of the removal of all the contacts under tension.  In
conclusion, during dynamic loading, the interface stiffness can be approximated by the
following expression

       ( ) ( )−∆−∆−∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∆∂−′−∆+=∆+∆=∆ max210 sgn H
t

HKKKK oN δδ

                                                                 ( )∆−∆−∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∆∂′′ min2 sgn H
t

HK ,      (32)

in which, in addition to the linear expansion already considered, two products of step
functions have been introduced.  In the first product, the first step function is non-zero
only during the unloading phase of a cycle, while in the second one, the first step
function is non-zero during the loading phase.  The second step functions in each
product describe the negative jumps of the stiffness occurring during a cycle.  The
coefficients 2K ′ and 2K ′′  measure the stiffness variations taking place during the jumps.

The behavior of the stiffness just discussed is another manifestation of the
hysteresis with end-point memory affecting the pressure-approach relationship, and
demonstrates the similarity between the dynamics of this type of interface and that of a
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fictitious hysteretic elastic unit (HEU) of the Preisach-Mayergoyz space.  Both can exist
in two dynamic states, and the transitions between the latter are determined by threshold
values of the independent variable, as well as by the history of the state.  In addition,
contacts between asperities are material features with typical mesoscopic dimensions.
To the best of this author’s knowledge, this is the first example of a real mechanical
interface or bond between solid bodies which can be shown to behave like a hysteretic
elastic unit of the Preisach-Mayergoyz (P-M) model used to simulate the propagation of
acoustic waves in materials with hysteretic properties (Guyer and Johnson, 1999).

2.3.3 Wave reflection and transmission

In this section, the effective boundary conditions needed to describe the
scattering of a longitudinal wave by an interface such as those described above are
formulated.  The propagation direction of the incident wave is assumed to be normal to
the interface, and the boundary value problem is solved by means of a standard
perturbation approach.

From Eq. (32), the behavior of the normal stiffness of the interface as a function
of the interface opening displacement (IOD) oscillation, ∆u is approximated by the

following function

( ) ( ) −∆−∆+∆⎟⎟
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⎞
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⎝

⎛
⎟⎟
⎠

⎞
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⎝

⎛
∂
∆∂′−∆−=∆ max210 sgn uuH
t
uHKuKKuK N        

( )uuH
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uHK ∆−∆−∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∆∂−′′ max2 sgn ,     (33)

where δ∆ = - ∆u, maxmin uu o ∆−∆=∆ , and the symbol maxu∆ denotes the amplitude of
the interface opening displacement's oscillation, ∆u.  Therefore, the first boundary
condition to be enforced at the interface is

( ) ( ) uuKt N ∆∆=+ ,033σ ,       (34)

where ( )uKK NN ∆=  is given by Eq. (33), ( ) ( ) ( )tututu ,0,0 −+ −=∆ , and ( )tu ,0+  and
( )tu ,0−  are the total displacement fields on the positive and negative side of the

interface, respectively.  The second boundary condition requires the normal stress to be
continuous across the interface,

( ) ( )tt ,0,0 3333
−+ = σσ  .       (35)

The incident wave is assumed to propagate in the half-space z < 0.  The Lamé constants
of the negative half-space are −λ  and −µ , while +λ  and +µ are those of the positive
half-space.  If Ain is the amplitude of the incident wave, the total fields in the negative
and positive half-spaces can be written in terms of two new non-dimensional functions

( ) ( )tzAtzu in ,, −− = ξ , and ( ) ( )tzAtzu in ,, ++ = ξ , respectively.  Introducing the following
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non-dimensional variables, zk −=η , where −k  is the longitudinal wave number in the
negative half-space, and tωτ = , where ω is the angular frequency of the incident wave,
the boundary conditions for this problem can be cast in the following form

( ) ( )+
⎢
⎢
⎣

⎡
∆−∆+∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∆∂′−∆−∆=

∂
∂+

+
++−

max2
2

10 sgn2 ξξ
τ
ξξξ

η
ξµλ HHKAKKk in

                                                ( ) ξξξ
τ
ξθ ∆

⎥
⎥
⎦

⎤
∆−∆−∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∆∂− maxsgn HH ,     (36)

( ) ( )
η
ξµλ

η
ξµλ

∂
∂+=

∂
∂+

−
−−

+
++ 22 .                              (37)

In Eq. (36), ∆  has been redefined as inA∆=∆ , and 22 KK ′′′=θ .  The solutions are
sought in the form of a perturbation series in two small parameters, ε1 and ε2

   ( ) ( )[ ] ( )[ ] ( ) ( ){ }.....,,expexp
2
1, 2211 CCUUiRi +−−+−−=− τηετηεητηττηξ ,  (38)

   ( ) ( )[ ] ( ) ( ){ }.....,,exp
2
1, 2211 CCVViT +++−=+ τηετηεηκττηξ  ,            (39)

in which R and T are the linear reflection and transmission coefficients of the incident
wave, 011 KAK in=ε , 022 KK ′=ε , ( )2+−= LL CCκ , where the CLs are the longitudinal
phase velocities in the two half-spaces, and C.C. represents the complex conjugate.

In the series expansions of Eq. (38) and (39), the two perturbation parameters ε1

and ε2 are treated as independent of each other regardless of the fact that the physics of
the interface is unique.  Regardless of the nature of the connection between the two
parameters, such an approach is justified in view of the additivity of the nonlinear
corrections to the interfacial stiffness determined by them.  In fact, accounting for the
relationship between ε1 and ε2 leads to a system of boundary conditions for the first
order displacement fields in which the ‘driving force’ is the linear superposition of the
contributions due to hysteresis and to the term which is quadratic in the IOD.
Therefore, the first-order correction of the displacement fields can be decomposed into
two components each of which is separately determined by the corresponding nonlinear
term of the interfacial stiffness.  In conclusion, for the purpose of finding the first order
correction to the displacement fields, ε1 and ε2 can be regarded as independent of each
other.

Figure 10 illustrates an example of the dependence of the two nonlinear
parameters ε1 and ε2 and of 22 θεε =′  on the normalized stiffness ( )ω−ZK 0 , where

−−− = LCZ ρ , the product of the mass density of the medium and the phase velocity of
the propagating wave, is the acoustic impedance of Perspex, and ω is the angular
frequency of the incident wave.  The amplitude of the latter is assumed to be Ain = 2 nm.
These data are evaluated for an interface between Perspex and steel with composite
roughness 2

2
2
1 σσσ += = 30 nm, where 1σ  and 2σ  are the rms roughness of the two
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surfaces, and by a probability distribution density with a number of degrees of freedom
N = 10.  All three parameters are shown to diverge as the interface opens.  In addition,
ε2 and 22 θεε =′  go suddenly to zero in the neighborhood of ω−ZK 0  = 8, where, in this
particular case, the amplitude of the IOD variation becomes smaller than ∆ .
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Figure 10.  Nonlinear perturbation parameters versus normalized stiffness.  All three
parameters diverge as the interface opens.  Those controlling the nonlinearity due to
adhesion suddenly go to zero around ω−ZK 0  = 8, when the maximum variation of the
interface opening displacement becomes smaller than 2∆ .  The amplitude of the
incident wave is Ain = 2 nm.

Introducing Eq. (38) and (139) in the boundary conditions, and separating the
terms according to their dependence on the perturbation parameters ε1 and ε2, the
following boundary conditions for the zero-th and first order solutions are obtained

0th order system:

( )( ) ( )RTKTik +−=−+ ++− 12 0κµλ  ,         (40)

( ) ( )( )RT ++=+ −−++ 122 µλκµλ ,     (41)

First order system in ε1:
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First order system in ε2:
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In Eq. (44), the arguments of the step functions have been approximated by using the
solutions of the zero-th order system, which is a reasonable approximation as long as
the nonlinearity of the interface is small.  The solutions of the zero-th order system are
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where ( )±± = LCZ ρ  are the longitudinal acoustic impedances of the positive and
negative half-spaces, respectively.  The symbol ρ represent the mass density of the
medium.  The solutions V2 and U2 of the first first-order system are found by employing
R and T to evaluate the terms on the right-hand side of Eq. (44) which contain them.
Such terms are further expanded in a Fourier series, so that Eq. (44) can be recast as
follows
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This equation, together with Eq. (45) is solved by expanding V2 and U2 in Fourier series,
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and by introducing such representations of the unknown solutions in the boundary
conditions.  Simple algebra leads to the following expressions for the coefficients of the
series
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By using the harmonic balance methods, the solutions of the boundary value problem of
Eq. (42) and (43) are found to comprise terms that are constants and others that contain
the second harmonic component.  The amplitudes of the first ones are
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while those of the second harmonic components are
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Note the positive value of both U1,0 and V1,0 .  This result is consistent with the fact that
the quadratic nonlinearity describes a spring that becomes stiffer under compression.

Figure 11 illustrates an example of normalized spectrum of the higher harmonics
generated upon scattering of an incident wave with amplitude Ain = 2 nm, frequency f =
1 MHz, and propagating in the Perspex halfspace.  The amplitude of the incident wave
is used as normalization constant.  The interface is that of Figure 5 with a value of the
normalized stiffness equal to 1.29.  To the first-order approximation, and when
hysteresis is activated – indeed, for values of 2max ∆<∆ξ  only the classical nonlinear
corrections are present – the amplitude of all the higher harmonics is a function of 2

inA ,
as experimentally verified in damaged materials, at least for the third harmonic
component.  In the same approximation, the amplitude of the even harmonics of an
order higher than the second depends also on the departure of θ  from unity, that is to
say, on the loss of symmetry between the compressive and the tensile parts of each
cycle.

It is important to point out the remarkable resemblance between the spectra in
Fig. 11 and those predicted by Van den Abeele et al. (1997) in their theoretical
investigation on nonlinear propagation of acoustic waves in nonlinear media, in which
the P-M model was used to characterize the type and degree of nonlinearity.  Meegan et
al. (1992) and TenCate et al. (1996) also reported measured spectra of a waves
propagating in sandstone and other geomaterials, which bear a strong resemblance to
those of Fig. 6. In particular, the slow decay of the amplitude of the higher harmonics
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Figure 11.  Normalized spectrum of nonlinear waves that are scattered forward and
backward by the interface considered in Figures 3 and 4, and which is characterized by
a normalized linear component of the interface stiffness ω−ZK 0  = 1.29.

together with the dominant presence of the odd components seem constitute the acoustic
signature of an hysteretic interface with end-point memory.

Finally, Fig. 12 illustrates the dependence of the second and third harmonics on
the normalized interface stiffness, or, in other terms, on the interface opening.  As the
contacts begin to form, both components increase until they reach a maximum value
near ω−ZK 0  = 1.  However, for very small values of Ko, the parameters 1ε  and 2ε
exceed the value of 0.3 rendering the approximation no longer accurate.  The numerical
estimates of the second and third harmonic amplitudes beyond the range of validity of
the approximation are reported nonetheless to illustrate the trend the actual solutions are
expected to follow.   Note that the dependence of the amplitude of the third harmonic on
the normalized stiffness is considerably weaker than that displayed in the case of
surfaces in contact and subjected to an oscillating tangential load.  However, as already
remarked in the discussion of Fig. 10, the amplitude of the third harmonic goes to zero
when the amplitude of the IOD variation becomes smaller than ∆ .
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Figure 12.  Normalized amplitude of the second and third harmonic waves versus the
normalized interfacial stiffness for the interface considered in the previous two figures.

2.3.4 Concluding remarks

A few comments are still in order to complete the description of the present
model.  First of all, the mechanics of the contacts considered in this work does not
account for any long-range interaction which may exist in real contacts, leading two
asperities to form a contact when δ is still negative (the 'jump-on' phenomenon
(Greenwood (1998), Inagaki et al. (2002)).  Such an event is accompanied by some
energy loss following the impact, which a rigorous theoretical treatment should account
for.  However, as long as only a small percentage of the asperities is involved, as
required by the Greenwood and Williamson approximation, such a mechanism is
expected not to alter significantly the conclusions presented here since it involves a
small fraction of the energy carried by the acoustic wave.

Equations (29, 30, and 31) relating the pressure, P, to the relative approach, ∆,
have been obtained under the assumption that all the asperities have the same radius of
curvature.  This assumption is unlikely to be satisfied by normal, rough surfaces, and,
therefore, the radius of curvature in the equations just cited has to be weighted by its
own probability density function.  Note also that contacts with different radii of
curvature are characterized by different values of the Tabor parameter, µ.
Consequently, the stiffness of the interface is expected to undergo sudden transitions
only at the end-points of each cycle (see Fig. 9), the remaining two transitions becoming
continuous, in view of the fact that contacts having different radii of curvature come
apart at different values of the distance δ .  The width of the regions where such
continuous transitions occur closely follows that of the probability density function of
the radius of curvature.  Finally, under these conditions, the spectrum of a wave
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scattered by such an interface is expected to be characterized by a content of higher
harmonics that is less pronounced than that shown in Fig. 11.

As the Tabor parameter, µ, goes to zero by maintaining a constant values of the
surface energy, ∆γ, the present model of the mechanics of two rough surfaces in contact
is expected to approach that by Maugin (1991), which was developed by using the
Derjaguin, Muller, Toporov force law of individual contacts.  According to the latter
model, the bodies in contact do not deform in the annular area, which surrounds the
contact and where the force of adhesion acts.  Furthermore, the maximum adhesive
force is that predicted by Bradley.  If the limit µ → 0 is achieved by letting the
maximum adhesive stress, σo, become progressively smaller, the case described by
Pecorari (2003) of a nonlinear purely elastic interface is recovered.

The limitation of the present work notwithstanding, the similarity of the spectra of
Fig. 11 and those experimentally observed in geomaterials, or predicted by
phenomenological theories based on the P-M model can hardly be considered
coincidental.  In fact, although it is reasonable to assume that more than one mechanism
concurs to determine the nonlinear behavior of a complex medium with microstructure
and/or damage, the presence of soft bonds and microcracks in rocks or other composite
materials provides ample opportunity for contact nonlinearity to play a significant role.
Furthermore, since elastic nonlinearity cannot explain the magnitude of the amplitude of
the higher amplitude (Pecorari, 2003), adhesion becomes a serious candidate to be
considered as a fundamental mechanism behind the nonclassical nonlinear physical
behavior of hysteretic materials with end-point memory.

Finally, the micromechanics model presented in this work may also provide the
key to interpreting the excess linearity observed in partially saturated rocks (Van den
Abeele et al. (2002)).  In fact, the mechanics of adhesion between soft bodies can be
used to reasonably describe the interaction between asperities covered by very thin
layers of water or other liquids.  This conjecture seems to be supported also by a
theoretical investigation by Goryacheva and Makhovskaya (2002).  Should this be the
case, then stress-corrosion cracks formed in pipes containing corrosive liquids at high
pressure may also be expected to display nonlinear acoustic properties which resemble
those described in this work.

2.4 Scattering by a surface-breaking crack

2.4.1 Introduction

Material components containing cracks respond to an external dynamic
perturbation in a nonlinear manner (Solodov, 1998, Solodov, Krohn, Busse, 2002).  For
instance, when insonified by a harmonic wave, the spectrum of the acoustic response of
a cracked sample has been shown to displays higher-order harmonic components, which
are not found in samples without cracks.  Similarly, if a component containing a
partially closed crack is tested simultaneously by two harmonic waves of frequencies f1
and f2, with f1 >> f2, signals are generated within the sample, which contain side-band



38

components at frequencies f1 ± f2.  These, again, are not found in the acoustic fields
generated by scattering events in material components without cracks.

An even richer phenomenology (Solodov and Korshak, 2002) can be observed
when the amplitude of the excitation is increased beyond the threshold value at which
clapping between the crack’s faces is activated.  For example, the generation of
subharmonic components, which is the first step towards a chaotic regime of vibration,
can be observed by progressively increasing the excitation amplitude.  Nonlinear effects
caused by the dissipation of the acoustic energy have also been reported in experiments
conducted on cracked glass samples (Zaistev, Gusev, and Castagnede, 2002, Zaistev,
Gusev, and Castagnede, 2003)

Such experiments are often performed with continuous waves at frequencies that
are well below the MHz range, so that the wavelength of the waves propagating within
the inspected component is of the order of several centimeters.  As the whole volume of
the material is insonified, and the acoustic response is commonly detected by using a
stationary sensor, defect’s localization under such experimental conditions is a very
difficult task.

An important variation of this approach is that developed by Krohn et al.
(Krohn, Stoessel,, Busse, 2002) in which the local response of a composite plate to a
low-frequency, large-amplitude acoustic wave source is detected by a scanning laser
interferometer.  In these experiments, the plate’s thickness is much smaller than the
wavelength of the probing acoustic wave.  The large values of the wave amplitude
utilized in these experiments suggest that the mechanism responsible for the nonlinear
response of the plate is clapping between the faces of the delamination.  This hypothesis
is further supported by the presence of harmonics of very high order in the scattered
acoustic field.  Images of the plate formed by displaying the amplitude variation of
higher order harmonics show a feature of great importance for practical applications: the
highly localized nonlinear response of the defect, which decays by as many as 20 dB as
the observation point moves away from the defect.  A convincing explanation of such
an interesting phenomenon has yet to be provided.

A few authors have developed models, which predict the nonlinear response of
cracks with faces interacting with each other.  Achenbach and Norris (1982) have
analyzed the effect of clapping on the linear response of a crack insonified by an
incident wave.  Boundary conditions along the crack’s faces, which require the
continuity of the total displacement when the crack is closed, and set the total applied
stress to zero when the crack is open, have been used.  Hirose and Achenbach (1992)
have developed a sophisticated mathematical approach to modeling nonlinear scattering
by a circular crack with clapping faces.  The time evolution of the clapping faces is
followed by numerically solving an appropriate integral equation, the solution of which
is used to evaluate the scattered field in the space-time domain.  The harmonic content
of the scattered field is recovered via Fourier analysis of the latter.  A similar approach
has also been adopted by Hirose (1994) who employs more realistic boundary
conditions at the crack’s face.  In fact, Hirose considers the interaction between the
crack’s faces to occur only at discrete locations and at instants that are determined by
the time evolution of the applied load, by the crack’s initial conditions, and by the
topography of the two surfaces.  Donskoy, Sutin, and Ekimov (2001) have proposed a
simplified mathematical scheme to account for the effect of the nonlinearity introduced
by Hertzian contacts between the crack surfaces that are assumed to be rough and
nonconforming.  To this end, they have used the spring model11 for imperfect interfaces
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to formulate the nonlinear boundary conditions at the surface of the crack.  Thus, the
dynamics of a collection of contacts is simulated by that of two distributions of
nonlinear springs having normal and tangential stiffness constants, KN and KT,
respectively.  Donskoy et al. (2001), however, have considered only the effect of the
normal mode of vibration on the nonlinear scattering process.

While, all the theoretical work cited above concerns itself with cracks that are
imbedded into the bulk the hosting material component, in this investigation the focus is
on the acoustic response of surface-breaking cracks, of which stress-corrosion cracks
are typical and extremely important examples.  The mathematical description of the
problem at hand is provided by an extension of a previous model (Pecorari, 2001)
dealing with the linear wave scattering by surface-breaking cracks with faces in partial
contact to include the generation of the second harmonic component.  As in Donskoy et
al.’s work, the spring model for imperfect interfaces is employed to incorporate the
nonlinear properties of the crack into the boundary conditions enforced on the total
scattering field along the crack faces.  In this investigation, however, the nonlinear
dynamics of rough surfaces in contact is described in terms of a more recent approach
(2003).  The latter yields the nonlinear dependence of both spring constants, KN and KT,
on the local relative approach between the crack’s faces in terms of both an appropriate
force laws for the interaction between asperities in contact and the surface topography.
The nonlinear scattering problem is solved by using a standard perturbation technique,
the small perturbation parameter naturally arising from the normalization of both the
equations of motion and the boundary conditions as a measure of the interface
nonlinearity.  The dependence of the scattered second harmonic on the type of incident
wave, on its frequency, on the interface spring constants, and on the crack depth is
investigated.  The spatial evolution of the linear and nonlinear components of the
scattered field is also evaluated up to distances of the order of ten wavelengths of the
incident wave from the crack.  A discussion on the relevance of these results on the
nondestructive inspection of components containing surface-breaking cracks concludes
this work.

2.4.2 Theory

A complete set of boundary conditions to be enforced on the total acoustic field
at an interface between two rough surfaces in contact have been derived by Pecorari
(2003) under the assumption that the interaction between the asperities is purely elastic.
If the interface is assumed to coincide with the plane of equation x1 = 0, the boundary
conditions are
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In Eq. (51a-d), u and v are components of the total displacement in the x1 and x3

direction, respectively, ( )−+ −=∆ uuu  and ( )−+ −=∆ vvv  are the corresponding
interface opening displacements, and −+,

ijσ , with i, j = 1, 3, is the ij-th stress component
of the stress field acting on the interface.   The superscripts + (-) refers to the half-spaces
for which x1 is positive (negative).  All the field quantities are to be understood to be
functions of time, t.  The coefficients K’s, are derived from suitable micromechanics
models, which assume the elastic normal and tangential interaction between asperities to
be described by Hertz's (Johnson, 1985) and Mindlin and Deresiewicz's models (1953),
respectively, of two elastic spheres in contact.  Thus, they can be evaluated numerically
in terms of the mechanical and topographic properties of the two rough surfaces in
contact.  The magnitude of KN and KT varies with the load applied to the interface, and
so does the ratio NT KK , which, however remains of the order of 0.5.  The reader who
is interested in further details is referred to Baltazar et al. (2002), and Pecorari (2003).

To the first order of approximation, the nonlinear effect due to the hysteretic
component of the tangential stiffness is shown to be responsible for the generation of
higher harmonics of odd order, the magnitude of which is considerably smaller than that
of the second harmonic generated by the nonlinearity due to KN.  For this reason, in Eq.
(51.a) those terms which are linked to the latter mechanism can be neglected to obtain
the following simplified version of nonlinear boundary conditions,

( ) vuKvK NTT ∆∆−∆=+ −+
,0,31312

1 σσ , (52.a)

( ) 2
1,0,11112

1 uKuK NN ∆−∆=+ −+ σσ , (52.b)
−+ = 3131 σσ , (52.c)
−+ = 1111 σσ , (52.d)

The mathematical formulation of the problem in which an incident wave is
scattered by a surface-breaking crack with nonlinear boundary conditions is presented
next.  The crack is assumed to be positioned on the positive semi-plane of equation x1 =
0, with its mouth placed at the origin of the coordinate system, while its tip reaches a
depth d below surface of the medium.  The latter occupies the half-space defined
by 01 ≥x .

Following the approach by Achenbach  et al. (1980) and Mendelsohn et al.
(1980), the original problem is decomposed into a symmetric and an antisymmetric part,
which are solved in the quarter-space x1 ≥ 0, x3 ≥ 0.  The boundary conditions associated
which these problems are,

symmetric problem

013 =+σ , x1 = 0, 0 ≤ x3 < ∞ , (53.a)
2

1,0,11 uKuK NN ∆−∆=+σ , 0 ≤ x3 < d , (53.b)
u = 0, d ≤ x3 < ∞ , (53.c)

antisymmetric problem
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011 =+σ , x1 = 0, 0 ≤ x3 < ∞ , (54.a)
vuKvK NTT ∆∆−∆=+

,0,13σ , 0 ≤ x3 < d , (54.b)
v = 0, d ≤ x3 < ∞ . (54.c)

In Eq. (53.b) and Eq. (54.b), +
ijσ  are the components of the total stress field on the side

of the crack facing the quarter-space for which x1 > 0.  They include the contribution of
the incident wave.  In both problems, the components σ33 and σ31 of the total stress field
must be null at the surface x3 = 0.  Note that, in view of the continuity of σ11 and σ31
across the contacting surfaces of the crack as given by Eq. (52.c, d), Eq. (53.b) and Eq.
(54.b) can be formulated only in terms of the total stress components on the positive
face of the crack.

Since the material half-space supporting the propagation of the acoustic waves is
linear, the same equations of motion used by Achenbach et al. (1980) and Mendelsohn
et al. (1980) apply,
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In Eq. (55) and Eq. (56), cL and cT are the phase velocities of longitudinal and shear
waves, respectively.

It is convenient to formulate the problem in non-dimensional form.  To this end,
the displacement components are normalized with respect to the amplitude of the
incident wave, Ain: inAuU = , inAvV = ; the coordinates are rescaled with respect to
the wavenumber of the longitudinal wave, kL: Lii kXx /= , and time is normalized by ω:

ωτ=t .  Then, Eq. (55) and Eq. (56) become
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in which TL cc=κ .

The boundary conditions are also similarly transformed, and, in particular, Eq.
(53.b) and Eq. (54.b) become
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respectively, where D = kLd.  In the latter equations, +U and +V are the normalized total
displacement components on the positive side of the crack, while ( )µLNN kKK 0,=

and ( )µLTT kKK 0,=  are the normalized normal and tangential interfacial stiffness.
The symbol µ represents the shear modulus of the medium.  Finally,

( ) inNN AKK 0,1,=ε  ( ) inTNT AKK 0,,=  measures the relative variation of the normal and
of the tangential interfacial stiffness due to a change of the normal interface opening
displacement equal to the amplitude of the incident wave.  Note that the proportionality
between ε and Ain implies that between the amplitude of the actual scattered second
harmonic and 2

inA .  The magnitude of ε can be shown to be a monotonically decreasing
function of the normalized interfacial stiffness, being always much smaller than one,
except for interfaces which are nearly open, for which it tends to diverge.  In this work,
the dependence of ε on the normalized interface stiffness NK  is that shown in Fig. 2 for
Interface 1 and an incident longitudinal wave with an amplitude Ain = 3 nm.  Thanks to
this behavior of the nonlinear parameter ε, perturbation theory can be used to search for
an approximate solution of the problem for nearly all the physically attainable interface
conditions.   Thus, solutions of the normalized equations of motion are sought in terms
of power series of the small parameter ε,

( ) ( ) ( ) L
rrr

++= τεττ ,,, 10 XUXUXU , (61)

( ) ( ) ( ) L
rrr

++= τεττ ,,, 10 XVXVXV , (62)

the terms proportional to ε or its powers playing the role of small corrections to U0 and
V0.  By introducing the power series for U and V in the boundary conditions associated
to the problem, and regrouping the terms which contain the same power of ε, a
hierarchy of sets of boundary conditions for mU  and mV , m  = 0, 1, … is obtained.  In
particular, the boundary conditions derived from Eq. (63.a-c) for the solutions of the
symmetric zero-th order problem are found to be
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while those for the antisymmetric one are

( ) 02
3

02

1

02 =
∂
∂

−+
∂
∂ ++

X
V

X
U κκ , X1 = 0, 0 ≤ X3 < ∞, (64.a)

0
1

0

3

0 VK
X
V

X
U

T ∆=
∂
∂

+
∂
∂ ++

, 0 ≤ X3 < D, (64.b)

00 =V , D ≤ X3 < ∞. (64.c)



43

Similarly, those for the symmetric first-order problem are
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while the boundary conditions for the antisymmetric problem are
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Note the terms 2
0UK N ∆ in Eq. (65.b) and 00 UVKT ∆∆  Eq. (66.b) which play the role the

incident field has in the zero-th order problem.  Being products of solutions of the latter
problem, in addition to time independent terms that are of no importance in this
investigation, they contain contributions having a frequency that is twice that of the
incident wave.  Indeed, the solutions of the equations of motion having the same period
of normalized incident wave, T = 2π, can be expressed as Fourier series over all the
higher harmonics of the fundamental,
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where m ≠ 0, ( )31 , XXX =
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 are the solutions of the coupled
linear differential equations,
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The solutions of these equations for the symmetric problem can be expressed as follows,
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while those of the antisymmetric problem are
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In Eq. (71) to (74), as
mA , , as

mB , , as
mC , , as

mD ,  are unknown functions of ζ  to be
determined by enforcing the appropriate boundary conditions, and αL and αT , are
defined on the real axis so that
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The total components of the normalized displacement fields are recovered form the
solution of the symmetric and antisymmetric problems according to the following rules:

( ) ( ) ( )313131 ,,, XXUXXUXXU as += ,         for   X1 > 0,
( ) ( ) ( )313131 ,,, XXUXXUXXU as +−= ,   for   X1 < 0,

( ) ( ) ( )313131 ,,, XXVXXVXXV as += ,          for   X1 > 0,
( ) ( ) ( )313131 ,,, XXVXXVXXV as −= ,      for   X1 < 0.

The details of the mathematical procedure to solve these problems were reported
in the work of Achenbach et al. (1980) and Mendelsohn et al. (1980), and will not
repeated here.  The only relevant addition to that treatment is the explicit and repeated
use of the harmonic balance method to match the time-dependence of the scattered field
with that of the driving terms given either by the incident field in boundary conditions
for the zero-th order problems, or by the products of the zero-th order components in
Eq. (65.b) and Eq. (66.b).  The solutions of the zero-th order problem, thus, can be
shown to contain only contributions with the same frequency as the incident field, while
those of the first-order system, disregarding a constant term of no interest for the present
investigation, describe scattered fields with frequency twice as that of the incident wave.
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2.4.3 Numerical results

Several are the parameters which determine the dynamics of an interface
between two rough surfaces in contact, and even more those which are required to
describe the nonlinear scattering of an acoustic wave from a surface-breaking crack with
faces in partial contact.  As an exhaustive parametric study would go beyond the scope
of the present work, the focus of the latter is set only on those parameters which most
notably affect the detection and localization of the nonlinear defect of interest here.
Both shear vertical (SV) and Rayleigh wave incidence are considered next.  The
frequency of the incident wave is set to be f = 5 MHz.

2.4.3.1 Shear vertical incidence

SV waves are commonly used for the nondestructive inspection of components
in nuclear power plants and in the railway industry.  Searching for cracks breaking the
surface opposite that on which the transmitter in placed, such waves are often sent into
the component along a direction of propagation which forms an angle of 45 degrees
with the normal to the surface.

Given the importance of SV waves as a probing tool for surface-breaking cracks,
this investigation starts by considering the effect of the angle of incidence, θin, of such a
mode on the acoustic response of a partially closed, surface-breaking crack.  The angle
of incidence is measured from the x3 axis, that is to say, from the plane containing the
crack.  The incident wave is assumed to propagate from infinity towards the stress-free
surface with a propagation vector Tk

r
.  In all the following simulations, the dependence

of the nonlinear parameter ε on the interface stiffness is that shown in Figure 2, and the
amplitude of the incident wave, Ain, is equal to 3 nm.

Figures 13 and 14 show the dependence on the angle of incidence, θin, of the
horizontal components of the linear and nonlinear backscattered total field, respectively,
at increasing depth within the bulk of the material.  A similar behavior is displayed by
the vertical components.  Note that in these and all the subsequent figures the following
notation convention has been used: ( ) ( )XUmXU m

rr
= , and ( ) ( )XVmXV m

rr
= .  The most

relevant feature of these plots is the marked peak around the critical angle of the
longitudinal wave, θL.  This finding can be easily explained by considering that, just
above θL, the amplitude of the reflected longitudinal wave reaches values nearly 2.5
times higher than that of the incident wave.  Furthermore, in the neighborhood of θL the
dominant component of the total incident field is σ11, which, more efficiently than any
other, excites the normal vibration mode of the crack.  Worthy of notice, because
contrary to the assumptions underlying the method most commonly employed to search
for surface-breaking cracks, is also the considerably smaller response around 45 degrees
angle of incidence.

The effect of the crack’s depth on the modulus of the normalized horizontal and
vertical displacement components is illustrated in Fig. 15 for the first harmonic wave
and in Fig. 16 for the second harmonic.  The angle of incidence of the incident SV wave
is equal to 34 degrees, the normalized interface stiffness and the nonlinear parameter are

1.95=NK  and ε = 0.144, respectively.  The observation point is placed along the
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direction of propagation of the incident wave at a normalized distance R = kLr = 30 from
the crack’s mouth, where r indicates the actual distance.  An initial monotonic increase
of both linear components is predicted up to a value of D of the order of 1.5, after which
they remain at the same level for values of D up to 2.  The latter value corresponds to an
actual crack’s depth of four wavelengths of the incident shear wave.  The nonlinear
components, on the other hand, reach their maximum values around D = 1, after which
they tend to decrease.  Deeper cracks are expected to produce linear and nonlinear
components having modulus within the ranges shown in Fig 15 and Fig. 16,
respectively.

The magnitude of the nonlinear response predicted by the model and presented in these
examples is large enough that some doubt may be cast on the accuracy of a first-order
approximation.  However, a closer examination of the results show that for smaller
values of ε corresponding to closer cracks, and at angles of incidence not too close to
the critical angle of the longitudinal waves, the magnitude of the second harmonic field
generated upon scattering is well within the range of values where the perturbation
approach provides accurate results.  To illustrate this point, Figure 17 shows the
dependence of the ratio between the absolute values of the horizontal displacement of
the scattered second and first harmonic components on the normalized crack dimension,
D, for two typical values of θin, 45 and 60 degrees, as well as for 34 degrees.  The
observation point is again at a distance R = 30, and the normalized interface stiffness
and nonlinear parameter are those of Figures 15 and 16.  The second harmonic’s
response at 45 is always more than 10 dB below that at 34 degree incidence for all
values of the normalized crack depth.  Similarly, the response at 60 degrees remains
considerably below that at 34 degree incidence for values of D < 1, although it
approaches the latter for D > 1.  The conclusion to draw from this figure is that, not only
the absolute levels of the linear and nonlinear backscattered fields are higher at 34
degree of incidence than at any other angle of incidence, but also the efficiency of the
second harmonic generation is the highest for angles of incidence just above θL,
especially for cracks with depth D < 1.

Next, the variation of the modulus of the Cartesian components of the
backscattered displacement field with the distance from the crack is considered for a
shear wave incident at 34 degrees.  The observation point moves along the direction of
propagation of the incident wave.  The normalized depth of the crack is D = 0.5, which
is approximately equal to one wavelength of the shear wave, while the normalized
interface stiffness 1.95=NK  and the nonlinear parameter ε = 0.144. Figure 18
illustrates the dependence of the scattered first harmonic, and Fig. 19 that of the second
one on the distance of the observation point from the crack’s mouth, R.  The horizontal
component of both harmonics show a rapid decay to occur within a distance equal to 2
from the crack’s mouth, while the vertical components tends to decay more slowly.



47

            

30 35 40 45 50 55 60
0.0

0.2

0.4

0.6

0.8

1.0

Angle of Incidence (Degrees)

 X3 = D
 X3 = 2D
 X3 = 5D
 X3 = 10D
 X3 = 20D

U
0,

 B
ac

k

Figure 13.  Normalized backscattered horizontal displacement of the linear field versus
the angle of incidence for increasing values of the normalized depth of the observation
point.  The latter is measured in terms of normalized crack’s depth, D.  The normalized
crack’s depth is D = 0.5, while 1.95=NK  and ε = 0.144.
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Figure 14.  Normalized backscattered horizontal displacement of the nonlinear field
versus the angle of incidence for increasing values of the normalized depth of the
observation point.  The latter is measured in terms of normalized crack’s depth, D.  The
normalized crack’s depth is D = 0.5, while 1.95=NK  and ε = 0.144.
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Such a behavior may be understood in terms of the increasing constraining effect of the
surrounding material on the motion of the particles as the observation point moves away
from both the crack’s and half-space’s surface.

Figure 20 shows the variation of the modulus of εU1 and εV1 with the interface
closure, i.e., for increasing values of the normalized interface stiffness NK .  The
observation point is placed along the backscattering direction at a normalized distance R
= 30 from the crack’s mouth.  The normalized crack depth is D = 0.5.  After an initial
dramatic increase corresponding to the formation of first contacts, the moduli of the
Cartesian nonlinear components decay in a monotonic fashion which strongly resembles
that predicted for the nonlinear response on an infinite interface.

In the Introduction, results obtained by Krohn et al. (2002) were reported for
their relevance on the issue of defect location by means of nonlinear ultrasonic
techniques.  In particular, it was mentioned that using laser interferometric detection, a
highly localized nonlinear response of delaminations could be detected within the
composite plate.  It was also reported that, so far, no convincing explanation for such a
strong localization has been given, although some form of trapping mechanism of the
energy carried by the generated second harmonic wave by the delamination itself has
been hypothesized (Solodov, 2003).  Although apparently simplistic, two remarks are in
order.  The first one concerns the detection technique, which is sensitive to the
displacement component normal to the inspected surface.  The second remark regards
the fact that the delamination is likely to be roughly parallel to the surface on which the
measurements are carried out.  Therefore, considering that in the experiments
mentioned above the wavelength of the acoustic excitation is much larger than the plate
thickness, it is reasonable to conceive that the behavior of the normal component of the
displacement of the higher harmonic wave detected at the stress-free surface closely
resembles that at the crack’s location.  Figure 21 illustrates the dependence of the εU1
component, that is to say, the second harmonic component of the crack’s normal
vibration, on the coordinate 3X  at −= 01X , that is to say, along the plane containing the
crack.  The crack’s normalized depth is D = 0.5, the normalized interface stiffness and
nonlinear parameter are 1.95=NK  and ε = 0.144.  A sudden drop of the modulus of
εU1 is observed at the crack tip, which exceeds 30 dB.  This prediction of the model
supports the interpretation of the highly localized nonlinear response of a delamination
in a composite plate as due to the fact that the technique used under the circumstances
described above monitors the nonlinear component of normal opening displacement of
the delamination.

Finally, it should be remarked that, for all the cases considered so far, very
similar theoretical results have been obtained for the same field variables in the forward
scattering direction, and, for this reason, they have not been presented here.
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Figure 15.  Normalized backscattered components of the linear displacement as a
function of the normalized crack’s depth.  The angle on incidence is equal to 34 degrees,
and the observation point is at a normalized distance, R, equal to 30 from the crack’s
mouth along the propagation direction of the incident wave.  Also, 1.95=NK  and ε =
0.144.
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Figure 16.  Normalized backscattered components of the nonlinear displacement as a
function of the normalized crack’s depth.  The angle on incidence is equal to 34 degrees,
and the observation point is at a normalized distance, R, equal to 30 from the crack’s
mouth along the propagation direction of the incident wave.  Also, 1.95=NK  and ε =
0.144.
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Figure 17.  Variation of the backscattered second harmonic wave relative to the first
harmonic versus the normalized crack’s depth.  The parameters defining the system are
those of the previous two figures.

            

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

D = 0.5
θin = 34 degrees

   U0, Back
   V0, Back

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

Normalized Radial Distance

Figure 18.   Normalized backscattered components of the linear field versus distance
from the crack’s mouth.  The observation point is placed along the propagation direction
of the incident wave, i.e., θin = 34 degrees.  The normalized crack’s depth is D = 0.5,

1.95=NK , and ε = 0.144.
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Figure 19.   Normalized backscattered components of the nonlinear field versus distance
from the crack’s mouth.  The observation point is placed along the propagation direction
of the incident wave, i.e., θin = 34 degrees.  The normalized crack’s depth is D = 0.5,

1.95=NK , and ε = 0.144.
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Figure 20.  Normalized backscattered horizontal component of the nonlinear
displacement field versus the normalized interfacial stiffness.  The normalized distance of
the observation point is R = 30.  The remaining system parameters are those of the
preceding figure.
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Figure 21.  Dependence of the normalized nonlinear component of the displacement
normal to the crack on X3 for X1 = 0-.   The system parameters are those of Figure 19.

2.4.3.2 Rayleigh wave incidence

The case of a Rayleigh wave insonifying a partially closed surface-breaking
crack is considered next.  The amplitude of the horizontal displacement component of
the incident wave at the stress-free surface is chosen to be equal to 3 nm:

( ) 30, 31 ==xxuin nm.

Figure 22 illustrates the behavior of the modulus of the second harmonic
component of the horizontal displacement at four values of the depth, X3, as a function
of the variable X1.  The first harmonic component’s dependence displays features
similar to those of the second harmonic, and, therefore, is not shown here.  The
normalized crack’s depth is D = 0.5, and the interfacial stiffness and nonlinear
parameter are again 1.95=NK  and ε = 0.144.  As in the case of SV incidence, in the
plane X1 = 0 the displacement component normal to the crack’s plane undergoes a
dramatic and sudden drop at the tip of the crack.  The forward scattered second
harmonic wave is also shown to approach an average value slightly higher than that of
the backward scattered component as the value of X1 increases in both directions.

The effect of the interface closure on the modulus of both vertical and horizontal
second harmonic components of the displacement field is illustrated in Fig. 23.  The
observation point is placed at the surface of the half-space, at a distance X1 = -30 from
the crack’s mouth.  The general features of the displayed behavior are those already
seen in Fig. 20, except for the level of the signal which is about 10 dB higher in the case
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Figure 22.  Normalized backscattered horizontal displacement of the nonlinear field
versus X1 at four different values of X3.  The latter is measured in terms of normalized
crack’s depth, D.  The normalized crack’s depth is D = 0.5, while 1.95=NK  and ε =
0.144.
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Figure 23.  Normalized backscattered horizontal component of the nonlinear
displacement field versus the normalized interfacial stiffness.  The observation point is
placed on the surface of the half-space at a normalized distance X1 = -30.  The
remaining system parameters are those of the preceding figure.
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of a SV wave backscattered at 34 degrees, that is to say, at an angle just above the
critical angle for the longitudinal wave.

Finally, Fig. 24 and Fig. 25 show the backward and forward normalized
Cartesian components of the nonlinear scattered field at a distance 301 =X on the
surface of the half-space as functions of the normalized crack’s depth, D.  The values of
the interfacial stiffness and of the nonlinear parameter are those already used in Fig. 22.
A remarkable and surprising difference of behavior between the forward and the
backward can be easily noticed, as the former increases nearly monotonically with the
crack’s depth up to D ≈ 1 to remain roughly at the same level afterwards, while the
latter displays pronounced interference features for values of D < 1.  To be registered is
also the considerably higher values of the forward scattered field compared to that
scattered in the opposite direction.

2.4.4 Summary and concluding remarks

A theoretical model which predicts the generation of the second harmonic
component upon scattering of an incident harmonic wave by a surface-breaking crack
with faces in partial contact has been presented.  The cases of shear vertical and
Rayleigh wave incidence have been considered, and for each, the effect of parameters
such as the angle of incidence, the crack’s depth, and crack’s closure have been
examined.  The nonlinearity of the scattering defect has been introduced into the
mathematical formulation of the problem by extending the boundary conditions at the
crack’s contacting faces to account for the effect of the two-dimensional distribution of
elastic contacts.  It has been found that the highest linear and nonlinear responses of
such a defect occur when the latter is insonified by a shear vertical wave incident on the
surface containing the crack at an angle which is just above the critical angle of the
longitudinal wave, θL.  Further, the generation of the second harmonic has been shown
to be the most efficient in such a configuration.  The relevance of this finding stems in
part from the fact that the inspection methods currently used to search for surface-
breaking cracks utilize SV wave at 45 degree incidence.  As demonstrated in this work,
at 45 degree incidence the sensitivity of an inspecting SV wave to such defects is much
lower than that shown at 34 degrees.  This problem is dealt with in further details in a
manuscript under preparation.

An additional important advantage offered SV waves at 45 degree incidence
concerns the localization of a defect.  In fact, the exploitation of the efficient mode
conversion of the incident SV wave into an evanescent longitudinal wave propagating
along the surface renders this configuration considerably more sensitive to crack-like
defects located at the surface of the sample than to any other defect placed along the
direction of propagation of the incident field.  Therefore, in search for surface-breaking
cracks by means of nonlinear scattering techniques, the set-up providing the highest
sensitivity also offers a solution to the localization problem.  In this respect, an
additional important result of this work has been the key to interpret recent experimental
results by Krohn et al. (2002) showing a highly localized nonlinear response of
delaminations in composite materials.  In fact, the model indicates that the experimental
observations capture the very rapid decay of the nonlinear opening displacement normal
to the delamination beyond the borders of the latter.  The model predicts a magnitude of
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Figure 24.  Normalized backscattered components of the nonlinear field versus the
normalized crack’s depth.  The observation point is placed on the surface of the half-
space at a normalized distance X1 = -30.  The normalized crack’s depth is D =
0.5, 1.95=NK , and ε = 0.144.
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Figure 25.  Normalized forward scattered components of the nonlinear field versus the
normalized crack’s depth.  The observation point is placed on the surface of the half-
space at a normalized distance X1 = 30.  The normalized crack’s depth is D =
0.5, 1.95=NK , and ε = 0.144.

such a drop to be of the order or 30 dB, which exceeds the experimentally observed
behavior by at least 10 dB.  A possible reason for such an overestimation may be the
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asymmetric position of the actual delamination within the plate’s cross section.  In fact,
if located outside the mid plane of the plate, the crack is likely to generate a scattered
field which cannot be decomposed into a symmetric and antisymmetric part, the former
yielding a nearly null contribution to the component of the displacement field normal to
the crack on the plane containing the latter (Eq. (15c)).

Finally, for both SV and Rayleigh incidence, the magnitude of the nonlinear
response decays monotonically after reaching a maximum for values of the normalized
stiffness around 1.  Even in this case, however, the backscattered field generated upon
scattering of a SV wave incident at angles slightly higher than θL is larger than that due
to a Rayleigh wave.

3 Experimental investigation

3.1 Introduction

Serious delays in securing the funding for the acquisition of the instrumentation
required to carry out the experimental program of this project are at the origin of the
incompletion of the tasks as described in the original proposal.  Indeed, as planned in
the original proposal, the experimental part of the project was expected to last about 20
months.  On the other hand, laboratory test could start only eight months before the end
of the project.  Delays notwithstanding, significant progress have been marked in this
period and the results which have been obtained provide a solid ground on which further
research and development may be based.

The focus of the initial effort has been the optimization of the available
experimental set-up with respect to the reduction of the spurious signals generated by
the instrumentation.  In particular, the abatement of the residual second harmonic to a
level more than -60 dB below the component at the fundamental frequency has been
achieved.  This result has allowed the attainment of the results described in the
following section.

3.2 Steel-steel interfaces: experimental results

Three steel blocks have been prepared with nominally flat surfaces having rms
roughness (σ) values equal to 0.2 µm, 0.24 µm, and 0.3 µm, respectively.  A fourth
block (the ‘Base’ block in Figure 26) was especially designed to host the ultrasonic
transducer and to allow the external pressure to be transmitted to the steel-steel interface
under investigation without affecting the coupling between the transducer and sample.
Two interfaces were constructed by combining two surfaces forming a composite one

with roughness ( ) mµσσ 3.0
212

2
2
11 =+=Σ , and ( ) mµσσ 38.0

212
3

2
12 =+=Σ .
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Figure 26.  Schematic representation of the experimental set-up.

Cycles were run with maximum pressure reaching the value of 250 KNw,
corresponding to a maximum nominal pressure of 200 MPa.  Considering that the
plastic deformation in steel is expected to begin at pressure values of that order of
magnitude, and that the actual local stresses supported by the individual asperities in
contact are indeed much higher than the nominal applied pressure, plasticity occurs in
the asperities in contact, the effect of which is systematically observed in our
experiments.

The measurements have been carried out in reflection mode, by using a broad-
band transducer (Panametrics, model V541) operating at 5 MHz both as a source as well
as a receiver.  The resonance frequency of the transducer was determined to be around
4.2 MHz. The use of a transducer with the first resonance occurring at 4.2 MHz reduces
the sensitivity to the second harmonic component by well more than 20 dB, as it could
be evaluated by comparing the signal’s amplitude when the transducer was excited by a
tone burst at 5 MHz and 10 MHz, respectively.

Figure 27 illustrates the behaviour of the first harmonic component reflected by
the steel-steel interface with composite roughness 3.0=Σ µm as a function of the
applied pressure.  The expected hysteresis caused by plasticity is observed during a
single loading cycle.  A theoretical model developed by Kim et al. (2004) explains the
linear acoustic response of an elasto-plastic interface.  The model points out two major
differences with respect to the linear elastic case.  The first major difference concerns
the dynamic interface stiffness of the interface during the compressive phase of loading
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cycle.  At each value of the compressive load, the dynamic stiffness of an elasto-plastic
interface during is the stiffness the interface displays during the initial phase of
unloading from that particular point of the loading path.  Note that the dynamic stiffness
is always larger than the static stiffness.  The second key feature of the dynamics of an
elasto-plastic interface is its increased dynamic stiffness during unloading with respect
to that displayed during compression.  This feature is the consequence of the increased
radius of curvature of the asperities in contact due to their plastic deformation during
loading.  The effect of such an increase of the interfaces dynamic stiffness is the lower
reflectivity illustrated by the results of Fig. 27.

On the same interface of Figure 27 and during the same loading cycle, the
generation of the second harmonic component was also recorded.  Figure 28 reports the
results.  The nonlinear signal increases rapidly as the contacts are formed under the
effect of the external pressure, reaching a plateau when the load approaches the value of
about 20 KNw.  During the remaining part of the loading cycle the signal appears to
remain approximately at the same level, which is oscillate between 25 to 30 dB above
the threshold of the noise.

The level of nonlinear harmonic generation has been observed to reach values up
to 40 dB above noise with rough surfaces which have not previously plastically
deformed.

Figure 29 reports data acquired on a second interface with rms Σ = 0.38 µm,
which has been loaded to pressure values as high as 200 MPa.  Even in this case, the
amplitude of the second harmonic rapidly increases with the applied load, reaching a
maximum value at 75 KNw, which is more than 20 dB above the noise, and decreases
as predicted by the theoretical model presented earlier (see Figure 3).  The relevance of
these data, however, stems from the considerable nonlinear generation by the interface
even at stress values that are comparable with the largest residual stresses measured in
nuclear power components (Payzant et al. 1996).  This observation supports our
expectations that, even for stress-corrosion cracks subjected to the largest residual
stresses occurring in a weld, their nonlinear response is larger than the background
noise.

Finally, Figure 30 demonstrates the quadratic dependence of the amplitude of
the second harmonic on the amplitude of the fundamental, as predicted by the theory
(see Eq. 19 and related comments).  The applied load is 50 KNw.

In conclusion, the experimental results acquired in this project show that a
considerable dynamic range is available for the detection of partially closed defects by
means of nonlinear techniques that are sensitive to the generation of the second
harmonic wave.
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Figure 27.  Amplitude of the first harmonic component reflected by the interface
between two rough surfaces as a function of the applied load.
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Figure 28.  Second harmonic component generated by the same interface of Figure 27
versus the applied load.
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Figure 29.  Second harmonic component generated by a steel-steel interface with a
composite roughness Σ =  0.38 microns versus the applied load.  The loading cycle
reaches a maximum value of 200 MPa, which is comparable with the largest residual
stresses observed in weld.
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Figure 30.  Amplitude of the second harmonic component versus that of the first one.
The continuous line represent the best linear fit.  The slope of the straight line is equal
to 2, as predicted by the theory.  The applied load is 50 KNw.
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4 Summary and concluding remarks
The main conclusions of the research carried out in this project are the

following.

1. The acoustic response of an interface formed by rough surfaces in contact has
been predicted by theoretical models which recover the macroscopic mechanical
properties of such an interface from the statistical properties of the distribution
of contacts and from the force laws describing their dynamics.  A favourable
comparison between the theoretical predictions and the experimental results
support the conclusion that a good understanding of the most important
mechanisms intervening in the generation of the higher harmonics by the
interface has been achieved.

2. The magnitude of the nonlinear response predicted by the model and measured
experimentally are well above the noise threshold, even for values of the applied
pressure of the order of 200 MPa.  Amplitude values of the second harmonic
which are nearly 40 dB above the noise have been observed on ‘fresh’ rough
surfaces.  With interfaces having asperities that have been plastically deformed
prior to the experiment, the amplitude of the generated second harmonic ranges
between 25 and 30 dB above the noise level.  Therefore, we have proved that the
dynamic range offered by second harmonic’s generation is quite suitable for
detecting and imaging the nonlinear properties of interfaces formed by rough
surfaces in contact.

3. A theoretical model which describes the nonlinear scattering by a two
dimensional surface-breaking crack has been developed.  It shows that the
experimental configuration yielding the most efficient second harmonic
generation is that in which an SV wave insonifies the surface containing the
crack at an angle of incidence just above the critical angle for longitudinal
waves.  Both linear and nonlinear response are dramatically reduced for values
of the angle of incidence around or larger than 45 degrees.  This theoretical
prediction has been confirmed for an SV wave linearly scattered by a fabricated
surface-breaking defect and a research proposal to validate this finding on
realistic fabricated cracks has been submitted to SKI and other organizations for
financial support.  Finally, as discussed in the report, this configuration, by
displaying an increased sensitivity to defects located at or very near the surface
of the inspected sample, provides also the way to localize the defect itself.  In
conclusion, a full understanding of the mechanisms responsible for the
generation and spatial distribution of the nonlinear ultrasonic field has been
achieved.  Furthermore, the model has provided important information
concerning the optimization of the experimental set-up to be used for detecting
surface-breaking cracks.

4. Clear directions for future research and development have emerged from the
results discussed above, and will be presented in a proposal under preparation.
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