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Research and Development Program in Reactor Diagnostics
and Monitoring with Neutron Noise Methods: Stage 7

Summary

This report gives an account of the work performed by the Department of Reactor

Physics, Chalmers University of Technology, in the frame of a research contract with the

Swedish Nuclear Power Inspectorate (SKI), contract No. 14.5-000983-00156. The present

report is based on work performed by Imre Pázsit (project leader), Christophe Demazière,

Vasiliy Arzhanov and Ninos Garis, SKI.

This report constitutes stage 7 of a long-term research and development program

concerning the development of diagnostics and monitoring methods for nuclear reactors. The

long-term goals are elaborated in more detail in e.g. the Final Reports of stage 1 and 2 (SKI

Rapport 95:14 and 96:50, Refs. [1] and [2]). Results up to stage 6 were reported in [1] - [6].

A proposal for the continuation of this program in stage 8 is also given at the end of the

report.

The program executed in stage 7 consists of three parts and the work performed in each

part is summarized below.

Development of a 2-D 2-group neutron noise simulator

In stage 6, the basic principles of a 3-D fully coupled neutronic/thermal-hydraulic

simulator in the frequency domain were presented. The neutronic model relied on the two-

group diffusion approximation, whereas the thermal-hydraulic algorithms relied on the so-

called “lumped” model. The key element of this simulator was that only the static data were

required which could be obtained from the Studsvik Scandpower CASMO-4/TABLES-3/

SIMULATE-3 code package.

The simulator was developed with this underlying idea, which means that the

calculation of the static fluxes and the eigenvalue were avoided. Depending on what kind of

spatial discretization scheme which is used in the noise simulator to calculate the “leakage”

noise, it is not granted that the system remains critical by using the group constants supplied

by SIMULATE. Nevertheless, when the system is critical, the balance equations should be

fulfilled in all nodes with respect to the discretization scheme used. In concrete terms, the

calculation of the static fluxes and eigenvalue can be avoided if the system is brought back to

criticality by modifying the cross-sections so that the balance equations are always fulfilled

with the chosen spatial discretization scheme.

This approach was used in this study with the finite difference scheme. As pointed out in

stage 6, the finite difference scheme is relatively inefficient compared to finite elements or

nodal methods, but on the other hand it is rather easy to implement. These two more

sophisticated schemes are planned to be investigated at a later stage, but for the time being

the simulator relying on the finite difference scheme was improved as much as possible so

that a 2-D entirely neutronic model could be used for routine calculations. Such a simplified

model has plenty of applications, both theoretical and practical ones.

Therefore, much emphasis was put in this stage on the calculational efficiency of the

noise simulator. The CPU time was reduced by a factor 15 and the required memory by a

factor 8, compared to the previous version. Benchmarking of this noise simulator showed

that the level of accuracy on the flux noise (both its amplitude and its phase) is excellent for
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all noise source types. However, these comparisons were made for homogeneous systems

since these are the only systems for which analytical solutions can be determined. It is

expected that the accuracy could deteriorate for heterogeneous systems. Thus a need

remains to use a more efficient spatial discretization scheme than the finite difference one.

Application of the neutron noise simulator to anomaly localisation

The 2-D 2-group noise simulator calculates the neutron noise induced by any type of

noise source, spatially distributed or not (i.e. localised). It can also be used in an inversion

task; the neutron noise can be used as input parameter to an algorithm which determines the

location of the corresponding noise source. Such a localisation task was previously

developed by Karlsson and Pázsit ([14], [15]).

In this stage, the localisation algorithm was improved since the 2-D 2-group neutron

noise simulator was used for the calculation of the transfer function, as opposed to the

transfer function corresponding to a homogeneous system as in [14] and [15]. At that time,

this means that any realistic core can be studied via this algorithm. It was shown, through

simulations, that the localisation procedure located the noise source successfully as long as

only one noise source existed in the core. If several noise sources are present

simultaneously, selecting a few detectors around a region where one of the noise sources is

assumed to be found allows locating this specific noise source properly. Another interesting

feature of this improved localisation procedure is that the algorithm is less sensitive to the

extraneous background noise, probably due to the fact that the removal cross-section noise

to neutron noise transfer function was used in the noise simulator. This was not possible to

perform in the previous algorithm that only used one-group theory.

Finally, the localisation algorithm was applied to the Forsmark 1 channel instability

event monitored in January 1997 during fuel cycle 16. By selecting a proper set of

detectors, the noise source was located close to a fuel element that was discovered to be

unseated. Nevertheless, selecting different detector combinations give also sometimes

different results, which suggests that there were several simultaneous noise sources in the

Forsmark 1 case.

Wavelet analysis of Oskarshamn 2 data for detector tube impacting

Detection of impacting of detector tubes, also called instrument strings, have been a

matter of interest both in Swedish and foreign BWRs. Although detection of the vibrations

is relatively simple, the discovery and quantification of the severity of impacting is far more

complicated. No single method exists that gives absolute results without calibration or

comparison with reference measurements.

Most known methods, frequently applied in the past require comparison with a

reference, i.e. impacting-free state, such as the broadening of the peak, decreasing of the

decay ratio, or distortion of the probability distribution function. However, some time ago

wavelet analysis was tried to detect and quantify impacting on an absolute basis, i.e.

without the need for calibration ([3], [23]). In that early work a simple wavelet, the Haar

wavelet transform was used. The objective of the recent research was to continue this work

with two extensions. The first was to test the method on measurements, taken in

Oskarshamn 2 during three fuel cycles by GSE Power Systems AB. For these

measurements, damage of some vibrating tubes was registered during refuelling. Thus,

these data lend an excellent possibility to test any method for detecting impacting. The
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second extension was to test other wavelet transforms than the Haar wavelet, to see if there

exists a waveform that is more effective in the detection of impacting.

Due to the large amount of data to be processed, in this stage only the first extension

could be investigated. A thorough investigation of all measurements was made with the

Haar wavelet method. This report gives a complete presentation of these investigations. A

good correlation was found between the most severely impacting tubes and the wavelet

results. The extension of the investigations to other wavelet forms was left to the next stage.
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Forskningsprogram angående härddiagnostik
och härdövervakning med neutronbrusmetoder: Etapp 7

Sammanfattning

Denna rapport redovisar det arbete som utförts inom ramen för ett forskningskontrakt

mellan Avdelningen för Reaktorfysik, Chalmers tekniska högskola och Statens

Kärnkraftinspektion (SKI), kontrakt Nr. 14.5-000983-00156. Rapporten är baserad på

arbetsinsatser av Imre Pázsit (projektledare), Christophe Demazière, Vasiliy Arzhanov och

Ninos Garis (SKI).

Rapporten omfattar etapp 7 i ett långsiktigt forsknings- och utvecklingsprogram

angående utveckling av diagnostik och övervakningsmetoder för kärnkraftreaktorer. De

långsiktiga målen med programmet har utarbetats i slutrapporterna för etapp 1 och 2 (SKI

Rapport 95:14 och 96:50, Ref. [1] och [2]). Uppnådda resultat fram till etapp 6 har

redovisats i referenserna [1] - [6]. Ett förslag till fortsättning av programmet i etapp 8

redovisas i slutet av rapporten.

Det utförda forskningsarbetet i etapp 7 består av tre olika delar och arbetet i varje del

sammanfattas nedan.

Utveckling av en 2-D 2-grupp neutronbrussimulator

I etapp 6 utarbetades grundprinciperna för en tredimensionell simulator i

frekvensdomänen med full koppling mellan neutronik/termohydraulik. Neutronmodellen

var baserad på tvågrupps-diffusions approximationen, medan de termohydrauliska

algoritmerna använde sig av den så kallade “lumped” modellen. En viktig egenskap för

denna simulator var enbart statiska värden behövdes som indata, vilka kunde erhållas från

koderna CASMO-4/TABLES-3/SIMULATE-3 från Studsvik Scandpower.

Simulatorn utvecklades med beaktande av denna idé, vilket i princip betydde att

simulatorn inte behövde användas för att beräkna de statiska flödestätheterna och

egenvärdena. Å andra sidan, beroende på vilket diskretiseringsschema man använder i

simulatorn för att hantera utläckage, är det inte garanterat att systemet förblir kritiskt med

detta förfarande om man använder gruppkonstanterna från SIMULATE i brussimulatorn.

Kriticitet hos det statiska systemet i brussimulatorn är mycket viktigt för en korrekt

beskrivning av dynamik vid låga frekvenser. När systemet är kritiskt, måste

balansekvationerna vara uppfyllda i alla noder enligt det diskretiseringsschema som

används. I synnerhet kan beräkning av de statiska flödestätheterna och egenvärdet undvikas

om systemet återföres till kriticitet genom en modifiering av tvärsnitten så att

balansekvationerna i diskretiseringsschemat är uppfyllda.

Denna metod användes i den föreliggande studien med finitdifferensschemat. Som

påpekades i etapp 6 är finitdifferensschemat relativt ineffektivt jämfört med finita element

metoden eller med de nodala metoderna; å andra sidan är det enkelt att implementera. Vi

planerar att undersöka de ovannämnda två mera komplicerade scheman i ett senare skede,

men för närvarande har vi förbättrat finitdifferensschemat så mycket som möjligt så att en

tvådimensionell, enbart neutronbaserad, modell kunde användas för rutinmässiga

beräkningar. En sådan, någorlunda enkel, modell kan användas för ett stort antal potentiella

tillämpningar, både teoretiska och praktiska.

Följaktligen har vi lagt ner mycket arbete i denna etapp på den beräkningsmässiga

effektiviteten av brussimulatorn. Snabbheten ökades med en faktor 15, och minnesåtgången
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minskades med en faktor 8, jämfört med den föregående versionen. Ett test av denna

brussimulator visade att noggrannheten i beräkningen för såväl amplitud som fas hos bruset

är utmärkt oavsett typ av bruskälla. Dessa tester utfördes för homogena system, eftersom

analytiska lösningar enbart kan erhållas för sådana fall. Man kan förvänta sig att

noggrannheten skulle kunna försämras för heterogena system. Detta betyder samtidigt att

det kvarstår ett behov av att använda ett mer effektivt rums-diskretiseringsschema än finita

differens metoden.

Tillämpning av brussimulatorn för lokalisering av en anomali

Brussimulatorn beräknar neutronbruset i två dimensioner med tvågruppsteori,

framkallad av en bruskälla med en i princip godtycklig rumsfördelning. Den kan även

användas i en så kallad invers uppgift, nämligen i en algoritm som använder neutronbruset

som indata och bestämmer positionen av en lokaliserad bruskälla. En sådan

lokaliseringsalgoritm har utarbetats tidigare av Karlsson och Pázsit ([14], [15]).

I föreliggande etapp har denna lokaliseringsalgoritm förbättrats i och med att 2-D 2-

grupps brussimulatorn har använts för beräkning av överföringsfunktionen mellan bruskälla

och neutronbrus, till skillnad från överföringsfunktionen motsvarande ett homogent system

och engruppsteori som det var fallet i [14] och [15]. Detta betyder samtidigt att den

nuvarande algoritmen kan användas även för beräkning av realistiska härdar. Genom

simuleringar har vi visat att algoritmen lokaliserar bruskällan korrekt så länge det enbart

finns en bruskälla i härden. Om flera lokal bruskällor är aktiva samtidigt, kan man

lokalisera varje bruskälla separat genom att använda signaler från ett fåtal detektorer som

förmodas omge bruskällan ifråga, istället för att använda alla detektorsignaler. En annan

intressant egenskap hos den förbättrade algoritmen är att den är avsevärt mindre känslig för

störningar såsom bakgrundsbrus. Anledningen är att i den nuvarande proceduren utgörs

bruskällan av fluktuationer av svinn-tvärsnittet, vilka leder till en större lokal komponent än

i bruset orsakat av fluktuationer av absorptionstvärsnittet. I den tidigare algoritmen gick det

inte använda removalstvärsnittet eftersom den var baserad på engruppsteori.

Slutligen har lokaliseringsalgoritmen använts för lokalisering av kanalinstabiliteten

som uppstod i Forsmark 1 i januari 1997 under bränslecykel 16. Genom att välja ett

lämpligt antal detektorer har bruskällan (kanalinstabiliteten) lokaliserats i närheten av en

bränslepatron som befanns vara osätad under påföljande revision. Emellertid gav val av

andra detektorer annorlunda resultat, vilket gör det sannolikt att det fanns flera aktiva

bruskällor samtidigt i Forsmark 1 fallet.

Wavelet analys av Oskarshamn 2 data för upptäckt av nötning från vibrerande
detektorsonder

Fenomenet med mekaniska stötar (impacting) av detektorsonder mot bränsleboxar har

varit föremål för undersökningar både i svenska och utländska kokvattenreaktorer. Medan

upptäckt av sondvibrationer är relativt enkelt, är upptäckt och kvantifiering av stötar

avsevärt mer komplicerat. Det finns inte någon enskild metod som ger resultat i absoluta

termer, utan existerande metoder behöver kalibreras eller jämföras med referensmätningar.

De flesta kända metoderna som hittills har tillämpats kräver jämförelse med en

referens, dvs mätdata från vibrationer utan stötar. Metoderna omfattar breddning av

vibrationstoppen i effektspectra, minskning av dämpkvoten, eller en förändring

(“förvridning”) av sannolikhetsfördelningen m m. Sedan en tid har emellertid
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waveletsanalys prövats för upptäckt och kvantifiering av stötar på ett absolut sätt, dvs utan

behov av kalibrering ([3], [23]). I detta tidigare arbete har vi använt en enkel typ av wavelet,

den så kallade Haar wavelet transformen. Målet med föreliggande arbete har varit en

fortsättning och utvidgning av dessa undersökningar inom två områden. För det första kan

metoden testas på mätningar gjorda i Oskarshamn 2 under tre bränslecykler av GSE Power

Systems AB. Till dessa mätningar har man även registrerat skador och nötning av vissa

sonder under revisionerna. Därmed ger dessa mätdata en utmärkt möjlighet för att testa

olika algoritmer för upptäckt av mekaniska stötar. För det andra kan man testa även andra

typer av wavelet transform än Haar-transformen, för att undersöka om det finns andra typer

som är mer effektiva för upptäckt av mekanisk påverkan.

P g a den stora mängden data, har vi i denna etapp enbart kunnat genomföra den första

av de två ovannämnda utvidgningarna av wavelet-metoden. Detta betyder att vi har

genomfört en omfattande undersökning av alla mätningar från Oskarshamn 2 med Haar-

metoden. Denna rapport ger en fullständig beskrivning av dessa undersökningar. För de

sonder som har varit mest utsatta för stötar har vi hittat en bra överensstämmelse mellan

waveletanalysens resultat och de verkliga skador som man observerat vid inspektionerna.

Utvidgningen av undersökningarna till andra typ av wavelet lämnats till nästa etapp.
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Section 1

Development of a 2-D 2-group neutron noise simulator

1.1  Introduction

In stage 6, a 2-group neutron noise simulator, based on the diffusion approximation,

was presented [6]. This neutron simulator included also a thermal-hydraulic model, the so-

called lumped model, which allowed taking both the fuel temperature and the coolant

temperature noise into account. The main advantage of the simulator was its ability to

handle any realistic core, since all the necessary data were the static data that could be

obtained by using the CASMO-4/TABLES-3/SIMULATE-3 code package from Studsvik

Scandpower ([7] - [9]).

The aim of the previous study was to prove that elaboration of such a coupled

neutronic/thermal-hydraulic noise simulator was possible, and to highlight the most

important features of the code. Nevertheless, it appeared that the spatial discretization

scheme used in that study, the so-called finite difference scheme, was not very well adapted

to the 3-D calculations of a heterogeneous core. The reason is obviously the relatively poor

accuracy of the finite difference scheme for heterogeneous systems when the number of

nodes is not too large. Increasing the number of nodes would allow coping with this

problem, but the calculational time would unfortunately become prohibitively large.

Consequently, it was concluded that using a more sophisticated calculational scheme than

the finite difference one was required. The Reactor Physics Department, Chalmers

University of Technology has now access to FEMLAB, a multiphysics code based on the

finite elements method ([10] and [11]), and plans to study the possibility of using it for the

neutron noise simulator. Nodal methods are also considered.

Although the use of a more efficient discretization scheme appears to be absolutely

necessary, it was decided to develop a somehow simplified model of the neutron noise

simulator for very specific qualitative tasks. In this model (still relying on the finite

difference scheme), only the neutronic model is used and the user is able to estimate the

corresponding flux noise from any noise source located in the core. All the user needs to do

is to define a set of cross-sections, representative of the core, and define the location,

strength, and types of noise sources present in the core. Such a qualitative model could

already have many practical applications, such as the localisation of anomalies in a reactor

from the detector readings (see Section 2), or more theoretical applications such as the

evaluation of the Moderator Temperature Coefficient (MTC) of reactivity assuming

different shapes/strengths/correlations of the noise sources.

Therefore, the previous simplified model was significantly improved regarding its

calculational efficiency and its ease to use. In the following, the neutronic model of the

simulator is described in more detail compared to the previous report (see [6]) and

benchmarked for different kinds of noise sources.

1.2  Neutron noise simulator

The neutronic model of the noise simulator relies on the two-group diffusion

approximation. All calculations are performed in the frequency domain directly, which is

equivalent to define complex cross-sections. The main advantages of using the frequency

domain instead of the time domain are twofold. First, it is common practice to use the
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Fourier transform of the measured signals. Second, because of the Fourier transform, the

time derivative in the equations is eliminated. There is consequently no need to properly

choose a time discretization which allows taking into account the phenomena one wants to

study, and for which the neutron noise has to be evaluated at each time step. In the

frequency domain instead, the calculation needs only to be performed once, assuming that

the frequency of interest is known. If not, scanning a frequency range does not appear to be

a big burden. Finally, the spatial discretization is carried out by using a finite difference

scheme.

Neutron noise in the 2-group diffusion approximation

In the two-group diffusion approximation, the time- and space-dependent flux can be

expressed as follows:

(1)

and

(2)

with the precursor density given as:

(3)

Assuming that all the time-dependent parameters can be expressed as:

(4)

where the index 0 represents the static case, substracting the static case to Eqs. (1)-(3),

performing a temporal Fourier transform and neglecting the second-order terms lead to the

following matrix formulation:

(5)

where the different matrices are given as:

1

v1

-----
φ1∂
t∂

-------- r t,( )

D1 r t,( )∇ 2φ1 r t,( ) νΣ f 2, r t,( ) 1 βeff–( )φ2 r t,( ) λC r t,( )

νΣ f 1, r t,( ) 1 βeff–( ) Σa 1, r t,( )– Σrem r t,( )–[ ]φ1 r t,( )

+ +

+

=

1

v2

-----
φ2∂
t∂

-------- r t,( ) D2 r t,( )∇ 2φ2 r t,( ) Σa 2, r t,( )φ2 r t,( ) Σrem r t,( )φ1 r t,( )+–=

C∂
t∂

------- r t,( ) βeff νΣ f 1, r t,( )φ1 r t,( ) νΣ f 2, r t,( )φ2 r t,( )+[ ] λ C r t,( )–=

X r t,( ) X 0 r( ) δX r t,( )+=

D r( )∇ 2 φ r ω,( )+( )
δφ1 r ω,( )

δφ2 r ω,( )

Σrem r( )δΣrem r ω,( ) Σa r( )
δΣa 1, r ω,( )

δΣa 2, r ω,( )
Σ f+ r ω,( )

δνΣ f 1, r ω,( )

δνΣ f 2, r ω,( )
+=
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(6)

(7)

(8)

(9)

(10)

and the different coefficients are defined as:

(11)

(12)

(13)

From Eq. (5), it is obvious that the right-hand-side represents the neutron noise source.

Compared to the calculation of the static neutron flux (which is an eigenvalue problem), the

estimation of the neutron noise is a simpler task since there is no need to iterate on the

fission term. The only difficulty lies with the fact that Eq. (5) uses complex cross-sections,

as the ones defined by Eqs. (11)-(13). These cross-sections are frequency-dependent. This

means that a new set of calculation has to be performed for each frequency that one might

consider.

2-D spatial discretization

Due to the operator in Eq. (5), a spatial discretization scheme has to be chosen. The

finite difference scheme was retained for its simplicity and its efficiency. As will be shown

in §1.3, this scheme is satisfactory for homogeneous systems. Nevertheless, it is known that

the number of nodes needs to be increased significantly in heterogeneous systems, if one

wants to obtain an acceptable level of accuracy. Therefore, other more powerful

D r( )
D1 r( ) 0

0 D2 r( )
=

φ r ω,( )
Σ1 r ω,( )– νΣ f 2, r ω,( )

Σrem 0, r( ) Σa 2, r ω,( )–
=

Σrem r( )
φ1 0, r( )

φ– 1 0, r( )
=

Σa r( )
φ1 0, r( ) 0

0 φ2 0, r( )
=

Σ f r ω,( ) φ1 0, r( ) 1
iωβeff

iω λ+
---------------– 

 – φ2 0, r( ) 1
iωβeff

iω λ+
---------------– 

 –

0 0

=

Σ1 r ω,( ) Σa 1 0, , r( ) iω
v1

------ Σrem 0, r( ) νΣ f 1 0, , r( ) 1
iωβeff

iω λ+
---------------– 

 –+ +=

νΣ f 2, r ω,( ) νΣ f 2 0, , r( ) 1
iωβeff

iω λ+
---------------– 

 =

Σa 2, r ω,( ) Σa 2 0, , r( ) iω
v2

------+=

∇ 2
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discretization schemes, such as nodal methods or finite elements, will be considered at a

later stage.

The starting point of the discretization procedure is the integration of Eq. (5) over an

elementary volume. The unknowns are thus expressed by the following generic

formulation:

(14)

whereby the elements of the matrices satisfy the following relationship:

(15)

This way of averaging is consistent with the two-group constants provided by any static

core calculator, so that the actual reaction rates are preserved.

If one represents a node I,J by the system of axes and numbering as shown in Fig. 1,

the spatial discretization of the neutron noise can be carried out according to the “box-

scheme” that allows writing [12]:

(16)

For each direction (either the x or y direction), two expressions for the current noise

can be written by considering the node I,J and its neighbours (either the I+1,J or I,J+1 node

respectively). Equating these two expressions allows eliminating the flux noise at the

boundary of the two nodes, so that the current noise can be expressed as directly depending

on the node-average flux noise in the node I,J and the node-average flux noise in its

neighbouring nodes. In a given energy-group g, one obtains:

(17)

δX I J, ω( ) 1

∆x ∆y⋅
------------------ δX r ω,( )dr

I J,( )
∫=

mI J, ω( )δX I J, ω( ) 1

∆x ∆y⋅
------------------ m r ω,( )δX r ω,( )dr

mI J, ω( )⇔

I J,( )
∫

m r ω,( )δX r ω,( )dr

I J,( )
∫

δX r ω,( )dr

I J,( )
∫

-----------------------------------------------------------

=

=

1

∆x ∆y⋅
------------------ D∆δφ∇ 2δφ r ω,( )dr

I J,( )
∫

δJ I J,
x ω( ) δJ I 1– J,

x ω( )–[ ]
∆x

----------------------------------------------------------------–
δJ I J,

y ω( ) δJ I J 1–,
y ω( )–[ ]

∆y
----------------------------------------------------------------–=

δJ ω( )

δJ g I J, ,
x ω( ) δJ g I, 1– J,

x ω( )–

ag I J, ,
x δφg I J, , ω( ) bg I J, ,

x δφg I, 1+ J, ω( ) cg I J, ,
x δφg I, 1– J, ω( )+ +=
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(18)

The different coefficients , , , , , and are

summarised in Table I and Table II for the x and y directions, respectively.

Table I. Coupling coefficients in the x direction.

if the

node I-1
does not

exist

0

if the

nodes

I-1 and

I+1 both

exist

if the

node

I+1does

not exist

0

δJ I J,
y ω( )δJ I J 1–,

y ω( )

δJ I 1– J,
x ω( )

δJ I J,
x ω( )

x

y

where

P xI yJ,( )

P

Fig. 1. Principles and convention used in the discretisation scheme (2-D case).

δJ g I J, ,
y ω( ) δJ g I J 1–, ,

y ω( )–

ag I J, ,
y δφg I J, , ω( ) bg I J, ,

y δφg I J 1+, , ω( ) cg I J, ,
y δφg I J 1–, , ω( )+ +=

ag I J, ,
x

ag I J, ,
y

bg I J, ,
x

bg I J, ,
y

cg I J, ,
x

cg I J, ,
y

ag I J, ,
x

bg I J, ,
x

cg I J, ,
x

2Dg I J, , Dg I, 1 J,+

∆x Dg I J, , Dg I, 1 J,++( )
---------------------------------------------------------

2Dg I J, ,
∆x

-------------------+

2Dg I J, , Dg I, 1 J,+

∆x Dg I J, , Dg I, 1 J,++( )
---------------------------------------------------------–

2Dg I J, , Dg I, 1 J,+

∆x Dg I J, , Dg I, 1 J,++( )
---------------------------------------------------------

2Dg I J, , Dg I 1– J,,
∆x Dg I J, , Dg I 1– J,,+( )
-------------------------------------------------------+

2Dg I J, , Dg I, 1 J,+

∆x Dg I J, , Dg I, 1 J,++( )
---------------------------------------------------------–

2Dg I J, , Dg I 1– J,,
∆x Dg I J, , Dg I 1– J,,+( )
-------------------------------------------------------–

2Dg I J, ,
∆x

-------------------

2Dg I J, , Dg I 1– J,,
∆x Dg I J, , Dg I 1– J,,+( )
-------------------------------------------------------+

2Dg I J, , Dg I 1– J,,
∆x Dg I J, , Dg I 1– J,,+( )
-------------------------------------------------------–
- 11 -



By using Eqs. (14)-(18), the discretised system of equations that has to be solved can

be derived from Eq. (5) as follows:

(19)

Whereas the expression of each term on the right-hand-side of Eq. (19) is relatively

straightforward, the left-hand-side needs to be clarified a little bit further. If one considers a

given node I,J, one has:

Table II. Coupling coefficients in the y direction.

if the

node J-1
does not

exist

0

if the

nodes

J-1 and

J+1 both

exist

if the

node

J+1does

not exist

0

ag I J, ,
y

bg I J, ,
y

cg I J, ,
y

2Dg I J, , Dg I J 1+, ,
∆y Dg I J, , Dg I J 1+, ,+( )
---------------------------------------------------------

2Dg I J, ,
∆y

-------------------+

2Dg I J, , Dg I J 1+, ,
∆y Dg I J, , Dg I J 1+, ,+( )
---------------------------------------------------------–

2Dg I J, , Dg I J 1+, ,
∆y Dg I J, , Dg I J 1+, ,+( )
---------------------------------------------------------

2Dg I J, , Dg I J 1–, ,
∆y Dg I J, , Dg I J 1–, ,+( )
---------------------------------------------------------+

2Dg I J, , Dg I J 1+, ,
∆y Dg I J, , Dg I J 1+, ,+( )
---------------------------------------------------------–

2Dg I J, , Dg I J 1–, ,
∆y Dg I J, , Dg I J 1–, ,+( )
---------------------------------------------------------–

2Dg I J, ,
∆y

-------------------

2Dg I J, , Dg I J 1–, ,
∆y Dg I J, , Dg I J 1–, ,+( )
---------------------------------------------------------+

2Dg I J, , Dg I J 1–, ,
∆y Dg I J, , Dg I J 1–, ,+( )
---------------------------------------------------------–

Dδφ
discr

ω( )δφ
discr

ω( ) Σrem
discr

δΣrem
discr

ω( ) Σa
discr

δΣa
discr

ω( ) Σ f
discr

ω( )δνΣ f
discr

ω( )+ +=
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(20)

The matrix is obviously sparse. If one has a 2-D core with N nodes, one has 2N
unknowns and the matrix is of a 2Nx2N size. This matrix can be inverted so that the flux

noise can be directly expressed as (source problem):

(21)

Data required

The only data required by the noise simulator are the static data, i.e. the material

constants and the point-kinetic parameters of the core. These data can be easily retrieved

from any static core simulator. Nevertheless, there is one particular aspect that is worth

mentioning and that could lead to differences in the calculation of the flux noise. Namely,

the spatial discretization scheme used to generate the 2-D material constants needs to be in

agreement with the one used in the noise simulator.

More specifically, the first necessary step in the estimation of the noise should be the

calculation of the static flux and the eigenvalue with the finite difference scheme, i.e. a

scheme which is identical with the one used in the noise determination. It is not granted that

the flux and eigenvalue given by the finite difference scheme will correspond to the one

given by the static core simulator. In such a case, using the static data directly from the

static core simulator would be equivalent to make the system non-critical.

Dδφ
discr

ω( )δφ
discr

ω( )[ ] I J,( )

Σ1 I J, , ω( )–
a1 I J, ,

x

∆x
--------------–

a1 I J, ,
y

∆y
--------------– νΣ f 2 I J, , , ω( )

Σrem 0 I J, , , Σa 2 I J, , , ω( )
a2 I J, ,

x

∆x
--------------–

a2 I J, ,
y

∆y
--------------––

δφ1 I J, , ω( )

δφ2 I J, , ω( )

b1 I J, ,
x

∆x
--------------– 0

0
b2 I J, ,

x

∆x
--------------–

+

×

δφ1 I 1+ J, , ω( )

δφ2 I 1+ J, , ω( )
×

b1 I J, ,
y

∆x
--------------– 0

0
b2 I J, ,

y

∆x
--------------–

δφ1 I J 1+, , ω( )

δφ2 I J 1+, , ω( )

c1 I J, ,
x

∆x
--------------– 0

0
c2 I J, ,

x

∆x
--------------–

+

×

δφ1 I 1– J, , ω( )

δφ2 I 1– J, , ω( )
×

c1 I J, ,
y

∆x
--------------– 0

0
c2 I J, ,

y

∆x
--------------–

δφ1 I J 1–, , ω( )

δφ2 I J 1–, , ω( )
×

+

+

=

Dδφ
discr

ω( )

δφ
discr

ω( )

Dδφ
discr

ω( )[ ]
1–
Σrem

discr
δΣrem

discr
ω( ) Dδφ

discr
ω( )[ ]

1–
Σa

discr
δΣa

discr
ω( )

Dδφ
discr

ω( )[ ]
1–
Σ f

discr
ω( )δνΣ f

discr
ω( )

+

+

=
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Nevertheless, recalculating the static flux and the corresponding eigenvalue with a

finite difference scheme is identical to neglect the main advantage of using a commercial

core simulator, i.e. its accuracy. This is why another approach was preferred in this study.

This approach is simpler since no calculation of the static flux and eigenvalue is required.

The static flux of the core simulator is in fact directly used to adjust the static cross-sections

so that the balance equations are fulfilled in each node with the finite difference scheme.

This is completely equivalent to make the system critical with the most accurate set of

fluxes available and with a scheme compatible to the one used in the noise estimation.

The balance equations that need to be fulfilled are given as:

(22)

(23)

with the leakage terms estimated according to the finite difference scheme below:

(24)

(25)

The following procedure has been applied for the adjustment of the cross-sections used in

this study (see §1.3 and Section 2). First, the thermal absorption cross-section was modified

to fulfil Eqs. (23) and (25). If such an adjustment was not possible (because it would result

in a negative cross-section), the removal cross-section was modified instead, and the

eigenvalue modified so that Eqs. (22) and (24) could be fulfilled. If this too was impossible,

the fast absorption cross-section could also be modified. For the reflector nodes, an

adjustment of the absorption cross-sections (both fast and thermal) is first carried out. In

case of negative results, the removal cross-section is modified. But due to the coupling

between the fast and thermal groups and the relatively few number of parameters that can be

changed, an iterative procedure is required if the removal cross-section is adjusted in the

reflector nodes. As a matter of fact, this procedure only affects appreciably the cross-

sections in the reflector nodes, and to a lesser extent the cross-sections of the fuel nodes

immediately neighbouring the reflector. The main reason lies with the fact that a finite

difference scheme does not estimate the static flux accurately in these nodes when only a

few nodes are used for the calculation.

D1 r( )∆φ1 r( )[ ] I J,( )

νΣ f 1 I J, , ,
keff

-----------------------φ1 I J, ,
νΣ f 2 1( ) I J, , ,

keff
-----------------------------φ2 I J, ,

Σa 1 I J, , , φ1 I J, , Σrem I J, , φ1 I J, ,––

+ +

0=

D2 r( )∆φ2 r( )[ ] I J,( ) Σrem I J, , φ1 I J, , Σa 2 I J, , , φ2 I J, ,–+ 0=

D1 r( )∆φ1 r( )] I J,( )
a1 I J, ,

x

∆x
--------------

a1 I J, ,
y

∆y
--------------+

 
 
 

φ1 I J, ,

b1 I J, ,
x

∆x
--------------φ1 I 1+ J, ,

b1 I J, ,
y

∆y
--------------φ1 I J 1+, ,

c1 I J, ,
x

∆x
--------------φ1 I 1– J, ,

c1 I J, ,
y

∆y
--------------φ1 I J 1–, ,+ + + +

=

D2 r( )∆φ2 r( )] I J,( )
a2 I J, ,

x

∆x
--------------

a2 I J, ,
y

∆y
--------------+

 
 
 

φ2 I J, ,

b2 I J, ,
x

∆x
--------------φ2 I 1+ J, ,

b2 I J, ,
y

∆y
--------------φ2 I J 1+, ,

c2 I J, ,
x

∆x
--------------φ2 I 1– J, ,

c2 I J, ,
y

∆y
--------------φ2 I J 1–, ,+ + + +

=

- 14 -



Calculational performance

As pointed out previously, the finite difference scheme is easy to implement and use,

but requires a huge amount of memory if one wants to have an acceptable level of accuracy.

Obviously, increasing the number of nodes is what one tends to do since the accuracy

becomes better in such a case.

In stage 6, the noise simulator was based directly on the real core structure, i.e. all the

data and calculations were performed by using the actual coordinates of each node in a

square core map. Nevertheless, all the nodes located outside the reflector are unrealistic

nodes and were eliminated just before inverting the matrix . This way of

performing the calculations was easy from the user’s point of view, since all the data could

be defined and checked during the calculations, but inefficient with respect to memory

utilisation, since one used more memory than one actually needed. In the new version of the

noise simulator, the unrealistic nodes were not used at all. Therefore, instead of eliminating

the empty rows and columns of the matrix just before its inversion, the

unrealistic elements of were not defined right from the start. This might appear

to be a trivial task, but another way of improving the time required for the calculations is to

use the sparsity properties of the matrices and the corresponding tools in MATLAB [13].

The combination of both makes the numbering and the definition of the nodes a difficult and

cumbersome task. The structure of the  matrix is represented in Fig. 2.

Obviously, because of the coupling between one node and its neighbours, the main diagonal

of the matrix is surrounded by four other “diagonals”, as can be seen on the right-hand side

of Fig. 2. These secondary “diagonals” are distorted simply because the core is not square

(the unrealistic nodes are not taken into account).

In Table III, the CPU time and memory required for the calculation of the transfer

functions for both the previous noise simulator and its new version are compared. As can be

seen, it takes now only a few minutes to estimate the transfer function of a typical BWR

core with 4 subnodes per assembly. Such a number of subnodes was not even achievable

with the previous version. This is mainly due to the fact that the memory needed by the new

simulator is significantly reduced compared to the previous one. As can be noticed also, for

Dδφ
discr

ω( )

Dδφ
discr

ω( )
Dδφ

discr
ω( )

Dδφ
discr

ω( )

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

nz = 9220

110 120 130 140 150 160 170 180 190 200

110

120

130

140

150

160

170

180

190

200

nz = 9220

Fig. 2. Sparsity of the matrix (full matrix on the left-hand-side, and a closer look at the
upper left corner on the right-hand-side)

group 1->1

group 2->2

group 2->1

group 1->2
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a BWR core like Forsmark 1 (676 fuel assemblies + 124 reflector nodes), four subnodes per

assembly already correspond to the maximum number of subnodes that the new noise

simulator can handle.

Another new feature of the noise simulator is that every core layout, i.e. BWR and

PWR cores with different sizes can now be handled. All the user needs to do is to define a

core map specifying where the fuel assemblies and the reflector nodes are located. The user

also has to provide the corresponding static data (material constants and fluxes defined in

maps matching the core map, and the point-kinetic parameters of the core).

1.3  Benchmarking of the simulator

Even if the cross-sections need to be adjusted before using the noise simulator, the

modifications of these are almost negligible in the fuel nodes. As pointed out previously,

only the fuel nodes directly neighbouring the reflector nodes are appreciably modified.

Therefore locating a noise source in the middle of the core and assuming that the core is

homogeneous for the estimation of an analytical solution should provide a relatively good

reference solution for the numerical scheme far away from the reflector nodes.

Analytical solution in case of a central noise source

It is assumed in the following that the noise source for the analytical solution is a point

source located at the core centre. Three different cases have been considered: a noise source

defined in terms of the fluctuation of the fast absorption cross-section, one of the thermal

absorption cross-section, and finally one of the removal cross-section. This can be

formulated by writing Eq. (5) as follows:

(26)

with the following three possibilities for the noise source:

, (27)

Table III. Comparison between the old and new versions of the noise simulator

Number of

subnodes per

assembly

Old version New version

1x1 CPU time (s):

651

Memory (Mbytes):

429

CPU time (s):

39

Memory (Mbytes):

51

2x2 CPU time (s):

-

Memory (Mbytes):

not achievable with a

32-bit code

CPU time (s):

861

Memory (Mbytes):

820

3x3 CPU time (s):

-

Memory (Mbytes):

not achievable with a

32-bit code

CPU time (s):

-

Memory (Mbytes):

not achievable with a

32-bit code

D r( )∇ 2 φ r ω,( )+( )
δφ1 r ω,( )

δφ2 r ω,( )

S1 r ω,( )

S2 r ω,( )
=

S1 r ω,( )

S2 r ω,( )
γ ω( ) δ r( )φ1 0, r( )

0

×=
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or

, (28)

or

. (29)

Here is the noise source strength. This coefficient allows also taking into account the

fact that the noise source is homogeneously distributed over one or several nodes in the

numerical solution (the nodes representing the core centre), and therefore is not a point-

source.

Due to the symmetry of the system, the flux noise is simply given by:

(30)

(31)

where  and  are the two eigenvalues of the following matrix:

(32)

and the coupling coefficient  and  are given as follows:

(33)

(34)

The coefficients A, B, C, and D are solutions of the system:

S1 r ω,( )

S2 r ω,( )
γ ω( ) 0

δ r( )φ2 0, r( )
×=

S1 r ω,( )

S2 r ω,( )
γ ω( )

δ r( )φ1 0, r( )

δ– r( )φ1 0, r( )
×=

γ ω( )

δφ1 r ω,( ) A K0 λr( )× B I 0 λr( )× C Y 0 µr( )× D J 0 µr( )×+ + +=

δφ2 r ω,( )
A cλ K×

0
λr( )× B cλ× I 0 λr( )× C cµ× Y 0 µr( )× D cµ× J 0 µr( )×+ + +=

λ2
– µ2

Σ1 ω( ) D1⁄– νΣ f 2, ω( ) D1⁄

Σrem 0, D2⁄ Σa 2, ω( )– D2⁄

cλ cµ

cλ
Σrem 0,

Σa 2, ω( ) D2λ2
–

--------------------------------------=

cµ
Σrem 0,

Σa 2, ω( ) D2µ2
+

---------------------------------------=
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(35)

where R is the core radius (fuel + reflector zones).

Comparison between the numerical and analytical solutions

The following figures (see Figs. 3-5) depict the amplitude of the flux noise and its

phase for both the analytical solution and the numerical one. Since the noise simulator

calculates a spatially-averaged flux noise over each node, the analytical solution was also

averaged over each node, so that both solutions could be directly compared. The first point

of the numerical solution (from the core centre) represents the flux noise in the node where

the noise source is located. The analytical solution gives obviously a different solution in

this node, and therefore the first point of the analytical solution was systematically

disregarded.

It can be noticed that the agreement between the analytical and the numerical solutions

is very good. As expected, the discrepancy is somewhat larger at the core boundary than at

the core centre, due to two main reasons. The first one is simply the presence of the reflector

in the numerical simulation, whereas the analytical one does not take any reflector into

account. The second effect lies with the fact that close to the reflector nodes, the cross-

sections have been adjusted in the noise simulator, so that the system remains critical

despite the use of the finite difference scheme. Therefore, while in the analytical case the

reactor is homogeneous, the core becomes more and more heterogeneous close to the core

boundary in the numerical case. Since the flux noise vanishes at the core boundary, the

difference between the analytical and numerical solutions is hardly noticeable for the

amplitude of the noise. Even if the discrepancy regarding the phase of the flux noise slightly

increases away from the core centre, the accuracy still remains very good, as can be seen on

the different Figures.

Consequently, the noise simulator seems to reproduce the expected solution rather

well. Despite the apparent high level of accuracy, the fact that the core is homogeneous (or

more exactly almost homogeneous) has to be strongly emphasized. The finite difference

scheme is a very effective (and easy to implement) discretization scheme as long as the

discretised system does not present a strong level of heterogeneity. A realistic core is of

course far from being homogeneous. Even if core homogeneity is still an acceptable

approximation for PWRs, BWRs are highly heterogeneous systems due to the presence of

K0 λR( ) I 0 λR( ) Y 0 µR( ) J 0 µR( )

cλ K×
0

λR( ) cλ I 0 λR( )× cµ Y 0 µR( )× cµ J 0 µR( )×

1– 0 µr Y 1 µr( )×[ ] r 0→– 0

cλ– 0 cµ µr Y 1 µr( )×[ ] r 0→×– 0

A

B

C

D

×

0

0

1

2πD1

------------- S1 r ω,( ) rd∫
1

2πD2

------------- S2 r ω,( ) rd∫
=
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the control rods (in a PWR, the reactivity adjustment is mainly carried out by the boron

concentration). Therefore, the accuracy may deteriorate appreciably when a realistic core is

modelled. One way of coping with this could be to increase the number of nodes in the

numerical simulation. Nevertheless, a commercial BWR like Forsmark 1 has already 800

nodes in the radial direction (676 fuel assemblies + 124 reflector nodes). As pointed out

previously, the corresponding matrix representing the transfer function is of a 1600x1600

size. Dividing each node into 4 sub-nodes is still possible, but already appears to be the
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Fig. 3. Comparison between the analytical and numerical solutions, for the case of a fast
absorption cross-section noise source
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maximum number of nodes that a 32-bit code could permit. Consequently, an acceptable

level of accuracy could only be achieved if a more efficient discretization scheme than the

finite difference one is used. Nodal methods or finite elements are planned to be considered

in the near future at our Department.
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Fig. 4. Comparison between the analytical and numerical solutions, for the case of a
thermal absorption cross-section noise source
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1.4  Conclusions

In this Section, a 2-D 2-group neutron noise simulator, relying on the diffusion

approximation, was presented. The spatial discretization scheme used is the finite

difference scheme. Such a simulator was already briefly presented in stage 6, but much

effort has been spent on improving the calculational efficiency since then. The noise

simulator calculates the transfer function between any possible location of a noise source in
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the core and the neutron noise. Due to the large size of the matrix representing the transfer

function, the calculational speed is for instance quite crucial in a diagnostic task such as the

localisation algorithm reported on in the next Section. The CPU time required to perform

the calculation of a typical BWR core with 2x2 sub-nodes per assembly is now reasonable,

which means that scanning a frequency range in order to estimate the frequency-dependent

transfer function of the reactor seems to be realistic. Even if a fully coupled neutronic/

thermal-hydraulic 3-D noise simulator is still interesting and will be developed at a later

stage, this entirely neutronic 2-D calculator allows estimating and investigating many

qualitative aspects of the neutron noise in a reactor core. Some of them have already some

practical applications, such as the localisation of a noise source from the detector readings

(see next Section).

Even if the benchmarking of this simulator for homogeneous cores showed that the

agreement between the numerical and analytical solutions was excellent for both the

amplitude and the phase of the flux noise, it is believed that the accuracy could deteriorate

when strongly heterogeneous cores like BWR ones are considered. This is mainly due to the

fact that a finite difference scheme was used for the spatial discretization. Therefore, it

appears to be appropriate to study the possibility of using a more sophisticated scheme,

such as finite elements or nodal methods, for the development of a coupled neutronic/

thermal-hydraulic noise simulator. Finite elements will be given special attention since a

multiphysics code, named FEMLAB, is now available at our Department.
- 22 -



Section 2

Application of the neutron noise simulator to anomaly localisation

2.1  Introduction

In the preceding case, the flux noise was calculated assuming that the noise source was

known (both its strength and its location). Even if being able to estimate the flux noise in a

reactor is undoubtedly interesting, determining the location of an unknown noise source

from the neutron detector readings is even more challenging. Such an inverting capability

could be directly used for diagnostic purposes. In the following, an algorithm allowing to

locate the position of a noise source (but not its strength) is presented. Several test cases are

also presented, so that the validity of the algorithm can be assessed. Finally, the localisation

procedure is used in a practical case, namely the Forsmark 1 local instability event.

2.2  Localisation algorithm

The localisation algorithm is the one developed previously by Karlsson and Pázsit [14],

[15]. Therefore, only the basic principles of this procedure are recalled in the following.

More details can be found in the original papers.

If one assumes that there is only one noise source located in the node (I0, J0), the flux

noise can be calculated from Eq. (21). This can be written in a condensed form as follows:

(36)

is in fact the discretised two-group Green’s function of the system,

which is evaluated by the noise simulator. Conceptually, is a 2x2

matrix and the multiplication in Eq. (36) is a matrix multiplication. Since neutron detectors

are most often sensitive to the thermal flux, one can write also:

(37)

or more simply:

(38)

where is the second row of the matrix and

correspondingly the multiplication in Eqs. (37) and (38) is a scalar product.

Estimating the ratio between the flux noise measured at two different locations A and B
allows eliminating the noise source strength:

δφ1 I J, , ω( )

δφ2 I J, , ω( )
G I 0 J 0 I J ω;,→,( )

S1 I 0 J 0, , ω( )

S2 I 0 J 0, , ω( )
×=

G I 0 J 0 I J ω;,→,( )
G I 0 J 0 I J ω;,→,( )

δφ2 I J, , ω( ) G2 I 0 J 0 I J ω;,→,( )
S1 I 0 J 0, , ω( )

S2 I 0 J 0, , ω( )
×=

δφ2 I J, , ω( ) G2 I 0 J 0 I J ω;,→,( ) SI 0 J 0, ω( )×=

G2 I 0 J 0 I J ω;,→,( ) G I 0 J 0 I J ω;,→,( )
- 23 -



(39)

The left-hand-side of Eq. (39) can be obtained from measurements. The right-hand-side

contains the unknown of the problem, namely the location of the noise source. The transfer

or Green’s functions can be calculated to any combination of their argument, but the source

position is not known. It is given by the values for which Eq. (39) is fulfilled. The

localisation algorithm will thus calculate the right-hand-side of Eq. (39) for all possible

locations of a single noise source within the core and will retain the one giving the ratio of

the detector signals, i.e. the left-hand-side of Eq. (39).

In reality the equality will not be complete due to background noise and other

disturbing effects, thus some procedure utilising redundancy is used for a best estimate. If

one has access to several detectors, the following quantity can be evaluated for each

detector combination (A, B):

(40)

so that the minimum of the following function should correspond to the location of the

noise source (I0, J0):

(41)

Since it is common practice to use the Auto- and Cross-Power Spectral Densities (APSDs

and CPSDs respectively) of the measured signals instead of their Fourier transform,

Eqs. (40)-(41) have to be written as follows:

(42)

and

(43)

Despite the apparent high number of possible detector combinations, the number of

detectors quadruplets that need to be taken into account can be significantly reduced if the

redundant combinations are discarded. For the sake of brevity, these simplifications are not

presented here. We refer to the original paper instead [15].

δφ2 I A J A, , ω( )
δφ2 I B J B, , ω( )
-------------------------------

G2 I 0 J 0 I A J A ω;,→,( )

G2 I 0 J 0 I B J B ω;,→,( )
--------------------------------------------------------=

I 0 J 0,( )

∆A B, I J,( )
δφ2 I A J A, , ω( )
δφ2 I B J B, , ω( )
-------------------------------

G2 I J I A J A ω;,→,( )

G2 I J I B J B ω;,→,( )
---------------------------------------------------–=

∆ I J,( ) ∆A B,
2

I J,( )
A B,
∑=

∆A B C D, , , I J,( )

CPSD A B ω, ,( )
CPSD C D ω, ,( )
----------------------------------------

G2 I J I A J A ω;,→,( ) G2
∗ I J I B J B ω;,→,( )×

G2 I J I C J C ω;,→,( ) G2
∗ I J I D J D ω;,→,( )×

------------------------------------------------------------------------------------------------------------------–=

∆ I J,( ) ∆A B C D, , ,
2

I J,( )
A B C D, , ,

∑=
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2.3  Sensitivity of the algorithm

The localisation algorithm described previously can be easily tested since the noise

simulator allows generating the flux noise for a given noise source. More precisely, one will

assume a given location of a noise source within the core, and calculate the corresponding

flux noise. The flux noise will then be used as detector signal input to the localisation

algorithm. This procedure should return the (known) location of the noise source, if the

localisation procedure is correct. The sensitivity of the localisation algorithm to different

parameters can therefore be assessed. These parameters are the number of detector signals

used, the position of the noise source, the possibility of having several noise sources, the

contamination of the detector signal by external noise, and finally the transfer function used

for the localisation.

In the following, the results will be presented in two types of Figures, one depicting the

function in a 3-D plot, and another one depicting also the function but in a

2-D plot (core map). In this latter case, the detectors are also positioned via crosses (‘X’).

The white ones indicate the detectors used in the localisation, whereas the black ones the

detectors which were not used. The noise source is marked by a white asterisk (‘*’), and the

result of the localisation algorithm is denoted by a white circle (’O’). The core layout and

the location of the detectors correspond to the Forsmark 1 BWR. Nevertheless, the cross-

sections used in these test cases are representative of a two-region system (fuel + reflector

regions), assumed to be homogeneous before the necessary adjustment of the cross-sections

for criticality. More details regarding these cross-sections sets can be found in Section 2.4

“Cross-sections”.

The first Figure (Fig. 6) represents the effect of using a reduced number of detectors.

The peaks in the function correspond to the detector locations. At these spots, the

accuracy is better than away from the detectors. Therefore, since the noise source is not

located at any of the detector positions, a local maximum of the function is

expected. As pointed out previously, although eliminating the redundant detectors

combinations allows reducing significantly the calculation time, taking all the detectors into

account still requires too much CPU effort. Furthermore, in most cases only a few number

of detector signals are actually available from measurement campaigns. Therefore, the

localisation algorithm was tested in two cases: first assuming that all the detectors were

available, second by using only the four detectors surrounding the noise source. As can be

seen in Fig. 6, the noise source is correctly located when using a reduced set of detectors.

Even if using as many detectors as possible would seem to be the most logical choice, in the

following test cases only the detectors neighbouring the noise source are used. This does

not affect the success of the localisation algorithm negatively.

The right-hand-side of Fig. 6, together with Fig. 7, allows also noticing that the

precision of the localisation algorithm is perfectly insensitive to the location of the noise

source. A noise source located close to the core boundary is as successfully detected as a

central one.

Although the localisation algorithm has been designed for locating one single noise

source, it is not unlikely that more than one noise source is present in the core when actual

measured signals are used. The localisation algorithm, on the other hand, is based on the

assumption that there is only one noise source present. The solution, as suggested in the

previous papers ([14], [15]) is that, each noise source is located from the signals of detectors

that surround the source in question. This strategy works as long as the different noise

sources are sufficiently separated. This assumption was tested in the simulations. As can be

∆ I J,( ) ∆ I J,( )

∆ I J,( )

∆ I J,( )
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seen on Fig. 8, choosing a set of detectors positioned close to one of the noise sources

allows detecting successfully the corresponding one, as long as the two noise sources are

not too close.

The algorithm needs also to be tested when extraneous random noise is added to the

detector signals before performing the noise source localisation. As can be seen in Fig. 9,

the noise source is still correctly located even with as much as 10% of extraneous noise.

One could notice nevertheless that the dip in the function is less accentuated with

noise than without noise (see for instance Fig. 6). The main reason that could explain why

the noise source is still correctly located with a relatively high level of background noise is

that in the present work, in contrast to all previous work, the noise source was assumed to

be given as a perturbation of the removal cross-section. As can be seen on Figs. 3-5, the

thermal flux noise decreases much more rapidly away from the source for a removal cross-

section noise source than for a fast or thermal absorption cross-section noise source.

Therefore, using the transfer function between the removal cross-section noise and the

thermal flux noise in the localisation algorithm is expected to provide a more pronounced
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minimum in the function at the location of the noise source. The use of this transfer

function is consequently less sensitive to the background noise. For the sake of brevity, the

3-D plot of the function is not depicted if one assumes that the noise source is

defined in terms of the fast or thermal absorption cross-section noise, but one would have

noticed that the dips corresponding to the actual noise source location are less obvious in

these cases (this is particularly true for the thermal absorption cross-section case).

2.4  The Forsmark 1 local instability event

In 1996, during the start-up tests of the Forsmark 1 BWR for the fuel cycle 16, local

instabilities were detected at reduced power and reduced core-flow. Although BWRs are

known to become less stable at reduced power/core flow, the appearance of this instability

event could not be understood and was not predicted by the stability calculations. The

corresponding operating point in the power/flow map was therefore avoided. In January

1997, at approximately Middle Of Cycle conditions (MOC), stability measurements were

carried out in order to study the local instability discovered previously. The core was thus
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brought to 63.3% of power and to a core flow of 4298kg/s. Again local instability

conditions were encountered, at a frequency of roughly 0.5Hz.

During this stability measurement the lower plane of the core was rather well equipped

with LPRMs (27 of the 36 available detector strings were actually recorded). A closer look

at the phase of the measured flux noise indicated that the neutron noise was driven by a

local noise source, similar to the effect of an absorber of variable strength (reactor

oscillator), rather than a moving absorber, such as a vibrating control rod. The localisation

algorithm presented previously allows locating a noise source of variable strength. By using

the detectors in the lower plane, the 2-D representation of the core is expected to give the

possibility of locating the noise source.

Since the localisation algorithm relies on the noise simulator presented previously in

Section 1, the static data corresponding to the Forsmark 1 core are required, i.e. the material

constants, the fluxes, and the point-kinetic parameters of the core. Obviously, the detector

readings corresponding to the measurement campaign when the local instability was

noticed are also required as input parameters to the localisation algorithm.

Cross-sections

Unfortunately, it has not been possible to obtain so far all the necessary static data

corresponding to the Forsmark 1 core when the local instability was noticed. It is planned to

repeat the localisation algorithm when these are available to us. Instead the following

procedure was applied to generate static data representative of a typical BWR core, whose

size and core layout are the ones of the Forsmark 1 core. The cross-sections thus obtained

were already used previously in the test cases of the localisation algorithm (see Section 2.3).

A model developed previously at the Department of Reactor Physics, Chalmers

University of Technology was used as a starting point [16]. More specifically, this model is

representative of a typical General Electric BWR/6 at EOC and equilibrium. The fuel
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elements are only typical UOX BWR bundles. From this core, the cross-sections, diffusion

coefficients and fluxes are obtained in the two-group formulation and for each node of the

core. The point-kinetic data of the core are also retained. It has to be emphasized that all

these data were obtained from the SIMULATE-3 code, which unfortunately does not

provide the static fluxes in the reflector nodes [9]. Since these data are required to modify

the cross-sections in order to fulfil the balance equations as pointed out previously, the

CASMO-4 code was used for that purpose [7]. For typical fuel bundles, the ratios between

the fluxes in the reflector node and its neighbouring fuel node was calculated. These ratios

were then used to calculate the fluxes in the reflector nodes from the fluxes in the fuel nodes

given by SIMULATE-3. Since a reflector node may be facing several fuel nodes, an

iterative procedure was used for these estimations.

Second, the 3-D data were condensed into two sets of 0-D data: a set representative of

all the fuel nodes, and a set representative of all the reflector nodes. Of course, the

condensation was carried out by preserving the reaction rates, which means that the

weighting functions used for averaging the data were the static fluxes:

(44)

with

(45)

Even if these data are now 0-D data, they are still representative of a 3-D system,

whereas the data required for the noise simulator should be representative of a 2-D system.

In concrete terms, the leakage in the axial direction has to be taken into account in the 2-D

system as well and added to the absorption cross-sections in both groups.

Furthermore, the size of the General Electric BWR/6 core differs a little bit from the

Forsmark 1 core. Therefore, it is very unlikely that the system is still critical when the

system is adjusted to the size of Forsmark 1. In short, the criticality condition has to be

fulfilled for the two-region system, of which the size of the core and the size of the reflector

correspond to the Forsmark 1 core. The criticality condition is given by:

X Sg region,

X

region
∫ Sg r( )φg r( ) rd

φg

region
∫ r( ) rd

----------------------------------------------------=

φg region,

φg

region
∫ r( ) rd

rd

region
∫

---------------------------------=
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(46)

with

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

and

, (56)

J
0

µcRc( ) I
0

νcRc( ) I
0

µrRc( ) α K
0

µrRc( )–( )– 0

Sµc
J

0
µcRc( ) Sνc

I
0

νcRc( ) Sµr
I

0
µrRc( ) α K

0
µrRc( )–( )– I

0
νrRc( ) βK

0
νrRc( )–( )–

D
1 c, µcJ

1
µcRc( )– D

1 c, νcI
1

νcRc( ) D
1 r, µr I

1
µrRc( ) α K

1
µrRc( )+( )– 0

D
2 c, µcSµc

J
1

µcRc( )– D
2 c, νcSνc

I
1

νcRc( ) D
2 r, µrSµr

I
1

µrRc( ) α K
1

µrRc( )+( )– D
2 r, νr I

1
νrRc( ) βK

1
νrRc( )+( )–

ℜ 0= =

α
I 0 µrRr( )
K0 µrRr( )
-----------------------=

β
I 0 νrRr( )
K0 νrRr( )
-----------------------=

µc

Σt 1 c, , D2 c, Σa 2 c, , D1 c,+( )– ∆+

2D1 c, D2 c,
---------------------------------------------------------------------------------=

νc

Σt 1 c, , D2 c, Σa 2 c, , D1 c,+ ∆+

2D1 c, D2 c,
------------------------------------------------------------------------=

µr

Σt 1 r, ,
D1 r,
-------------=

νr

Σa 2 r, ,
D2 r,

--------------=

Sµc

Σrem c,

D2 c, µc
2 Σa 2 c, ,+

--------------------------------------=

Sνc

Σrem c,

D– 2 c, νc
2 Σa 2 c, ,+

-----------------------------------------=

Sµr

Σrem r,

Σa 2 r, ,
D2 r,
D2 r,
-----------Σt 1 r, ,–

---------------------------------------------=

Σt 1 c, , Σa 1 c, , Σrem c,
νΣ f 1 c, ,

k
------------------–+=
- 30 -



, (57)

. (58)

The indices c and r stand for core and reflector respectively. and represent the outer

radius of the fuel zone and of the reflector zone respectively. The criticality is adjusted by

modifying the eigenvalue k.

From this system, the critical fluxes can be calculated according to the following

equations:

(59)

(60)

with

(61)

(62)

(63)

where represents the matrix given by Eq. (46) and the element (i,j) is given by (i row

index, and j column index). Of course, the flux level was adjusted via the coefficient C so

that the correct power of the reactor was achieved.

Finally, the fluxes were spatially averaged in each node by simply taking the average

between the fluxes at the four corners of a node. As described previously in Section 1.2

“Data required”, the cross-sections need to be adjusted so that the balance equations are

fulfilled in each node. This guarantees that the system is critical when using the finite

difference discretization scheme.

Neutron detectors readings

The localisation algorithm carries out a so-called inversion task, i.e. the noise source

location is determined from the flux noise. Therefore, the neutron noise measured by the

neutron detectors represents the input parameter of the localisation procedure. In the

following, only the Forsmark 1 case is discussed.
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In the Forsmark 1 core, 36 LPRM strings are available, and for each of them 4 different

axial positions. The radial core map is depicted in Fig. 10. The different axial levels are

located at 3.0912m (plane 1), 2.2080m (plane 2), 1.3616m (plane 3), and 0.5336m (plane 4)

from the bottom of the core active height. Two types of measurements were performed on

January 31st, 1997 during the fuel cycle 16: a measurement at 64.4% of relative power and

4416kg/s of core flow (starting time 6:39 AM), and a measurement at 63.3% of relative

power and 4298kg/s of core flow (starting time 7:26 AM). The sampling frequency was

12.5Hz. Two types of signals were recorded: one measuring the LPRM signals at many

radial location but for the lowermost axial level mostly (the so-called measurement type 1),

and one measuring the LPRM signals at different axial locations for a few strings (the so-

called measurement type 2). As usual, the Auto-Power Spectrum Densities (APSDs) of the

signals have been calculated by using the Welch’s averaged, modified periodogram method

[17]. The mean value of each signal was first removed and then the time-signals were

divided into overlapping sections of 512 points, then windowed by using a Hanning

window. The sections were assumed to overlap by 256 points. Two examples of the

measurement type 1 are given in Fig. 11. It is clearly seen that the second measurement, i.e.

at 63.3% of relative power and 4298kg/s of core flow, reveals a peak in the APSD at a

frequency of roughly 0.5Hz, which corresponds to the oscillation frequency noticed during

the instability event.
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nodes are dark-grey coloured)
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Fig. 11. APSDs of the LPRM located in string 19 and plane 4 (the upper figure
represents the first measurement, i.e. 64.4% of relative power and 4416kg/s of core
flow, and the lower figure represents the second measurement, i.e. 63.3% of
relative power and 4298kg/s of core flow)
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Results of the localisation procedure

The results of the localisation algorithm applied to the Forsmark 1 case are presented in

Fig. 12, where the transfer function between the removal cross-section noise and the

thermal flux noise was used.

As can be seen on Fig. 12, using a suitable set of detectors, the detectors surrounding

the region where a noise source is likely to be present ([14] and [15]), the localisation

algorithm gives a global minimum located in the reflector nodes. A closer examination of

the function also shows a local minimum, located in the fuel nodes. During the

core outage following this instability event, a fuel assembly was found to be unseated close

to the location pointed out by the localisation algorithm ([18] and [19]). Consequently, a

noise source of variable strength seems to be responsible for the local instability

encountered in Forsmark 1. The localised character of the noise source is in favour of a

channel thermal-hydraulic instability, i.e. a self-sustained Density Wave Oscillation (DWO)

[20]. As pointed out by [14] and [15], when a fuel element is unseated, some of the coolant

flow bypasses the fuel element and this might render the channel thermal-hydraulically

unstable.

Nevertheless choosing a different set of detectors gives results which are sometimes

different, i.e. the noise source is not always located at a position close to the unseated fuel

element. This suggests that there are probably two (or maybe even more) noise sources

located inside the core. As pointed out previously, limiting the number of detectors to a

region where a noise source is suspected to be located allows successfully locating this

specific noise source, as long as the other noise sources are not in the same vicinity. This is

why the region around the unseated fuel element was pointed out by the localisation

algorithm. Taking more detectors into account than the one used in Fig. 12 is equivalent to

take the effect of several other possible noise sources into account, whereas the algorithm

has been designed for a single noise source. Finally, it is worth mentioning that only the
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region pointed out by the localisation algorithm was visually inspected during the core

outage, i.e. other unseated fuel elements might have remained undetected.

2.5  Conclusions

In this section, the noise simulator presented previously was used in an inverting task,

namely the localisation of an unknown noise source. Neutron noise data were generated by

the simulator, and these were used subsequently in the localisation algorithm. From the

detector readings at some discrete locations of the core in a 2-D plane, the algorithm

pointed out a location corresponding to the suspected noise source, of which the strength is

still undetermined. The algorithm was found to be perfectly insensitive to the number of

detectors used, to the location of the noise source in the core, and to the presence of

extraneous noise in the detector signals. These conclusions can be held as long as one single

noise source exists in the core, since the localisation procedure was designed explicitly in

this case. The presence of several noise sources deteriorates the accuracy of the localisation,

but as long as the noise sources are well separated in space, using a set of detectors

surrounding one of the noise sources gives the correct location of this specific noise source.

Furthermore, the fact that the thermal flux noise diverges close to the noise source when the

noise is defined from the removal cross-section makes the localisation algorithm more

robust and more efficient than in the case where the noise source is defined in terms of the

fast/thermal absorption cross-section noise.

This algorithm was finally applied to a realistic case, namely the Forsmark 1 local

instability event. By selecting an appropriate set of detectors on the lowermost LPRM level

in the core, the localisation algorithm pointed out a global minimum in the reflector that had

to be disregarded, and a local minimum located close to a fuel element that was discovered

to be unseated during the core outage. The fact that using a different combination of

detectors might in some cases give different results suggests that more than one noise

source is responsible for the instability. Unfortunately, only 30 fuel bundles (of which one

was found to be unseated) were visually inspected, i.e. some other unseated fuel bundles

might not have been detected.

In the Forsmark case, a set of homogeneous cross-sections for the fuel elements and

another set of homogeneous cross-sections for the reflector were used. These cross-section

sets do not correspond exactly to the Forsmark 1 core. A set of cross-sections,

representative of the Forsmark 1 core, is planned to be used in future work, in the next

stage.
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Section 3

Wavelet analysis of Oskarshamn 2 data for detector tube impacting

3.1  Introduction

Discovering detector tube vibrations, and especially detecting impacting, has been of

interest since relatively long. This subject has been also pursued at our Department ([21] -

[23], [3]). There are several ways of discovering and quantifying impacting, based on the

distortion of the phase between two detectors, widening of the peak/increasing of the decay

ratio associated with the vibration peak, distortion of the probability distribution function

(PDF), and finally wavelet analysis.

Most of the methods are not absolute, rather relative and need access to data from the

same string before impacting. Widening of a peak, decreasing of the decay ratio, distortion

of the PDF are all, as the terminology discloses, methods that require a comparison to the

impacting-free data in order to detect impacting.

Wavelet analysis is one of the few methods, if not the only, which to a large degree is

absolute or calibration-free. It is based on a suggestion of Thie [24] that each impacting of a

detector tube against the wall of a fuel assembly will induce short, damped oscillations of

the fuel assembly itself, which then will contribute to the detector signal. High-frequency

damped oscillations of the fuel assembly will manifest themselves as spikes, and the task of

detecting impacting is then reduced to the task of detecting spikes in the signal. Such a

detection can be performed with wavelet analysis. Even some quantification of the severity

of the impacting can be performed. Study of the performance of wavelet-based impaction

detection was made by using a simple wavelet type, the so-called Haar transformation ([3],

[23]). Both simulated signals and measurements taken in Barsebäck-1 were investigated

with success. Nevertheless it has to be emphasised that this method is based on a

hypothesis, i.e. the high-frequency vibration of the fuel assembly on impacting, which is

difficult to verify experimentally.

The present study is meant to be an extension of the previous wavelet study in two

ways. First, we were given access to a large number of measurement data, taken by GSE

Power systems, in Oskarshamn 2 between 1991-1994, through an agreement between GSE,

SKI and Chalmers. Most of the data were taken by a vibration monitoring system VIBMON

[29], installed by GSE in Oskarshamn in April 1992. In most cases there is also information

available on whether or not impacting occurred, and if so, with what severity, through

inspection of detector tube damage during refuelling. Such a set of data is invaluable for the

test of an independent method. Second, we also intend to test other wavelets than the Haar

wavelet, to see if there are other types that are more effective in the detection of the

impacting.

Due to the large amount of data and thus the size of the task, only the first out of these

two extensions were implemented in the present stage. Namely, a thorough investigation of

all signals was made but only the Haar wavelets were used. The wavelet tool kit of

MATLAB was purchased and some preliminary tests of both simulations and measured

signals were made, but use of more sophisticated wavelets was postponed to the next stage.
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The current section presents an analysis of several measurements taken at the

Oskarshamn BWR unit 2 during 1991 to 1994. Table IV specifies some general information

about the measurements.

3.2  Mathematical model

Detector string vibrations are induced by the turbulent flow of the coolant. If the

vibration is strong enough, the string can eventually hit one or more fuel assemblies

surrounding the detector tube. The situation is illustrated in Fig. 13.

Table IV. General information about experimental measurements

Index Date Time Cycle Power

[%]

Flow

[ton/s]

File name

m = 01 91-Oct-21 14:12 17 N/A N/A o2vib9110211412.mat

m = 02 91-Dec-09 00:00 17 105.9 5.18 o2vib9112090000.mat

m = 03 92-Apr-07 09:39 17 106.2 6.08 o2vib9204070939.mat

m = 04 92-May-06 14:58 17 106.7 7.17 o2vib9205061458.mat

m = 05 92-May-18 14:25 17 99.6 5.80 o2vib9205181425.mat

m = 06 92-May-26 13:48 17 72.5 3.16 o2vib9205261348.mat

m = 07 92-Jun-03 16:35 17 104.0 7.58 o2vib9206031635.mat

m = 08 92-Jun-16 12:01 17 100.3 7.27 o2vib9206161201.mat

m = 09 92-Jul-29 12:49 17 89.1 7.62 o2vib9207291249.mat

m = 10 93-Mar-19 09:23 18 89.1 7.62 o2vib9303190923.mat

m = 11 93-Nov-01 09:18 19 98.5 6.98 o2vib9311010918.mat

m = 12 93-Nov-18 15:36 19 100.0 5.25 o2vib9311181536.mat

m = 13 94-Jan-28 08:50 19 104.3 5.23 o2vib9401280850.mat

m = 14 94-Mar-17 14:50 19 104.4 5.67 o2vib9403171450.mat

m = 15 94-Aug-09 13:26 20 89.7 4.08 o2vib9408091326.mat

m = 16 94-Nov-29 09:15 20 104.4 5.28 o2vib9411290915.mat

Z

O

Detector string

X

Y

Fig. 13. Detector string and fuel rods

Fuel rods

Fuel rods
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Although the vibration in the X-Y plane is two dimensional, no qualitative difference

was found between 1-D and 2-D simulations [23]. Because of this fact, a simplified one

dimensional simulation has been used in the current work to study the possibility to detect

impacting of a detector string against surrounding fuels boxes, as shown in Fig. 14.

Following [25], we assume that the damped oscillations of a detector guide tube may

be described by the equation

(64)

with being the equilibrium position, θ standing for the damping factor and f(t)
being a random driving force. It was found reasonable [25], [21] to model the stochastic

force f(t) by a discrete series of impulses arriving at regular times

(65)

where rn is a normal random variable with mean = 0 and standard deviation = 1. The

parameter Fc, also called the “force coefficient”, describes the strength of the driving force.

The pulse repetition frequency must be chosen much higher than that of the oscillator, i.e.

(66)

Impacting is simulated by confining the detector string motion within (-R,+R). Whenever

, in the course of simulation, exceeds R, the velocity is reversed, i.e.

, which models elastic reflection from an infinite mass without energy loss.

Also we assume that the neutron noise is linearly related to the mechanical vibration, i.e.

(67)

The model used in the current work also involves the fuel box vibration that obeys the

equation

(68)

where the force F(t) is induced by impactings. At each impact, the detector tube transfers a

certain impulse, , to the fuel rod. Thus if the box/tube mass ratio is M/m = k, then, at

impacting, one has . This will lead to the representation

X
O R-R

Fig. 14. 1-D model

ẋ̇ t( ) 2θẋ t( ) ω0

2
x t( )+ + f t( )=

x t( )〈 〉 0=

tn n ∆t⋅=

f t( ) Fc rnδ t tn–( )
n ∞–=

n ∞=

∑=

1

∆t
-----

ω0

2π
------»

x t( ) ẋ t( )
ẋ t( ) ẋ t( )–→

δφ t( ) a x t( )⋅=

Ẋ̇ t( ) 2ΘẊ t( ) Ω0

2
X t( )+ + F t( )=

2m ẋ
Ẋ 2 ẋ k 1+( )⁄=
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(69)

Finally we assume a linear relationship between the displacement of a fuel box and the

induced noise. Thus the neutron noise from a vibrating and impacting detector will be given

as

(70)

3.3  Some theoretical tools to detect impacting

According to the model, presented briefly above, the neutron noise, δφ(t), consists of a

stationary process which is disturbed by a non-stationary process on

impacting. Wavelet analysis, as opposed to Fourier decomposition, has reportedly proved to

be a powerful tool in dealing with non-stationary data [26]. Very briefly wavelet analysis

consists of breaking up a signal into shifted and scaled versions of the original (mother)

wavelet. More specifically, a signal S is cast into a double series

(71)

where the wavelet basis ψj,n(t) is constructed by using solely the original function ψ(t)

(72)

One often speaks of approximations and details. The approximations are the high-

scale, low-frequency components of the signal. The details are the low-scale, high-

frequency components. At the most basic level, this looks as follows:

Symbolically this decomposition can be written as S(t) = A(t) + D(t). A very simple

and crude, but sometimes very efficient de-noising method consists of neglecting details

completely by setting D(t) = 0. A more advanced method is to set a threshold τ and

disregard all details that exceed this barrier by setting D(t) to zero

F tn( ) 2
M

k 1+
------------ δ t tn–( ) ẋ tn( )⋅= c δ t tn–( ) ẋn⋅≡

δφ t( ) a x t( )⋅ A X t( )⋅+=

a x t( )⋅ A X t( )⋅

S t( ) sn j, ψn j, t( )
n j,
∑=

ψn j, t( ) 1

2
j

---------ψ t 2
j
n–

2
j

----------------
 
 
 

=

Lowpass Highpass

Filters

S

DA

Fig. 15. Approximations and Details
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(73)

In general, wavelet analysis gives a more flexible way of de-noising the signal by

recursively repeating the basic decomposition into approximations and details as shown in

Fig. 16.

The most general technique to filter the signal is to set different thresholds at different

levels and afterwards to reconstruct the signal as

(74)

where a three-level decomposition has been taken as an example.

Many waveforms have been proposed as wavelets. Some examples are given in Fig. 17

The simplest wavelet analysis is based on the discrete Haar transformation which

corresponds to only one level of decomposition and which can also be defined through an

NxN Haar matrix W as follows:

(75)

where the entries are defined as

D̂ t( )
D t( ), D t( ) τ>
0, D t( ) τ≤




= Ŝ t( ) A t( ) D̂ t( )+=⇒

S

D1A1

D2A2

D3A3

Level 1

Level 2

Level 3

Fig. 16. Multi-level decomposition

Ŝ A3 D̂3 D̂2 D̂1+ + +=

W N

w0 0( ) w0 1( ) … w0 N 1–( )

w1 0( ) w1 1( ) w1 N 1–( )

wN 1– 0( ) wN 1– 1( ) … wN 1– N 1–( )

=

k 1 2 … N 1–, , ,= m 0 1 … log2 N 1–( ), , ,= n 1 2 … 2
m, , ,=

w0 i( ) 1= i 0 1 … N 1–, , ,=
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(76)

Now everything is ready to describe the Haar de-noising procedure of a time series

 which performs the de-noising of the signal by

• applying the Haar transform ;

• thresholding ;

• applying the inverse Haar transform to yield the amplitude filtered signal.

By a proper choice of the threshold τ one can remove noisy (stationary) part of the

original signal, whereas the transients will survive. In [23], it was found suitable to use a

threshold

(77)

which cancels almost all noise if σ is set to the standard deviation of the noise that is present

in the signal. Determination of this standard deviation is not so easy in general and usually it

requires utilizing some additional knowledge of the processes involved. In our case we

assume that the signal x(t) consists of stationary (S), transient (T) and noisy (N) components

wk i( ) w
2

m n 1–+
i( )

0 i 0 1 … 2
m–

N n 1–( ) 1–, , ,=

2
m 2⁄

i 2
m–

N n 1–( ) … 2
m–

N n 1

2
---– 

  1–, ,=+

2
m 2⁄

i 2
m–

N n 1

2
---– 

  … 2
m–

Nn 1–, ,=–

0 i 2
m–

Nn … N 1–, ,=











= =

db1 ≡ Haar db2 db8 db16

dmey sym2 sym8 sym16

bior1.5 bior2.2 bior3.9 bior6.8

Fig. 17. Some wavelet examples
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as shown below

(78)

As known, the spectra of the stationary and transient parts have peaks about mechanical

eigenfrequencies f0 = ω0/2π and F0 = Ω0/2π. With this information one can estimate the

parameter σ by applying a high pass (HP) filter that leaves only a high frequency

component where the noise component dominates. To this end one chooses a cut-off

frequency fHP > max(f0,F0)

(79)

Thus the standard deviation σ can be estimated by

(80)

This is the principle of the method that was also used in the present analysis.

3.4  Numerical results with simulated data

The simulation has been performed with the following parameters:

• θ = 2 - damping factor for detector string;

• f0 = 3.6 - eigenfrequency of detector string;

• Θ = 2 - damping factor for fuel box;

• F0 = 10 - eigenfrequency of fuel box;

• F = 4 - driving force strength;

• 1/∆t = 240 - pulse repetition frequency;

• a = 1 - amplitude factor for detector string vibration;

• A = 1 - amplitude factor for fuel box vibration;

• R = 1 - confinement.

Three simulated signals are shown in Fig. 18. The first one, , comes from the

detector tube, the second signal, , is induced by the fuel box, and finally, the third

plot displays the total detector signal, . It should be noted here

that the amplitude of the fuel box signal, , is at least 1000 times weaker as

compared to the detector tube signal, , and thus it is completely invisible in the total

signal, .

x t( ) S t( ) T t( ) N t( )+ +=
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δφ t( ) a x t( )⋅ A X t( )⋅+=
A X t( )⋅

a x t( )⋅
δφ t( )
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Ordinary spectral analysis cannot reveal random impact events as it is clearly seen in

Fig. 19 that shows the Auto-Power Spectral Density (APSD) plot of the detector signal

. The plot shows no sign of impacting.
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High pass filtering is illustrated in Fig. 20 that clearly reproduces every impact event.

One can draw a simple conclusion: the higher high-pass frequency fHP, the better the non-

stationary component is extracted from the signal.

3.5  Verification of detector signals

It is common practice to check the quality of signals before signal processing. Some

detectors may be damaged or electronic circuits may malfunction. Sometimes one can

identify this kind of situation simply by visual inspection of the signal as shown in Fig. 21.
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Fig. 20. High-pass filtering of detector signal
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Fig. 21. Examples of apparently corrupt signals
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In order to detect such signals automatically, several tests have been proposed.

Low-High test

This test is based on a simple observation that a typical signal is of the order of

Volts. That is why the signal S having too low, mean(S) < 15, or too high, mean(S) >150 or

too high standard deviation, std(S) >5, is considered and marked as BAD.

Mean value test

The mean value (MV) test utilizes the fact that typically the signal coming from the

upper position, which is marked as number 1, is lower than the signal coming from the

lower position, which is marked as number 2. If this is not true, i.e. mean(S1) > mean(S2),
then these signals are marked as MV provided both signals are available.

Outlier test

The outlier test (Out) test checks if there are any sample values Si in signal S lying by

more than 4 standard deviations away from the mean value

(81)

Only a few signals were found to have outliers. Two of them are shown in Fig. 22.

Zero-Counts, Low-Counts and High-Counts test

This test selects the signals with unusually high or unusually low or even zero values in

the corresponding histograms. More specifically, a time series of N sample Si is sorted into

 equally spaced bins Bi as shown in Fig. 23.
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Then mean value µ and standard deviation σ are evaluated in a usual way. Typical values are

as follows:

• N = 14528 (number of samples);

• M = 121 (number of bins);

• r = max(S) - min(S) ~ 10 (range of signal);

• w = r/M ~ 0.8;

• p = 125*2-16 (A/D convertor precision);

• w/p ~ 43 (number of distinct detector values within one bin).

Because N is hopefully big, we assume a normal distribution of the counts as

(82)

The next step is to select the bins with a high expected number of counts

(83)

Finally, the quantity qi, which is the ratio of the actual number to the expected number of

counts, is calculated for every bin satisfying (83). If min(qi) = 0, the signal is marked as

having zero counts (ZC); if min(qi)s<s1/4, the signal is marked as having low counts (LC),

and if max(qi) > 4, the signal is marked as having high counts (HC). Some typical examples

are presented in Fig. 24.

It should be noted here that sometimes one may guess a signal to be corrupt simply by

visual inspection, as is shown in Fig. 24 b). More often it is not so visible as is seen in

Fig. 24 a).

Table V summarizes results of the verification of the detector signals for all

measurements. Each LPRM signal is marked as:

• B if it does not pass Low-High test;

• ? if it does pass Low-High test but fails Out, or ZC, or LC, or HC, or MV tests;

• + otherwise (it passes all tests).

Empty spot indicates that the signal is not available (N/A).
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Fig. 23. Bin structure to plot and calculate a histogram
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The results are also presented visually in Fig. 25 to show the percentage of the LPRM

signals sorted by the verification test.

A closer inspection of Fig. 25 yields several warnings that can be summarized as

follows:

• the quality of detector signals worsened significantly for measurements from m = 3 to 16

in contrast to measurements 1 and 2. However, measurements 1 and 2 were taken with a

different data acquisition system that measurements 3 -16, which could contribute to the

difference in data quality;

• the percentage of signals whose quality one may question is more than 50% on the aver-

age, sometimes reaching a level of about 75% (m=11).

Table V. Distribution of good (+), bad (B), and questionable (?) signals.
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The above conclusions depend on the reliability of the tests themselves. Currently there is at

least one experimental evidence, which will be discussed below, that supports the validity of

the tests. For the time being, we are strongly convinced that further investigation is needed

to confirm or deny the applicability of the tests.

3.6  Analysis of detector signals for impacting

Some general information

The most thorough information regarding the damage caused by the guide tube

vibrations comes from the inspection in 1992 (RA2-92) between cycles 17 and 18 ([27]). It

is visually presented in the left part of Fig. 26 together with diagrams for the reactor power

and core flow.

Comparison of measurements 9 and 10

Visual comparison of measurements 9 and 10 gives strong reasons to consider them as

copies of each other because all LPRM signals of measurement 9 have almost the same time

histories as compared to the corresponding LPRM signals of measurement 10. Fig. 27

shows a typical example. Nevertheless they are slightly different. This may be explained by

assuming that these measurements arise from a common source (signal) which was

differently preprocessed to yield the two measurements. Because of this we shall ignore

measurement 10 since it is presumably a copy of measurement 9. It should be noted here

that sometimes measurement 10 will still appear in some plots because of automatic plot

generating procedures that we used.

Evaluation of the global (background) noise

As mentioned earlier, in the present study only the probably simplest wavelet analysis,

the Haar transform was used to detect and quantify impactings. The Haar transformation
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actually corresponds to only one level of decomposition. According to the theoretical model

first we need to evaluate the global noise ingredient in the signals. This was achieved by

first studying how certain characteristics of the high-pass filtered signal depend on the cut-

off frequency. More specifically, the procedure involves the following steps:

• Select a cut-off frequency f;
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• Construct a high-pass filter HPf corresponding to the frequency f;

• Filter out low frequencies of the signal S to yield Sf = HPf{S};

• Calculate characteristics of Sf such as standard deviation (std), kurtosis and so on;

• Plot the characteristics versus the frequency f.

Skewness was found to behave in a very similar way for all the signals. It decreases

sharply at almost exactly 16 Hz. In other words, the filtered signal Sf has an almost perfect

normal distribution with a cut-off frequency of 16 Hz or higher. This gives reasons to

believe that the global noise (GN) component lies above the frequency fGN = 16 Hz. Fig. 28

supports this conclusion by showing several randomly selected signals. This makes

evaluation of the threshold (77) well determined.

Impacting rate index

In order to quantify the severity of impacting, we define an impacting rate (IR) as the

number of spikes detected by the Haar thresholding per unit time of observation. This

definition is different from the one used in [23] where the vibration period was used as the

unit of time. Typical examples of Haar-filtered signals, together with the IR values, are

given in Fig. 29.

Detection of impacting

In order to obtain a general overview of impacting, a string impacting index was

calculated as a sum of the corresponding indices shown by the detectors in the same string.

In addition, these indices were scaled relative to the maximal value observed in

measurement 13 for LPRM-15. Because of its high importance, the core flow is also given

in some relative units at position 26 marked also as F.

It is immediately seen that in cycle 19 (measurements 11 to 14), string #15 (see

Fig. 30) shows an extremely high impacting rate in comparison to the other LPRMs.
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Moreover, one can clearly notice how the index grows with time despite the fact that the

core flow at the end of the cycle is smaller than at the beginning of cycle (m = 10, F = 7.6).

This has a natural explanation as a progressing worn-out of the vibrating tube. The revision

RA2-92 (between cycles 19 and 20) did reveal a big hole in a fuel box around string #15.

A more complicated situation can be observed regarding cycle 17 (m=1 to 9).

Apparently string #7 shows, on the average, the highest IR index. Depending on the core

flow, string #15 gives also a high impacting rate. In measurements with high flow rates (m

= 4, 7, 8; F = 7.2 to 7.6) strings #8, 12 and 13 show relatively large IR indices. It should be
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noted that the most vibrating or impacting strings (7,8,12,13) are located adjacent to each

other.

Another important point to note is the fact that the damage revealed under inspection

RA2-92 was accumulated during the whole cycle. Because of this an integral (cumulative)

impacting index has been introduced as a sum of the corresponding IR indices during a

cycle. Fig. 31 shows the cumulative IR index for cycle 17 together with the reported

damage presented as negative values.

As seen in the Figure, a good correlation was found between the wavelet result and the

inspection-based damage rating for string #7 which was the most damaged one in this cycle.

This is a significant result since the measurement data from this string were far from

complete. In half of all cases (9 out of 18 measurements, i.e. 9 cycles for the two detectors

in the string) signals coming from string 7 were discarded because of being BAD or N/A

(not available) as it follows from Table V. The agreement for other tubes is also good on the

average, but there are noticeable deviations for several strings.

One possible reason for the less than perfect correlation between the IR index and the

damage found can be that the success of the detection may depend on the axial position of

the detector. It was seen in earlier investigations where all four detector signals were

available that there was a relatively large difference between the ability of the detector

signals to indicate impacting [21]. In cases where the impacting occurs at an axial level far

away from the two detectors used in the present study, the possibilities of impact detection

are not optimal. This problem is often deteriorated further in the measurements where only

one detector signal was available.
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Short overview of other indices

A number of other indices that might indicate impacting/vibration have been

investigated. These were as follows (the abbreviations are used in the figures):

• mean - mean value;

• std - standard deviation;

• kurt - kurtosis;

• skew - skewness;

• DR - decay ratio;

• pp1 - power (amplitude) of the 1-st peak in APSD;

• ap1 - area under peak 1 in APSD;

• pp2 - power (amplitude) of the 2-nd peak in APSD;

• ap2 - area under peak 2 in APSD;

• pc1 - power (amplitude) of the 1-st peak in the coherence function between signal S1

(upper detector) and signal S2 (lower detector);

• ac1 - area under peak 1 in coherence;

• pc2 - power (amplitude) of the 2-nd peak in the coherence function;

• ac2 - area under peak 2 in coherence;

• va - vibrational amplitude calculated by the formula proposed in [28]:

 with a cut-off frequency of 4 Hz;

• IR - impacting rate.

Fig. 32 gives an overview how the cumulative (i.e. summed over cycle 17) versions of

the above listed indices correlate to the graded damage found during RA2-92.
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It is interesting to note that the indicators kurtosis and peak 1 (pc1) in the coherence

function give the strongest anti-correlation, -0.45, with the graded damage, whereas peak 2

in APSD (pp2) shows the greatest correlation, 0.43, with the damage. A comparable

correlation, 0.38 to 0.40, is also shown by four other indices, namely ap2, IR, va, and DR.

As is seen, the impacting rate does not give the highest correlation for this measurement

series, although it gives the fourth highest one. As was mentioned earlier, the experimental

data cannot be considered as complete, since some vital data, for example LPRM7.3, was

missing, which might partially explain this fact.

Fig. 33 displays a distribution of the peak 1 area in APSD over all LPRMs and all

measurements. Noting that string 7 does not show the strongest ap1 index one can assume

that ap1 is an indicator of the string vibration rather than impacting. Another observation

supporting this conclusion is a high correlation of the index with the core flow within a

cycle. Finally, a sharp change in the character of the distribution of this indicator when the

plug-in was made between cycles 17 and 18 points to the same conclusion.

Fig. 34 shows a distribution of the area under peak 2 in the APSD over all LPRMs and

all measurements. This peak occurs at a higher frequency and is generally much weaker as

compared to ap1. Qualitatively, similar conclusions can be made about this parameter.

Fig. 35 shows the frequency of peak 1 in the different LPRM signals. Contrary to the

previous figures, each string is represented here by two detector signals because it bears

some important information.

First of all, one can easily notice a profound difference in the distributions before and

after the plug-in. After the holes at the lower tie plate had been plugged, the core flow

became less turbulent and most of the sensors detect one and the same frequency. Moreover

there is a considerable difference between the upper and low detectors. As a rule, the lower

ones detect a unique frequency, whereas the upper sensors do not necessarily indicate the

same frequency. This may be explained by the core flow becoming less regular and more
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turbulent while the coolant progresses upwards and the void content increases. A similar

behaviour can sometimes be recognized for cycle 17, m = 6, when the core flow was lowest,

3.2 ton/s.

Fig. 36 shows the frequency of peak 2 in the different LPRM signals. As before, each

string is represented by two detector signals. Almost all sensors detect a unique frequency

that does not depend on the core flow. One can conclude from this observation that the

process responsible for this frequency is of a global nature.
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Fig. 34. Area under peak 2 in the APSD
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Burn-up of the detectors in string 16 during cycle 17

As reported in [27], the revision between cycles 17 and 18 (RA2-92) showed a

significant burn-up and ageing of string 16 such that it was replaced. This experimental

evidence gives an opportunity to watch the time history of the ageing detectors in string 16.

Fig. 37 gives an important period in the time history, measurements 4 to 7.
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Sometimes, the malfunction of a detector is well seen by a specific shape of the time series

signal itself, as indicated in Fig. 37, which, in addition, says that more often this is not so

visible. On the other hand, the proposed validation test, ZC, LC, and HC, firmly recognise

these signals as deteriorated and mark them as being questionable up to the end of the cycle

(see also Table V). It is not clear why the LPRM16.3 signal failed the test in measurement 5,

then unexpectedly passed in measurement 6 and, finally, again failed in the following

measurements of the cycle. Most probably, further adjustment and improvement of the

validation test is needed.

3.7  Conclusions

Analysis of the data taken in Oskarshamn 2 has lent an immense opportunity to test and

develop tube impacting algorithms. In this stage first a thorough check of the detector

signals was performed. Then, the impact detection technique based on the Haar transform

was tested with all measurements. The analysis showed that for the most severe cases of

impacting the Haar transform method appears to be very robust and reliable, such that it can

be used for detection of impacting without calibration or resort to reference data. For less

extreme cases the correlation between the impact rate parameter, deduced from the Haar

transform and the actual damage was lower. Two possible explanations are that the

measurement data were not complete due to sensor failures in several cases, and that access

to detector signals close to the axial position of the impacting is important.
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Plans for the continuation

In stage 8 we plan to include the following parts in the current R&D program:

• Continuation of the development of the noise simulator. The main point is to introduce

nodal or finite elements methods for the space discretisation procedure, instead of the

currently used finite difference method.

• Test of the localisation of the Forsmark local instability with real core data used in the

noise simulator. In the present stage, data corresponding to an originally homogeneous

core were used. In the next stage it is planned that the SIMULATE data, corresponding to

the actual core loading in Forskmark-1, cycle 16 will be used. Preparations for obtaining

of these data have already been started.

• Development of a phenomenological model for the reconstruction of the space depend-

ence of the decay ratio in the Forsmark local instability event. During the instability in

one half of the core the decay ratio was high (>0.9) and nearly space-independent, and in

the other half it was low (<0.6) and also nearly constant in space. This behaviour could

not be reconstructed by e.g. simulations with RAMONA. By assuming one or two local

instabilities and possibly a global oscillation, and with a formerly developed expression

for the decay ratio of a signal consisting of two or more oscillations with different decay

ratios and amplitudes, we expect to be able to understand the spatial behaviour of the

decay ratio. In the expressions, the amplitudes of the various components become now

strongly space dependent, and we plan to use the noise simulator for the calculation of

this space dependence.

• Test of wavelet methods other than the Haar transformation with the Oskarshamn 2 data.

Some preliminary tests have already been performed in simulations. We have access to

the wavelet toolbox of MATLAB with which various wavelet forms can be used. Since

now we have a good knowledge about the content and the quality of the data, an effective

comparative investigation of different wavelet transform techniques can be executed.
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