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Background 
This report constitutes Stage 10 of a long-term research and development program 
concerning the development of diagnostics and monitoring methods for nuclear 
reactors.  
 
Such a program consists of two main parts. First, the space- and frequency dependent 
neutron noise, induced by a specific perturbation (anomaly) is calculated, via an integral 
over the transfer function of the system and the noise source, i.e. the perturbation. The 
latter consists of the fluctuations of the macroscopic cross sections that correspond to 
the perturbation. Each perturbation needs to be represented through a suitable model. 
The transfer function is calculated from the dynamical transport equations. Finally, one 
has to invert the above mentioned integral (unfolding) in order to achieve the purpose of 
the diagnostics, i.e. to determine the parameters of the perturbation from the measured 
neutron noise and the known transfer function.  
 
Results up to Stage 9 were reported in SKI reports, see the list below. The results have 
also been published in international journals and have been included in both licentiate- 
and doctor’s degrees. 

Purpose 
The purpose of the research program is to contribute to the strategical research goal of 
competence and research capacity by building up competence within the Department of  
Reactor Physics at Chalmers University of Technology regarding reactor physics, 
reactor dynamics and noise diagnostics. The purpose is also to contribute to the research 
goal of giving a basis for SKI’s supervision by developing methods for identification 
and localization of perturbations in reactor cores. 

Results 
The program executed in Stage 10 consists of three parts. The first part deals with 
identification and localization of absorbers of variable strength in nuclear reactors. The 
second part deals with development of the Feynman-alpha method for pulsed sources. 
The third part deals with the classification of two-phase flow regimes via image analysis 
and a neuro-wavelet approach.  
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Research and Development Program in Reactor Diagnostics 
and Monitoring with Neutron Noise Methods: Stage 10

This report gives an account of the work performed by the Department of Reactor
Physics, Chalmers University of Technology, in the frame of a research contract with the
Swedish Nuclear Power Inspectorate (SKI), contract No. 14.5-030917-200305001. The
present report is based on work performed by Christophe Demazière, Carl Sunde, Johanna
Wright and Imre Pázsit, with the latter being the project leader.

This report constitutes Stage 10 of a long-term research and development program
concerning the development of diagnostics and monitoring methods for nuclear reactors. The
long-term goals are elaborated in more detail in e.g. the Final Reports of stage 1 and 2 (SKI
Report 95:14 and 96:50, Refs. [1] and [2]). Results up to stage 9 were reported in [1] - [9]. A
brief proposal for the continuation of this program in Stage 11 is also given at the end of the
report.

The program executed in Stage 10 consists of three parts and the work performed in
each part is summarized below.

Identification and localization of absorbers of variable strength in nuclear reactors

A so-called 2-D 2-group neutron noise simulator was previously developed at the
Department of Reactor Physics. This simulator is able to calculate the space-dependence of
the neutron noise induced by localised or spatially-distributed absorbers of variable strength
or by vibrating absorbers. These calculations are performed in the 2-group diffusion
approximation and can treat an arbitrary heterogeneous 2-D system. The goal of the present
investigation is to use the simulator for unfolding purposes, i.e. to reconstruct the noise
source from the detector readings. This task is particularly challenging since the number of
detectors available in a commercial PWR can be very low. In this study, five detectors are
assumed to be present and evenly distributed in the core. Furthermore, only localised
absorbers of variable strength are considered as perturbations.

Numerical simulations were first carried out to verify that the space-dependent local and
global components of the neutron noise were overwhelmingly large compared to the point-
kinetic term of the neutron noise whose spatial structure does not depend on the position of
the perturbation. The significance of the space-dependent global component is that its
relaxation length is large enough, so that several neutron detectors can monitor it. Therefore,
the neutron noise induced at the position of the detectors is itself a function of the position of
the perturbation. Unfolding procedures could thus be considered.

Prior to performing any unfolding, the type of the noise source has to be determined,
since the algorithms developed in this report are based on the assumption of an absorber of
variable strength. Such a noise source can also be used to model a local thermohydraulic
instability. Identification of the type of the noise source is based on the in-phase behaviour of
the neutron noise for an absorber of variable strength (as opposed to an out-of-phase
behaviour for a vibrating absorber). Several unfolding techniques were then investigated. It
was demonstrated that the exact position of the noise source could be determined for some of
these techniques.
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Development of the Feynman-alpha method for pulsed sources

The purpose of this section is to give a detailed description of the calculation of the
Feynman-alpha formula with deterministically pulsed sources. In contrast to previous
calculations [35], Laplace transform and complex function methods are used to arrive at a
compact solution in form of a Fourier series-like expansion. The advantage of this method
is that it is capable to treat various pulse shapes. In particular, in addition to square- and
Dirac-delta pulses, a more realistic Gauss-shaped pulse is also considered here. The final
solution of the modified variance-to-mean, that is the Feynman -function, can be
quantitatively evaluated fast and with little computational effort.

The analytical solutions obtained are then analysed quantitatively. The behaviour of
the number of neutrons in the system is investigated in detail, together with the transient
that follows the switching on of the source. An analysis of the behaviour of the Feynman

-function was made with respect to the pulse width and repetition frequency. Lastly,
the possibility of using the formulae for the extraction of the parameter alpha from a
simulated measurement is also investigated.

Classification of two-phase flow regimes via image analysis and a neuro-wavelet 
approach

Algorithmic methods for non-intrusive identification of two-phase flow have been
searched for during a long time. One relatively new, not yet fully explored possibility is to
use images of the flow, and use intelligent image processing of the data for identification of
the flow regime. Such an attempt is reported in this report. Classification of the flow regime
types is performed by an artificial neural network (ANN) algorithm. The input data to the
ANN are some statistical functions (mean and variance) of the wavelet transform
coefficients of the pixel intensity data. The training is achieved by using a number of frames
for the basic flow regimes. The trained network is then tested on other frames,
corresponding to the different flow regimes.

The images originally considered were obtained from dynamic neutron radiography
recordings, obtained from the Kyoto University Research Reactor Institute. These were
made on a real two-phase flow of water and steam in a heated aluminium pipe. Although
these measurements contain all four basic flow regimes in a real setting (pressure and
temperature), the image quality turned out to be very poor, and only a very basic study
could be performed for the flow regime identification. In order to obtain better quality
images, experiments were set up with an air-water two component loop, using visible light
and coloured water. In these experiments only bubbly and slug flow regimes could be
created.

The investigations show that in the water-air loop, the flow regimes can be identified
with a close to 100% efficiency. The advantage of the wavelet pre-processing was that the
number of training cycles, in order to attain a certain classification error limit, was much
smaller than in the case of using raw pixel input data without pre-processing.

Y t( )

Y t( )
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Forskningsprogram angående härddiagnostik 
och härdövervakning med neutronbrusmetoder: Etapp 10

Denna rapport redovisar det arbete som utförts inom ramen för ett forskningskontrakt
mellan Avdelningen för Reaktorfysik, Chalmers tekniska högskola, och Statens
Kärnkraftinspektion (SKI), kontrakt Nr. 14.5-030917-200305001. Rapporten är baserad på
arbetsinsatser av Christophe Demazière, Carl Sunde, Johanna Wright och Imre Pázsit, med
sistnämnde som projektledare.

Rapporten omfattar etapp 10 i ett långsiktigt forsknings- och utvecklingsprogram
angående utveckling av diagnostik och övervakningsmetoder för kärnkraftreaktorer. De
långsiktiga målen med programmet har utarbetats i slutrapporterna för etapp 1 och 2 (SKI
Rapport 95:14 och 96:50, Ref. [1] och [2]). Uppnådda resultat fram till etapp 9 har
redovisats i referenserna [1] - [9]. Ett förslag till fortsättning av programmet i etapp 11
redovisas i slutet av rapporten.

Det utförda forskningsarbetet i etapp 10 består av tre olika delar och arbetet i varje del
sammanfattas nedan.

Identifiering och lokalisering av absorbatorer med varierad styrka i reaktorer

Tidigare har det utvecklats en 2-D 2-grupps neutronbrussimulator hos Avdelningen för
Reaktorfysik. Simulatorn kan beräkna det rumsberoende bruset från en punktkälla eller en
rumsberoende källa. Källan kan vara en absorbator av varierad styrka eller en vibrerande
absorbator. Beräkningarna utförs med 2-grupps diffusionsapproximation och ett godtyckligt
2-D heterogent system kan användas. Syftet med projektet är att kunna använda simulatorn
för inversa beräkningar, som kan rekonstruera bruskällan med hjälp av detektorsignaler.
Eftersom det bara finns ett fåtal detektorer i en kommersiell reaktor är det en ganska svår
uppgift att rekonstruera bruskällan. I detta projekt antas att det bara finns fem detektorer
jämt fördelade i härden. Dessutom används bara en absorbator av varierad styrka som
bruskälla.

Först gjordes numeriska beräkningar för att verifiera att de lokala och globala
rumsberoende komponenterna av bruset är betydligt större än den punktkinetiska termen.
Rumsberoendet hos den punktkinetiska termen beror inte på läget hos störningen.
Relaxationslängden hos den globala rumskomponenten av bruset måste vara tillräckligt stor
för att den skall kunna mätas av flera detektorer. Detta medför att bruset vid en detektor är
beroende av läget hos störningen, vilket i sin tur medför att det går att använda inversa
metoder för att lösa problemet.

Det första som måste göras är att bestämma vilken typ av bruskälla som finns i
systemet eftersom algoritmen som utecklats i denna rapport antar att det är en absorbator av
varierad styrka. Det går även att modellera en lokal termohydraulisk instabilitet som en
absorbator av varierad styrka. Identifieringen bygger på det faktum att bruset från en
absorbator med varierad styrka är i fas jämfört med bruset från en vibrerande absorbator
som är ur fas. Flera olika inversa metoder undersöktes. Den exakta positionen av bruskällan
kunde bestämmas med några av dessa metoder.
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Utveckling av en Feynman-alfa-metod för pulsade källor

Detta kapitel ger en detaljerad beskrivning av hur Feynman-alfa-formeln för
deterministiskt pulsade källor beräknas. Till skillnad från tidigare beräkningar [35], används
Laplacetransformer och komplexa funktioner för att få en kompakt lösning i form av
Fourierserieliknande utvecklingar. Fördelen med detta är att det är enkelt att variera
pulsformen. Framför allt går det att använda en mer realistisk Gauss-formad puls förutom
fyrkants- och Dirac-deltapulser. Det går snabbt och enkelt att kvantitativt utvärdera
slutresultatet av den modifierade “variance-to-mean” eller Feynman Y(t)-funktionen.

De analytiska lösningarna kan sedan analyseras kvantitativt. Antalet neutroner och
transienten som följer efter att källan aktiverats kan studeras i detalj. En analys av Feynman
Y(t)-funktionen med avseende på pulsbredd och repetitionsfrekvens har utförts. Till sist
undersöktes möjligheten att använda formeln för att bestämma α från simulerade
mätningar.

Identifiering av tvåfasflöden genom bildanalys med hjälp av neurala nätverk och 
wavelets

Under en längre tid har algoritmiska metoder för beröringsfri identifiering av
tvåfasflöden eftersökts. En relativt ny metod, som ännu inte är helt undersökt, är att använda
intelligent bildbehandling på flödesbilder. Detta kapitel beskriver ett försök att använda en
sådan metod. Klassificeringen av flödetyperna utförs av ett artificiellt neuralt nätverk
(ANN). Som indata till ANN används statistiska data, till exempel medelvärde och varians,
av koefficienterna från en wavelettransform av punktintensiteten i bilderna. Nätverket
tränas med ett antal bilder från de olika flödestyperna och därefter testas det med liknande
bilder som inte användes under träningsprocessen.

De första bilderna som analyserades kommer från experiment inom dynamisk
neutronradiografi utförda av Kyoto University Research Reactor Institute. Bilderna är tagna
på riktigt tvåfasflöde av vatten och ånga i ett aluminiumrör. Även om bilderna innehåller
alla fyra grundtyperna av flöde i en realistisk miljö (tryck och temperatur) var bildkvaliten
för dålig för att göra annat än en enkelt bildanalys. För att få bättre bildkvalitet gjordes ett
experiment med vanligt ljus, färgat vatten och luft istället. Dock gick det bara att skapa
bubbel- och slugflöde.

Med de senare bilderna ger identifieringsalgoritmen en nästan 100-procentig korrekt
klassificering av flödestyperna. Detta gäller dock både waveletbehandlad och orginalbilds-
indata. Den stora fördelen med waveletbehandling av bilderna är den reducering av antalet
träningscykler som behövs för att nätverket skall uppnå sitt klassificeringsmål. Antalet
träningscykler är ungefär 100 gånger fler om orginalbildens data används som indata till
nätverket jämfört med waveletbehandlad data.
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Section 1

Identification and localization of absorbers of variable strength in 
nuclear reactors

1.1  Introduction

It is now well recognized that the analysis of the neutron noise, i.e. the difference
between the time-dependent neutron flux and its time-averaged value, assuming that all the
processes are stationary and ergodic in time, can be used for many diagnostic purposes in
nuclear reactors. Many examples can be found in the literature [10]-[13]. Usually, one
distinguishes two main categories within noise analysis: identification of anomalies, and
estimation of dynamical core parameters while the reactor is at steady-state conditions. This
Section will focus on one specific aspect of the former category, namely the identification
and localization of absorbers of variable strength. This type of noise source is for instance
typical of a channel instability or Density Wave Oscillation (DWO) in Boiling Water
Reactors (BWRs) [14], [15]. Another possible type of noise source would be a so-called
vibrating absorber, such as vibrating control rods in Pressurized Water Reactors (PWRs).
Such noise sources are not considered in this paper.

Localising an absorber of variable strength is actually very challenging since western-
type commercial nuclear reactors usually do not have many in-core detectors present in the
core. This is particularly true for Westinghouse-type PWRs where at the most five in-core
neutron detectors can be simultaneously inserted in different instrumentation thimbles of
the core [16]. The task of localising a noise source from the detector readings is usually
referred to as an unfolding procedure, since the unknown noise source, which has to be
characterised, induce a measurable neutron noise. The complexity of the unfolding comes
from the fact that several noise sources might exist in the core and from the large number of
fuel assemblies in a reactor, i.e. the large number of possible locations for the noise source,
compared to the number of available detectors. PWRs typically contain less than 200 fuel
assemblies, whereas BWRs typically contain more than 800 fuel assemblies. Even if there
is only one noise source present in the core, the unfolding is still very difficult to carry out.
An equivalent mathematical formulation of this problem would be the inversion of a matrix
where each column would represent the measured neutron noise for one possible location of
the noise source. The number of columns would then be the number of possible locations of
the actual noise source. Obviously, such an inversion is only possible if the matrix is square,
i.e. if the number of available detectors equates the number of fuel assemblies.

Such a problem has already been investigated in the past by Glöckler and Pázsit [17],
although the objectives of this study were slightly different as explained in the following. In
this earlier work, a 2-D homogeneous rectangular reactor was considered with equally-
spaced detectors. An analytical expression for reconstructing any noise source could then be
derived in one-group theory and in the frequency domain. This expression was later
approximated since the full space-dependence of the induced neutron noise was not known.
This technique had the advantage of determining the noise source type (either an absorber
of variable strength or a vibrating absorber), and therefore did not require any previous
expert knowledge of it. The drawback was that the spatial resolution of the reconstructed
noise source was rather poor, i.e. the algorithm could only point out a region of the core
where the noise source was likely to be located. Furthermore, such an algorithm could only
be used when an analytical expression of the reactor transfer function could be derived, i.e.
- 5 -



when the reactor was homogeneous and rectangular. Such approximations are usually very
rough and do not hold in practice. Finally, the detectors needed to be equally-spaced
throughout the core and many detectors were required for the algorithm to work properly.
As pointed out previously, at the most five in-core neutron detectors are typically available
simultaneously in a PWR and are not regularly distributed over the core. The applicability
of the method developed by Glöckler and Pázsit was thus limited.

The goal of this Section is to derive new algorithms for identifying and localising
absorbers of variable strength for 2-D heterogeneous reactors of arbitrary shape, so that the
fuel assembly containing the noise source could be pointed out. One thus assumes that only
one localised noise source is present in the core. Although absorbers of variable strength are
mostly typical of BWRs, which have a number of 30 to 40 in-core neutron detectors
positioned on each of several axial planes of the core, a number of five detectors radially
and not regularly distributed throughout the core was chosen. This very limited number of
detectors usually corresponds to PWR cores. Having very few available detectors (like for
PWR cases) and many fuel assemblies (like for BWR cases) are the most penalizing factors
for reconstructing the noise source. Therefore, if the algorithms developed in this study are
able to successfully locate the noise source in these conditions, they should also work for
more realistic but less stringent cases (fewer fuel assemblies in PWR cores with very few
detectors, as many fuel assemblies in BWR cores with much more detectors). It has to be
emphasized that contrary to Glöckler and Pázsit [17], the localization algorithms are applied
after the successful identification of the type of noise source, i.e. of an absorber of variable
strength. The identification and localization are thus two separate processes. Finally, the
algorithms are derived for the Fourier transform of the neutron detector time-signals.

The algorithms presented in this Section rely on the estimation of the dynamic reactor
transfer function. Due to the heterogeneous character of the core, this transfer function can
only be determined numerically. In the first part of this Section, the model of the reactor
chosen for this investigation and the modelling tools are presented. Emphasis is then put on
using these models to study the space-dependence of the neutron noise induced by localised
absorbers of variable strength. The objective of this second part is to verify that the spatial
structure of the induced neutron noise is a function of the actual location of the noise source
and that this spatial pattern can be monitored by very few detectors far apart from each
other and far away from the noise source. The relaxation length of the induced neutron
noise and the importance of the point-kinetic component of the neutron noise, whose spatial
structure is completely independent of the position of the noise source, are looked at
carefully and quantified. Finally, the process of identifying an absorber of variable strength
is presented. This is followed by the derivation of different algorithms for localising the
noise source and some numerical tests of the performance of each of these algorithms.

1.2  Reactor model and modelling tools

In this part, the reactor model chosen for this study is presented. All the calculations
are based on a radial 2-D representation of the reactor and on the 2-group diffusion theory.
This model will then be used to determine the so-called Green’s function or dynamic
reactor transfer function, i.e. the function giving the neutron noise induced by any localised
absorber of variable strength. The estimation of this transfer function actually requires the
previous determination of the static conditions of the reactor. The tools used for
determining both these static conditions and the Green’s function are briefly presented.
Further details related to these modelling codes can be found in [18].
- 6 -



1.2.1  Reactor model

Since cores with many fuel assemblies are a penalizing factor for the successful
identification and localization of a point-like noise source from very few detectors, a
realistic commercial BWR core is considered throughout this Section. This core
corresponds to the Swedish Forsmark-1 BWR (core-averaged burnup of 22.887 GWd/tHM,
cycle 16). This model was already used in the past to explain a radially space-dependent
Decay Ratio induced by a channel instability [19], [20]. These conditions were encountered
at a reduced power level (63.3% of the nominal power level) and a reduced core flow (41%
of the nominal core flow).

SIMULATE-3 calculations were then performed at these operating conditions [21].
The goal of these calculations was to use a state-of-the-art advanced nodal diffusion code,
which performs coupled neutronic/thermalhydraulic static calculations and is thus able to
determine the 3-D spatial distribution of the different parameters of influence on the
macroscopic nuclear cross-sections. These cross-sections were then edited in the 2-group
diffusion approximation for each node and were homogenised from 3-D to 2-D in order to
be used by the 2-D simulators in this study. The homogenization was naturally carried out
by using the static fluxes as weighting functions so that the reaction rates were preserved:

(1)

and

(2)

with  having a broad meaning, i.e. being , , , or . G is the group
index and (I, J) is a 2-D elementary node. All the other symbols have their usual meaning
with  representing the volume of the 3-D elementary node (I, J, K). As described in
[18], the axial leakage rate were accounted for in the 2-D set of cross-sections by modifying
the absorption cross-sections as follows:

(3)

with

(4)

The coefficients , , and  corresponds to a spatial discretization
performed according to a finite difference “box-scheme” [22] and are given in a generic
form in Table I.

A layout of the Forsmark-1 core considered in this study is presented in Fig. 1. Five
neutron detectors are subsequently used for unfolding purposes and they are also
represented in this Figure. It can be noticed that the location of these detectors was chosen
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Table I. Coupling coefficients in the i-direction for the finite differences “box-scheme”.
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Fig. 1. Layout of the core used in this investigation (with the reflector nodes in gray, the
fuel nodes in white, and the nodes containing detectors in black)
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so that they cover the whole core and monitor different regions. It has to be emphasized that
the detectors do not need to be regularly spaced. Furthermore, detectors in BWRs are in
principle located between four fuel assemblies in the so-called wide water gaps. One
detector is thus sensitive to its four neighbouring fuel assemblies, case that can be
considered as less stringent for unfolding purposes. Therefore, the detectors were assumed
to be located within fuel assemblies, like in PWR cases, since this situation makes the
unfolding more difficult.

1.2.2  Static simulators

Although the spatial distribution of the static fluxes in the 2-group diffusion
approximation is available from SIMULATE-3, the spatial discretization scheme used in
SIMULATE-3 is not compatible with the one used in the dynamic simulator presented in
the following [18]. Using the fluxes directly from SIMULATE-3 without any modification
would be equivalent to make the reactor non-critical. Therefore, the static fluxes and the
corresponding adjoint functions need to be recalculated using the same discretization
scheme as the one on which the noise simulator relies. The basic features of these static
simulators are briefly recalled here. The reader is referred to [18] for further details.

The static core simulator solves the following matrix equation in the two-group
diffusion approximation:

(5)

where

(6)

(7)

All the notations have their usual meaning. Finite differences are used to carry out the 2-D
spatial discretization of the system according to the so-called “box-scheme” [22]. Eq. (5),
which is a homogeneous equation, is solved by using an iterative scheme, more exactly the
power iteration method [22], [23]. The results are then scaled since Eq. (5) is a
homogeneous equation. The scaling factor is calculated so that the power level corresponds
to the one given by SIMULATE-3 in the axially condensed reactor:

(8)

where  and  are the energy release per fast and thermal fission respectively for a
given node (I, J).
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As will be seen later in this Section, the adjoint function of the static flux is required if
one wants to determine the point-kinetic response of the reactor to perturbations in 2-group
diffusion theory. According to the definition of the adjoint given in [18] and [23], the
adjoint function of the static flux can be estimated by solving the following matrix equation:

(9)

where the superscript T denotes the matrix transpose. As before, finite differences are used
to carry out the 2-D spatial discretization of the system according to the so-called “box-
scheme” [22] and the power method is used to solve Eq. (9) iteratively [22], [23]. The
results are then scaled since Eq. (9) is a homogeneous equation. The scaling factor is
calculated so that the volume integral of the fast adjoint function is equal to unity:

(10)

where  is the number of nodes in the fuel region.

Benchmarking of both the static simulator and its adjoint were successfully carried out
in [18].

1.2.3  Dynamic simulators

After the use of these static simulators, which determine the static fluxes, the
corresponding adjoint functions, and their associated eigenvalues, the estimation of the
dynamic reactor transfer function can be performed since the discretised static system is
critical.

The neutron noise simulator solves the following matrix equation in the 2-group
diffusion approximation at a given frequency , for fluctuations of any type of
macroscopic cross-section:

(11)

where  is the so-called Green’s function, i.e. represents the neutron noise at
the position  and frequency  induced by a point-like noise source located at . This
Green’s function is slightly different from its usual definition (see for instance [24]). For the
sake of brevity, the noise source in Eq. (11) is simply written as , which is a
two-component vector. Depending on the nature of the noise source, the exact expression of
the noise source  can be found in [18]. In this study, it was assumed that the
thermal macroscopic absorption cross-section was perturbed. In such a case, one gets:

(12)

It is believed that the results of the unfolding algorithms are independent of the choice of
the nature of the noise source (perturbation of the fast or thermal macroscopic cross-section,
of the fast or thermal fission cross-section, of the removal cross-section). The matrix

 in Eq. (11) is given as:

∇ D r( )∇⋅ Σ
T

sta r( )+[ ]
φ1 0,

+
r( )

φ2 0,
+

r( )
× 0=

1
Nfuel
----------- φ1 0 I J, , ,

+

fuel
∑ 1=

Nfuel

ω

∇ D r( )∇⋅ Σdyn r ω,( )+[ ] GXS r rP ω, ,( )× δXS r rP–( )=

GXS r rP ω, ,( )
r ω rP

δXS r rP–( )

δXS r rP–( )

δΣa
r rP–( ) 0

φ2 0, r( )δ r rP–( )
=

Σdyn r ω,( )
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(13)

with

(14)

As for the static core simulator, finite differences are used to carry out the 2-D spatial
discretization of the system according to the so-called “box-scheme” [22]. Eq. (11), which
is an inhomogeneous equation, is then solved by direct matrix inversion. The neutron noise
simulator is thus able to calculate the spatial distribution of the neutron noise induced by
any localised (or even spatially distributed) noise sources, of the absorber of variable
strength type.

If one assumes that the perturbation of the macroscopic cross-section corresponding to
a vibrating absorber can be modelled by the Feinberg-Galanin model [13] as:

, (15)

then the induced neutron noise can be approximated as [24]:

(16)

where  is the strength of the perturbation, and  its equilibrium position in the Feinberg-
Galanin model. The vector  describes the 2-D vibrations of the noise source around its
equilibrium position. It is actually much more practical to estimate the neutron noise
induced by a vibrating absorber from the adjoint of the Green’s function, since in such a
case the gradient refers to the first variable of the adjoint of the Green’s function [25]. This
reads as follows:

(17)

where the adjoint of the Green’s function fulfils the following Equation:

(18)

Although this paper focuses on the identification and localization of absorbers of variable
strength, this type of noise source has to be recognized and distinguished from vibrating
absorbers. Such an identification is presented later on, where the neutron noise induced by a
vibrating absorber is needed for comparison purposes. Therefore, the use of the simulator
calculating the adjoint of the Green’s function is required. As before, finite differences are
used to carry out the 2-D spatial discretization of the system according to the so-called

Σdyn r ω,( )
Σ1 r ω,( )–      

νΣf 2 0, , r( )
keff

------------------------- 1
iωβeff

iω λ+
---------------–⎝ ⎠

⎛ ⎞

Σrem 0, r( )      Σa 2 0, , r( ) iω
v2
------+⎝ ⎠

⎛ ⎞–

=

Σ1 r ω,( ) Σa 1 0, , r( ) iω
v1
------ Σrem 0, r( )

νΣf 1 0, , r( )
keff

------------------------- 1
iωβeff

iω λ+
---------------–⎝ ⎠

⎛ ⎞–+ +=

δXS r t,( ) γ δ r rP– ε t( )–[ ] δ r rP–( )–{ }⋅=

δφ1 r ω,( )

δφ2 r ω,( )
γ ε ω( ) ∇rP

GδXS r rP ω, ,( )[ ]⋅ ⋅=

γ rP
ε t( )

δφ1 r0 ω,( )

δφ2 r0 ω,( )
γ ε ω( ) ∇rP

GδXS
+

rP r0 ω, ,( )[ ]⋅ ⋅=

∇ D r( )∇⋅ Σ
T

dyn r ω,( )+[ ] GδXS
+

r r0 ω, ,( )×
δ r r0–( )

δ r r0–( )
=
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“box-scheme” [22]. Eq. (18), which is an inhomogeneous equation, is then solved by direct
matrix inversion.

Benchmarking of both the noise simulator and its adjoint were successfully carried out
in [18].

1.3  Investigation of the space-dependence of the neutron noise induced by localised
absorbers of variable strength

Prior to perform any unfolding from the neutron noise, it is essential to investigate the
ability of very few detectors distributed throughout the core to detect any point-like
absorber of variable strength. The purpose of this part is thus to look at the space-
dependence of the neutron noise and to compare its relaxation length to the radius of the
core. This analysis is performed first on a 2-D homogeneous reactor, and is then extended to
a 2-D heterogeneous reactor. Since neutron detectors are mostly sensitive to the thermal
flux, only the thermal neutron noise is considered in the following.

1.3.1  The different components of the neutron noise

In order to characterize and illustrate the space-dependence of the neutron noise
induced by a localised absorber of variable strength and to get some physical insight, a 2-D
homogeneous reactor with a central perturbation is first considered. This allows having a
relatively simple semi-analytical solution for the neutron noise. The model of the reactor
corresponds to the one presented previously after a proper spatial homogenization.

If R denotes the extrapolated reactor radius, solving Eq. (5) for the static flux gives the
following solution:

(19)

with

(20)

being the geometrical buckling and r being the distance from the core centre. In the
previous Equations, A is a normalization constant, and j0 is the first root of the Bessel
function of the first kind and zero order J0. The corresponding eigenvalue is then given by:

(21)

with

(22)

(23)

φ1 0, r( )

φ2 0, r( )

1

Σrem 0,

D2Bg
2 Σa 2 0, ,+

----------------------------------
A J0 Bgr( )××=

Bg
2 j0

R
----⎝ ⎠
⎛ ⎞

2

=

keff

νΣf 0,
* Σ× rem 0,

Σa 2 0, , Σa 1 0, , Σrem 0,+( )×
--------------------------------------------------------------- 1

1 L1
2
Bg

2
+

---------------------× 1

1 L2
2
Bg

2
+

---------------------×=

νΣf 0,
* νΣf 0 2, , νΣf 0 1, ,

D2Bg
2 Σa 2 0, ,+

Σrem 0,
----------------------------------×+=

L1
2 D1

Σa 1 0, , Σrem 0,+
-------------------------------------=
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(24)

Likewise, solving Eq. (9) for the adjoint function of the static flux gives the following
solution:

(25)

where B is a normalization constant and .

Since the noise source is located in the middle of the core, the results are rotational-
invariant around the z-axis crossing the core centre. Therefore only the radial dependence of
the neutron noise needs to be accounted for. Solving Eq. (11) for the neutron noise induced
by a central noise source given by Eq. (12) gives the following solution:

(26)

(27)

where  and  are the two eigenvalues of the following matrix:

(28)

and the coupling coefficient  and  are given as follows:

(29)

(30)

The coefficients C, D, E, and F are solutions of the following equation, which expresses the
fact that the neutron noise vanishes at the boundary of the system and that the current of the
neutron noise is driven by the central noise source:

L2
2 D2

Σa 2 0, ,
---------------=

φ1 0,
+

r( )

φ2 0,
+

r( )

1

νΣf 2 0, , keff
+⁄

D2Bg
2 Σa 2 0, ,+

----------------------------------
B J0 Bgr( )××=

keff
+

keff=

δφ1 r ω,( ) C K0 λr( )× D I0 λr( )× E Y0 µr( )× F J0 µr( )×+ + +=

δφ2 r ω,( ) C cλ K× 0 λr( )× D cλ× I0 λr( )× E cµ× Y0 µr( )× F cµ× J0 µr( )×+ + +=

λ2
– µ2

Σ1 ω( )
D1

---------------–
νΣf 2 0, ,
keffD1
----------------- 1

iωβeff

iω λ+
---------------–⎝ ⎠

⎛ ⎞

Σrem 0,
D2

--------------- 1
D2
------ Σa 2 0, ,

iω
v2
------+⎝ ⎠

⎛ ⎞–

cλ cµ

cλ
Σrem 0,

Σa 2 0, ,
iω
v2
------+⎝ ⎠

⎛ ⎞ D2λ2
–

----------------------------------------------------=

cµ
Σrem 0,

Σa 2 0, ,
iω
v2
------+⎝ ⎠

⎛ ⎞ D2µ2
+

----------------------------------------------------=
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(31)

In the previous Equations, the functions In, Jn, Kn, and Yn are the modified Bessel function
of the first kind, the Bessel function of the first kind, the modified Bessel function of the
second kind, and the Bessel function of the second kind, respectively with n being the order
of the different functions. Eq. (31) can thus be solved numerically in order to find the
coefficients C, D, E, and F. Since the  Bessel function diverges for increasing values
of r, the constant D is obviously found to be equal to zero. The neutron noise can thus be
seen as a superposition of two terms:

(32)

where

(33)

and

(34)

Close to the noise source, i.e. close to the core centre, the two terms can be approximated by
[26]:

(35)

and

(36)

where γ is the Euler constant. It can then be seen that the spatial relaxation of these two
terms is determined by λ and µ. Usually, . Thus, the spatial variation of the
neutron noise associated to the eigenvalue λ is large on very short distances, whereas the
spatial variation of the neutron noise associated to the eigenvalue µ is moderate on large
distances. The first term is therefore referred to as the local component of the neutron noise,
while the second term is referred to as the global component [27]-[29].

K0 λR( ) I0 λR( ) Y0 µR( ) J0 µR( )

cλ K× 0 λR( ) cλ I0 λR( )× cµ Y0 µR( )× cµ J0 µR( )×

1– 0 µr Y1 µr( )×[ ]r 0→– 0

cλ– 0 cµ µr Y1 µr( )×[ ]r 0→×– 0

C

D

E

F

×

0

0

0

1
2πD2
-------------– φ1 0, 0( )

=

I0 r( )

δφ1 r ω,( )

δφ2 r ω,( )
1

cλ
δφlocal

r( ) 1

cµ
δφglobal

r( )×+×=

δφlocal
r( ) C K0 λr( )×=

δφglobal
r( ) E Y0 µr( )× F J0 µr( )×+=

δφlocal
r( )

r 0→ C K0 λr( )×
r 0→

C γ λr
2
-----ln+⎝ ⎠

⎛ ⎞×–= =

δφglobal
r( )

r 0→ E Y0 µr( )×
r 0→

F J0 µr( )×
r 0→

+
2 E×

π
------------ γ µr

2
------ln+⎝ ⎠

⎛ ⎞ F+×= =

λ µ»
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Another way of representing the time-dependent neutron flux is to factorize it into an
amplitude function  and a shape function  (with i being the group index). This
reads as [23]:

(37)

Although there are several ways of normalizing the shape function, it is usually assumed
that [23]:

. (38)

Furthermore, one has:

(39)

which is equivalent to

. (40)

Splitting the time-dependent shape function into a steady-state value and fluctuations as

(41)

allows writing Eq. (38) in the following form:

, (42)

from which one deduces that:

. (43)

Similarly, splitting the time-dependent neutron noise into a steady-state value and
fluctuations allows rewriting Eq. (37) as:

(44)

where second-order terms have been neglected. The first term on the right hand-side of
Eq. (44) is the so-called point-kinetic component of the neutron noise, whereas the
remaining component corresponds to the fluctuations of the shape function. In the
frequency-domain, this reads as:

P t( ) ψi r t,( )

φ1 r t,( )

φ2 r t,( )
P t( )

ψ1 r t,( )

ψ2 r t,( )
×=

t∂
∂ 1

v1
-----φ1 0,

+ r( )ψ1 r t,( ) 1
v2
-----φ2 0,

+ r( )ψ2 r t,( )+ rd∫ 0=

φ1 r 0,( )

φ2 r 0,( )

ψ1 r t = 0,( )

ψ2 r t = 0,( )
=

P 0( ) 1=

ψ1 r t,( )

ψ2 r t,( )

φ1 r 0,( )

φ2 r 0,( )

δψ1 r t,( )

δψ2 r t,( )
+=

1
v1
-----φ1 0,

+
r( )φ1 r 0,( ) 1

v2
-----φ2 0,

+
r( )φ2 r 0,( )+ rd∫

1
v1
-----φ1 0,

+
r( ) φ1 r 0,( ) δψ1 r t,( )+[ ]× 1

v2
-----φ2 0,

+
r( ) φ2 r 0,( ) δψ2 r t,( )+[ ]×+

⎩ ⎭
⎨ ⎬
⎧ ⎫

rd∫=

1
v1
-----φ1 0,

+ r( ) δψ1 r t,( )× 1
v2
-----φ2 0,

+ r( ) δψ2 r t,( )×+ rd∫ 0=

δφ1 r t,( )

δφ2 r t,( )
δP t( )

φ1 r 0,( )

φ2 r 0,( )

δψ1 r t,( )

δψ2 r t,( )
+×=
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(45)

1.3.2  Evaluation of the space-dependence of the neutron noise

In order to get some physical insight about the space-dependence of the neutron noise
induced by a localised absorber, it is interesting to first consider the homogeneous model
and both ways of representing the neutron noise, i.e. either the local/global components of
the neutron noise [Eqs. (32)-(34)] or the point-kinetic/remaining components of the neutron
noise [Eq. (45)]. The actual corresponding 2-D heterogeneous reactor will then be
considered, for which all the calculations will be performed with the simulators presented
previously. In this second case, non-central noise sources will also be studied.

It can easily be understood from Eq. (45) that only the fluctuations of the shape
function are able to carry information about the location of a noise source, since the point-
kinetic component has always the same spatial dependence given by the static fluxes,
whatever the location of the noise source is. For localization purposes, it has thus to be
verified that the point-kinetic response of the reactor is not overwhelmingly large compared
to the space-dependent fluctuations of the shape function. Assuming that the neutron noise
is known, the fluctuations of the amplitude function can be estimated from Eqs. (43) and
(44), which reads in the frequency domain as:

(46)

from which the point-kinetic response of the reactor is determined by multiplying 
with the static flux.

Similarly, it has to be verified that the relaxation length of the global component of the
neutron noise in Eqs. (32)-(34) is large enough so that the neutron noise measured by distant
neutron detectors still carry information about the location of the noise source. In the case of
the homogeneous model with a central noise source, it has to be emphasized that the 
contribution to the global component differs from the point-kinetic response of the reactor
for two main reasons. Although the static flux is also distributed according to the Bessel
function of the first kind and zero order J0, the eigenvalue µ2 is different from the
geometrical buckling . Furthermore, the strength F of the  contribution to the
global component does not coincide with the magnitude of the point-kinetic term, i.e.

(47)

The results for the 2-D homogeneous reactor with a central perturbation are presented
in Figs. 2 and 3. As can be seen in these Figures, the reactor does not behave in a point-
kinetic way. This is in agreement with the conclusions drawn by [28] and [30] for large
power reactors. Close to the noise source, the neutron noise is much larger than the point-
kinetic component, whereas the actual neutron noise is much smaller than the point-kinetic
component further away from the noise source (deviation of up to 40% close to the reactor
boundary). Concerning the relaxation lengths of both the local and the global components,
one finds that  and , respectively. Compared to the core
radius of , it is obvious that the local component cannot be recorded by

δφ1 r ω,( )

δφ2 r ω,( )
δP ω( )

φ1 r 0,( )

φ2 r 0,( )

δψ1 r ω,( )

δψ2 r ω,( )
+×=

δP ω( )

1
v1
-----φ1 0,

+ r( ) δφ1 r ω,( )× 1
v2
-----φ2 0,

+ r( ) δφ2 r ω,( )×+ rd∫
1
v1
-----φ1 0,

+ r( ) φ1 0, r( )× 1
v2
-----φ2 0,

+ r( ) φ2 0, r( )×+ rd∫
---------------------------------------------------------------------------------------------------------------------------------=

δP ω( )

J0 µr( )

Bg
2

J0 µr( )

F δP ω( )≠

1 λ⁄ 2.5 cm≈ 1 µ⁄ 144.3 cm≈
R 245.3 cm≈
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Fig. 2. The different components of the thermal neutron noise induced by a central noise
source in a 2-D homogeneous reactor at a frequency of 1 Hz (all the plots are
normalized to the same value)
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neutron detectors located far away from the noise source. Since the reactor does not respond
in a point-kinetic manner and since the relaxation length of the global component is large
enough, distant neutron detectors can easily monitor this component. Consequently,
localising a noise source from very few neutron detectors is possible.

It can be pointed out that even if the point-kinetic component was large compared to
the fluctuations of the shape function, this component could be removed from the detector
signals by using Eq. (46), either in the frequency- or time-domain. Due to the limited
number of detectors, the integrals in this Equation would be approximated by a sum over
the number N of available detectors as follows:

(48)

The removal of the point-kinetic component, although feasible, would nevertheless present
some limitations. The major one would be related to the fact that neutron detectors are
usually sensitive to the thermal neutron flux, i.e. the fast static flux and neutron noise cannot
be measured in practice. Another problem would surface with the limited number of
detectors and how well Eq. (48) approximates the point-kinetic component of the neutron
noise with so few detectors. It can also be seen that the calculation of the adjoint function of
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Fig. 3. Deviation from point-kinetics of the thermal neutron noise induced by a central
noise source in a 2-D homogeneous reactor at a frequency of 1 Hz
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the static flux would be required for evaluating the sums in Eq. (48). Finally, since the
unfolding algorithms are based on the estimation of the reactor transfer function, this
transfer function would need to be corrected in order to remove the point-kinetic term and
ensure compatibility with the signals of the detectors that are used for performing the
unfolding.

The results when considering a 2-D heterogeneous reactor are presented in Figs. 4 and
5 for a central noise source, and in Figs. 6 and 7 for a peripheral noise source. Although the
extrapolation lengths associated to the local and global components cannot be formally
estimated in a heterogeneous system, the local and global components are still clearly
visible. As for the 2-D homogeneous case, the deviation from point-kinetics and the
relaxation length of the global component are large enough to allow the localization of a
noise source from very few distant neutron detectors. This is true irrespective of the location
of the actual noise source.

Consequently, it was demonstrated that localising an absorber of variable strength by
using a limited number of neutron detectors that might be located far away from the
perturbation is possible. The next Section thus considers the different algorithms to be used
for performing this unfolding.

1.4  Noise source unfolding

Since the purpose of this paper is to study the ability of different unfolding algorithms
to identify and localise a noise source of the type absorber of variable strength, the neutron
noise induced by such a noise source has first to be calculated. The neutron noise induced at
the location of the in-core neutron detectors (see Fig. 1) is then used as input to the
unfolding procedures. The result of this unfolding is compared to the actual known location
of the noise source.

1.4.1  Identification of the noise source type

Before applying different unfolding algorithms, the type of noise source has to be
identified, since these algorithms rely on the hypothesis that the noise source is of the
absorber of variable strength type.

There are in principle two types of localised noise sources: a localised absorber of
variable strength [as modelled by Eq. (12)], and a localised vibrating absorber [as modelled
by Eq. (15)]. A core can also contain a combination of any of these noise sources.
Nevertheless, spatially-distributed and multiple noise sources have to be disregarded in this
study due to the limited number of available neutron detectors. There are actually many
different spatially-distributed and/or multiple noise sources that can induce the same
neutron noise recorded at only a few detector locations. In other words, the unfolding in
such cases is impossible since there is no uniqueness of the noise source. The thermal
neutron noise induced by a vibrating absorber is represented in Fig. 8, whereas the thermal
neutron noise induced by a localised absorber of variable strength is given in Fig. 9. As can
be seen in these Figures, the neutron noise exhibits a spatial signature that is typical of the
type of noise source. Nevertheless, due to the limited number of detectors, it is not obvious
that the magnitude of the neutron noise measured at the location of the detectors would give
a clear distinction between a localised absorber of variable strength and a vibrating
absorber. On the other hand, the phase of the induced neutron noise at the location of the
detectors allows easily determining the type of noise source. In the case of a localised
absorber of variable strength, all the detectors present an in-phase behaviour. In the case of
- 19 -
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point-kinetics) at a frequency of 1 Hz
- 22 -



5
10

15
20

25
30

5
10

15
20

25
30

0

0.2

0.4

0.6

0.8

1

J coordinate (1)I coordinate (1)

M
ag

ni
tu

de
 o

f δ
Φ

2pk
  (

A
U

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

5
10

15
20

25
30

5
10

15
20

25
30

0

0.2

0.4

0.6

0.8

1

J coordinate (1)I coordinate (1)

M
ag

ni
tu

de
 o

f δ
Ψ

2  (
A

U
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 7. The different components of the thermal neutron noise induced by a peripheral
noise source in a 2-D heterogeneous reactor at a frequency of 1 Hz
- 23 -



Fig. 8. Typical thermal neutron noise induced by a vibrating absorber at a frequency of 1
Hz (the black dots represent the location of the neutron detectors)
- 24 -



Fig. 9. Typical thermal neutron noise induced by an absorber of variable strength at a
frequency of 1 Hz (the black dots represent the location of the neutron detectors)
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a vibrating absorber, some of the detectors exhibits an in-phase behaviour, whereas some
others exhibits an out-of-phase behaviour.

Consequently, the examination of the phase of the induced neutron noise measured at
the position of the detectors allows determining the type of localised noise source present in
the core. Nevertheless, such an identification is only possible if the actual noise source is
located between the detectors. It is obvious that a vibrating absorber located close to the
boundary of the core, i.e. on one side of all the detectors, will induce an out-of-phase
behaviour that cannot be monitored by the detectors. This is why it is important to choose
the detectors in such a way that they cover roughly the entire core.

1.4.2  Unfolding algorithms and results

In the following, different unfolding algorithms are presented and tested. These
algorithms will be referred to as the inversion method, the zoning method, and the scanning
method in order to facilitate the discussion and the comparisons of the performances of the
different unfolding procedures. It is further assumed that a noise source cannot be located in
a reflector node.

a) The inversion method

As presented previously, the dynamic simulator solves the discretised form of Eq. (11),
so that the Green’s function , i.e. the neutron noise at all positions  for a
given locations  of the noise source, can be determined. The dynamic simulator actually
estimates the Green’s function for all possible locations  of the noise source, so that the
neutron noise induced by a spatially-distributed noise source can be easily calculated as:

(49)

If the core contains N nodes (for both the fuel and the reflector regions), and if the
discretised induced neutron noise  and the discretised noise source  are both
represented by column vectors of size 2N (since both vectors have N elements in the fast
group and N elements in the thermal group), one can write the following matrix equation:

(50)

The matrix  is thus of size 2Nx2N and corresponds to what the dynamic simulator
estimates. The structure of this matrix is as follows:

(51)

where each submatrix  represents the discretised neutron noise in the energy
group j induced by a discretised noise source in the energy group i. Each of these
submatrices is of size NxN. Since it is assumed that the neutron detectors are sensitive to the
thermal flux only and that the noise source corresponds to a perturbation of the thermal
absorption macroscopic cross-section, only  is of interest in this study. In
other words, one has:

(52)

GXS r rP ω, ,( ) r
rP

rP

δφ r ω,( ) GXS r rP ω, ,( )δXS rP ω,( ) rPd∫=

δφ ω( ) δS ω( )

δφ ω( ) GXS ω( ) δXS× ω( )=

GXS ω( )

GXS ω( ) GXS 1, 1→ ω( ) GXS 2, 1→ ω( )

GXS 1, 2→ ω( ) GXS 2, 2→ ω( )
=

GXS i, j→ ω( )

GXS 2, 2→ ω( )

δφ2 ω( ) GXS 2 2→, ω( ) δXS2× ω( )=
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where the index 2 represents the thermal contribution.

It is obvious from this Equation that the discretised thermal noise source  can be
reconstructed from the full space-dependence of the discretised thermal neutron noise

 by simply inverting the matrix , i.e.

(53)

Nevertheless, since only a few detectors are available for measuring the induced thermal
neutron noise in the reactor, only a few elements of the vector  can be determined,
which prevents from using  to reconstruct the noise source.

An alternative way is to interpolate the thermal neutron noise from the detector
readings in order to preserve the size of the vector . Denoting the interpolated
thermal neutron noise as , it can be easily seen from Eq. (53) that only a biased
noise source can be reconstructed, i.e.

(54)

The bias in the estimation of the noise source comes from the fact that  was
determined for the actual thermal neutron noise , whereas Eq. (54) is based on the
use of the interpolated thermal neutron noise . In other words, some elements of

 will be non-zero due to the presence of noise sources and due to the
imbalance of  in some of the nodes, imbalance induced by
the spatial interpolation. There is unfortunately no way to determine which of these two
possibilities is responsible for a non-zero element of , i.e. to determine if the
reconstructed noise source in a node is a true or a false one.

Formally, one could nevertheless write that:

(55)

where

(56)

and T represents the interpolation process. Although T is written here as a matrix, such a
matrix does not exist and a modelling tool like MATLAB has to be used to perform the 2-D
spatial interpolation. Consequently, on has:

(57)

In practice, this means that a new matrix  has to be calculated.
 corresponds to the interpolated thermal neutron noise induced by discretised

thermal noise sources, instead of the actual thermal neutron noise. Therefore, the estimation
of such a transfer function has to be performed by a tool similar to the dynamic simulator
presented previously. As an illustration of the difference between the  and

 transfer functions, the actual thermal neutron noise and the interpolated
thermal neutron noise induced by a local absorber of variable strength are depicted in Fig.
10. The spatial interpolation used for the estimation of the transfer function 
was performed within MATLAB according to a method presented in [31]. This
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Fig. 10. Actual and interpolated induced thermal neutron noise at a frequency of 1 Hz
(in the upper and lower Figures, respectively); the black dots represent the
location of the neutron detectors
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interpolation was furthermore carried out by forcing the interpolated thermal neutron noise
to be equal to zero outside the reflector nodes in order to avoid any spatially-divergent
neutron noise close to the reactor boundary. As can be seen in this Figure, the interpolation
smooths out very much the actual shape of the thermal neutron noise. Thus, different noise
sources might induce rather similar interpolated thermal neutron noise, if the noise source is
not located close to a detector. It is thus expected that the matrix  is close to a
singular matrix. This renders the inversion of this matrix in Eq. (57) very difficult. Several
inversion techniques were tried within MATLAB, and it was found that the LU factorization
computed by Gaussian elimination was the most efficient technique. By most efficient, it is
meant that both Eqs. (55) and (57) are fulfilled with the reconstructed noise source. The
results corresponding to the interpolated neutron noise depicted in Fig. 10 are presented in
Fig. 11. As can be seen in this Figure, the location of the actual noise source (as well as its

amplitude) is correctly reconstructed. It can also be noticed that the reconstructed noise
source usually exhibits some peaks close to the reactor boundary. These peaks are in some
occurrences bigger than the peak corresponding to the actual noise source and might lead to
a misestimation of the location of the noise source. The fact that the reconstructed neutron
noise has non negligible contributions close to the reactor boundary might be due to the fact
that the interpolated thermal neutron noise is forced to be equal to zero outside the reflector.
This induces some inaccuracy of the inversion algorithm for nodes located between the
outermost detectors and the reactor boundary. As can be seen in Eq. (12), the perturbation
of the macroscopic cross-section is given by the product between the static flux and a Dirac
delta function. The inversion algorithm gives somehow a mapping through the core of the
probability of having the Dirac delta function, i.e. the location of the perturbation.
Therefore, multiplying the result of the inversion algorithm by the interpolated static flux
was found to be much more effective in locating the actual noise source, since the peaks
observed close to the core boundary are damped by the static flux vanishing at the system

GXS 2 2→,
interp

ω( )

5
10

15
20

25
30

5
10

15
20

25
30

0

1

2

3

4

5

6

7

8

x 10
−4

J coordinate (1)I coordinate (1)

R
ec

on
st

ru
ct

ed
 th

er
m

al
 n

oi
se

 s
ou

rc
e 

(1
/c

m
)

1

2

3

4

5

6

x 10
−4

Fig. 11. Noise source reconstruction based on the inversion method
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boundary. The inversion method was then tested for all possible locations of the noise
source through the core. Before determining the location of the noise source, the result of
the inversion algorithm was multiplied by the spatial distribution of the interpolated thermal
static flux through the reactor. The interpolation of the thermal static flux was done in the
same manner as the one for the thermal neutron noise explained previously. The
corresponding results are presented in Fig. 12. Due to the boundary effects, this inversion

technique misestimates the actual location of the noise source when positioned close to the
reactor boundary. It is also seen that there is one position of the noise source close to the
core centre where there is a slight misestimation of the actual location of the noise source.
This is due to the spatial configuration chosen for the detectors, i.e. one detector in the
neighbourhood of the centre of the core and four other peripheral detectors. When the noise
source is located in the vicinity of the core centre, the four peripheral detectors have roughly
the same response. This makes the matrix  badly-scaled and the inversion
more difficult in this case. On the average, this technique gives nevertheless rather good
results for central noise sources and without background noise. Nevertheless, this unfolding
technique is extremely sensitive to numerical errors. Therefore, any background noise to the
signals leads to strongly-biased results. As an illustration, the reliability of the inversion
technique was determined when adding the same quantity to both the real and the imaginary
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Fig. 12. Reliability of the inversion method without background noise; the white nodes
represent agreement between the reconstructed and the actual noise sources, the
gray node a misestimation of less than 3 fuel assemblies, and the black ones a
misestimation of more than 3 fuel assemblies (the reflector nodes are plotted in
black since it was assumed that a noise source cannot be located in the reflector)
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parts of all detector signals. More precisely, the background noise was chosen to be 10% of
the smallest signal. In such a case, the unfolding technique always points out the same
location of the assumed noise source whatever the actual location of the noise source is. It
can thus be concluded that the inversion technique becomes rapidly of limited interest when
the signals contain any background noise.

b) The zoning method

The inversion method gives sometimes erroneous results since the interpolated neutron
noise induced by different noise sources can have rather similar shapes. This means that
trying to reconstruct the actual neutron noise from the measured one does not allow
recovering a sufficient enough level of detail throughout the core.

This is why another approach, which does not rely on any spatial interpolation, was
developed and is presented in the following. If one assumes that the reactor is divided into
different zones Zk, each of these zones having a number of fuel assemblies (i.e. a number of
possible locations of the noise source) identical to the number of detectors, one can formally
write:

(58)

It can be noticed from this Equation that all the matrices  are square matrices,
since the vectors  and  have the same size. In other words, these
matrices can be inverted, if there are not badly-scaled. If the fuel assemblies constituting the
zone Zk are chosen not close to each other but rather as far away as possible from each
other, the neutron detectors are believed to respond very differently to noise sources located
in each of these fuel assemblies respectively. This prevents the matrices 
from being badly-scaled. Having the fuel assemblies belonging to a given zone Zk evenly-
distributed throughout the core is probably the easiest way to achieve such a goal. Inverting
one of the matrices  for the zone Zl then allows writing:

(59)

If the noise source is located in the zone Zs, Eq. (59) allows writing:

(60)

The use of this Equation provides the vector , for which the element
corresponding to the actual location of the noise source is much larger than the other
elements. In principle, these other elements should be identically equal to zero, but the
inversion of the matrix  prevents these elements from being rigorously
equal to zero.

If the inversion is carried out with a matrix corresponding to a zone Zl different from
the zone Zs containing the noise source, Eq. (59) then gives:
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(61)

Contrary to the case where the zone Zl does actually contain the noise source,
 does not provide , and therefore does not return

a vector for which one of the elements is much larger than the others. Rather, Eq. (61)
reconstructs a fictitious noise source  that allows fulfilling Eq. (61) as:

(62)

with

(63)

Although there is no mathematical proof for it, it is believed that the elements of the vector
 would not be as much different from each other as in the case of 

since none of the elements of the  allows reconstructing the actual measured
thermal neutron noise. 

In other words, each matrix  has to be multiplied by . The
result of this multiplication should provide one out of two typical vectors, depending on the
fact that the zone Zk contains a noise source or not. If this zone contains a noise source, one
of the elements of this vector should be much larger than the others. If this zone does not
contain a noise source, no element of this vector should be extremely different from the
others. It is difficult to estimate how much the elements in such a case might be different
from each other. Only numerical tests can determine the applicability of this method, and
this is the object of the present investigation. It can be easily understood that it is the
comparison of the elements of these vectors with each other that matters. One therefore
constructs the different zones Zk in such a way that they all contain a common node. For the
sake of simplicity, this node is chosen in the reflector, where it is assumed that no noise
source can exist. When comparing the elements of all these vectors, the element having the
highest magnitude should in principle correspond to the actual location of the noise source.
Since the reconstructed noise source contains fictitious noise sources, it needs to be rescaled
to match the actual amplitude of the actual neutron noise. The results corresponding to the
interpolated neutron noise depicted in Fig. 10 are presented in Fig. 13. It has to be
emphasized that contrary to the inversion method, only the neutron noise measured at the
detector location is used in the zoning method. It can be noticed that the amplitude of the
noise source at the actual location of the noise source is so large compared to the other
possible locations that it can be claimed that the noise source is correctly reconstructed. The
inversion method was then tested for all possible locations of the noise source through the
core. The corresponding results are presented in Fig. 14. It can be seen that this unfolding
algorithm is particularly effective. As for the inversion algorithm, there is a couple of
positions of the noise source close to the core centre where there is a slight misestimation of
the actual location of the noise source. This is due to the spatial configuration chosen for the
detectors, i.e. one detector in the neighbourhood of the centre of the core and four other
peripheral detectors. When the noise source is located in the vicinity of the core centre, the
four peripheral detectors have roughly the same response. This renders the situation more
difficult for the unfolding. As for the inversion technique, the reliability of the zoning
technique was also determined when adding the same quantity to both the real and the
imaginary parts of all detector signals. This background noise was chosen to be 10% of the
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smallest signal. As for the inversion method, the chances of localising the actual noise
source greatly improves when the noise source is multiplied by the interpolated thermal
static flux. The corresponding results are presented in Fig. 15, where the legend is different
from the one used in Fig. 14. It can be noticed that the zoning technique becomes much less
reliable than without any background noise. Nevertheless, this unfolding technique is much
more robust than the inversion technique to the contamination of the detector signals by
background noise, and is able to point out a region of the reactor where the actual noise
source is likely to be located.

c) The scanning method

A third method that can be used for localising absorbers of variable strength is based
on the comparisons between the detector readings and their calculated response for all the
possible locations of the noise source throughout the core. The noise source is correctly
located when there is agreement between the calculated and the measured neutron noise.
This method was originally developed by [32] where the authors assumed that the reactor
was homogeneous in order to be able to calculate analytically the Green’s function in the 1-
group diffusion approximation. The same algorithm was later on extended to heterogeneous
systems in the 2-group diffusion approximation [19], [33]. Both investigations were
successful in determining the location of an unseated fuel assembly in the Swedish
Forsmark-1 BWR. The purpose of the present investigation is to compare the performance
of this unfolding technique to the previous algorithms, i.e. to the inversion and zoning
algorithms.

The starting point is to write that the thermal flux noise in a given node (I, J) induced
by a noise source located in (I0, J0) can be expressed from Eq. (52) as:

(64)
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Fig. 13. Noise source reconstruction based on the zoning method

δφ2 I J ω, ,( ) GXS 2 2→, I0 J0 I J ω, ,→,( ) δXS2× I0 J0 ω, ,( )=
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Trying to use this expression to match the detector readings is rather difficult since both the
location of the noise source and its strength are unknown. If one has access to two detectors
A and B, taking the ratio between the neutron noise at these two locations allows eliminating
the noise source strength:

(65)

The scanning algorithm thus consists of trying to minimize the following function:

(66)

with

(67)
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Fig. 14. Reliability of the zoning method without background noise; the white nodes
represent agreement between the reconstructed and the actual noise sources, and
the black ones a misestimation of more than 3 fuel assemblies (the reflector nodes
are plotted in black since it was assumed that a noise source cannot be located in
the reflector)
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taken for every combination of detectors (A, B). The first term on the r.h.s. of this
Equation represent the ratio of the neutron noise measured at the location of the detectors,
and the second term represent the ratio of the neutron noise calculated at the location of the
detectors for a noise source located in (I, J). Although Eq. (67) has to be evaluated for every
combination of detectors when analysing actual measurements, the same detector was used
as B in Eq. (67) throughout this study, since using all the combinations of detectors for
simulated signals would only provide redundant information. The location of the noise
source is assumed to correspond to a global/local minimum of the function given by
Eqs. (66) and (67). Since this algorithm only determines the location of the noise source, its
amplitude has to be reconstructed by simply scaling the calculated induced neutron noise to
the measured one. The results corresponding to the interpolated neutron noise depicted in
Fig. 10 are presented in Fig. 16. As for the zoning method, only the neutron noise measured
at the detector location is actually needed. As can be seen in this Figure, the noise source is
correctly determined. The scanning method was then tested for all possible locations of the
noise source through the core. It was noticed that this unfolding algorithm was able to locate
correctly any noise source in the core, if there is no background noise. This algorithm is
thus much more reliable and robust than the inversion (and to a lesser extent zoning)
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Fig. 15. Reliability of the zoning method with background noise; the white nodes
represent a misestimation of the reconstructed noise source of less than 5 fuel
assemblies, the gray nodes a misestimation of more than 5 fuel assemblies but less
than 10 fuel assemblies, and the black ones a misestimation of more than 10 fuel
assemblies (the reflector nodes are represented in black since it was assumed that
a noise source cannot be located in the reflector)
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Fig. 16. Noise source reconstruction based on the scanning method (with the ∆ function
given in the upper figure, and the reconstructed noise source in the lower figure)
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algorithm(s). This can be explained by the fact that no matrix inversion is needed for
performing the unfolding, whereas the inversion (and to a lesser extent zoning) algorithm(s)
rely on the inversion of a matrix that might be badly-scaled in some occurrences. A
drawback of the scanning algorithm lies with the fact that every possible location of the
noise source has to be tested, in order to be able to construct the function given by Eqs. (66)
and (67). This requires much more CPU time than for the two other unfolding methods.
Furthermore, when analysing an actual measurement, every combination of detectors has to
be used for the evaluation of Eq. (67). This will further increase the calculational time
necessary for applying this algorithm. As before, the reliability of the scanning technique
was also determined when adding the same quantity to both the real and the imaginary parts
of all detector signals. This background noise was chosen to be 10% of the smallest signal.
The corresponding results are presented in Fig. 17. It can be noticed that the scanning

technique remains reliable when the signals contain background noise. Compared to the
zoning algorithm, this unfolding technique is much more robust to the contamination of the
detector signals by background noise.
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Fig. 17. Reliability of the scanning method with background noise; the white nodes
depict an agreement between the reconstructed and the actual noise sources, the
gray nodes a misestimation of less than 3 fuel assemblies, and the black ones a
misestimation of more than 3 fuel assemblies (the reflector nodes are represented
in black since it was assumed that a noise source cannot be located in the reflector)
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1.5  Conclusions and discussion

The three unfolding techniques, i.e. the inversion method, the zoning method, and the
scanning method, all allow reconstructing, to some extent, a localised absorber of variable
strength, after its proper identification in the reactor. The success of this reconstruction lies
with the fact that the induced neutron noise deviates significantly enough from point-
kinetics. The space-dependence of the induced neutron noise measured at as few as five
evenly-distributed positions in the core is therefore representative of the location of the
noise source.

When comparing these different techniques, it can be noticed that the technique relying
on the direct inversion of the reactor transfer function, i.e. the inversion method, leads to
biased results in some occurrences. This can be explained by the badly-scaled character of
the matrix that has to be inverted in this technique, since different locations of the noise
source might induce a rather similar neutron noise at the position of the detectors. This
technique becomes completely unreliable when any level of background noise is present. A
modified inversion technique, i.e. the zoning method, was thus developed in order to
prevent the different matrices from being badly-scaled before inversion. This new technique
was demonstrated to give reliable results in most cases without requiring much CPU time.
When adding background noise, the reliability of this technique deteriorates significantly.
Nevertheless, the zoning algorithm is still able to indicate regions of the core, where the
actual noise source is likely to be located. On the contrary, the scanning method is very
robust and quite insensitive to the contamination of the detector signals by background
noise, since no matrix inversion is required. Rather, the location of the noise source is
estimated from the comparison between the measured neutron noise and the calculated
induced neutron noise for all possible pairs of detectors and for every possible location of
the noise source. The required CPU time is consequently much larger than the one
necessary for applying the inversion and zoning techniques. It can also be anticipated that
the inversion and zoning algorithms would become more reliable when the number of
available detectors increase, whereas the scanning algorithm would be too much CPU-
demanding.

When analysing actual measurement data, the zoning and scanning techniques could
therefore be used. Furthermore, this would bring some redundant information about the
location of the noise source, and would appreciably improve the confidence in the obtained
results. Further developments of these techniques are nevertheless required. For example,
the algorithms presented in this paper all rely on the Fourier-transform of the time-signals.
In practice, the use of the Auto-Power Spectral Densities (APSDs) and Cross-Power
Spectral Densities (CPSDs) allows removing the uncorrelated noise from the detector
signals. Although the Wiener-Khinchin theorem can be used to express APSDs and CPSDs
from the Fourier-transform of the signals, the previous algorithms have to be further
developed since many pairs of detectors can be used for evaluating the CPSDs. Finally, a
similar investigation for vibrating absorbers would also be of interest.
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Section 2

Development of the Feynman-alpha method for pulsed sources

2.1  Introduction

The theory of the Feynman-alpha method with pulsed sources became interesting
recently in connection with the future accelerator-driven systems (ADS). Current on-going
experimental pilot projects with the aim of studying ADS basics use pulsed neutron
generators as a source [34]. Even the spallation sources, planned to be used in a future full-
scale ADS facility, might be operated in a pulsed mode, for technical reasons. Although
there are several competing methods to be used in pulsed source experiments to determine
reactivity, most notably the area-ratio method, the Feynman- or Rossi-alpha methods have
always been considered as interesting complements. Hence their applicability and
performance has been a matter of current interest.

In line with the above, formulas for the Feynman-alpha method with pulsed sources
have been elaborated in the past few years ([35]-[37]). In this respect it is customary to
distinguish between deterministic and stochastic data evaluation techniques. These are also
referred to as the “deterministic (stochastic) pulsing” or “deterministic (stochastic)
Feynman method”. They only differ in whether the counting gate opens in a synchronised
manner with the pulsing, or randomly. Since the time-to-digital conversion is nowadays
made with a high resolution, a measurement consists of the registration of the arrival time of
each detector count, such that the neutron pulse trigger is also recorded. Hence a
measurement can be evaluated by both the deterministic or the stochastic method.

First the deterministic Feynman-alpha formula was derived by solving the
corresponding equations for each pulse in a piecewise manner [35]. This method was
clumsy in the sense that its extension to more complicated (and hence realistic) pulse shapes
was not feasible. The stochastic pulsing was then solved with a much more powerful
method, using Laplace transform and complex function techniques [36]. This technique was
then applied also to the deterministic case [37], but its potential was not fully utilized, and
the first results were only restricted to the reconstruction of the previous quantitative results
of Ref. [35]. 

In this report the solution based on the Laplace transform technique is developed fully
by evaluating some integrals explicitly in an effective way. This way, we were able to give
compact and robust solutions. One particular advantage is the ease with which various pulse
shapes can be treated with very little extra effort. Hence, in addition to the square pulses
treated earlier, we have also considered Gaussian pulse shapes, which correspond better to
the pulse shape of neutron generators [34]. A quantitative analysis of the Feynman-alpha
curves, as functions of the pulse width, frequency and shape is performed, and the
possibility of unfolding the prompt neutron time constant from a simulated measurement
with the use of the formulas is investigated. More details can be found in some already
published reports [39] and in some coming publications.

2.2  General theory

The Feynman-alpha method is based on the measurement of the detector counts 
during a measurement time period  in a stationary system driven with a source S. Both the
source emission, the diffusion and multiplication of the neutrons in the medium, as well as

Z̃ T( )
T
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the detection process, are subject to random fluctuations. The probability of emission of a
source neutron during time  is given as . The condition of stationarity requires that the
measurement is made a long time after that the source was switched on, such that all
transients after the switch-on have decayed. With a repeated measurement of the random
variable , its mean  and variance  can be determined. With a repetition of
the measurement for various measurement time lengths, the dependence of the relative
variance, or the variance-to-mean  (Feynman-alpha function) can be determined.
In practice, it is more customary to use the deviation of the relative variance from unity,
which is called the Feynman -function:

(68)

where 

(69)

is called the modified variance. The advantage of introducing the modified variance is the
convenience that one can derive equations for it directly.

The mean and the variance of the detector counts can be calculated from a master
equation, i.e. from a probability balance equation. Usually, it is more advantageous to use
the so-called backward master equation, and we shall use this method here. The quantities
that will appear in the derivation are thus as follows.

(70)

is the probability of finding  neutrons at  and  counts in the time interval , due
to one neutron starting the process at . One also introduces the probability generating
function of  as

(71)

If a master equation for the generating function  is obtained, equations for the various
moments can be obtained by differentiating  w.r.t.  or . Such a master equation was
derived a long time back in the theory of neutron fluctuations in nuclear reactors. For later
reference, we only quote the two first-moment quantities that will be used in later parts of
the paper in the calculations. The expected number of neutrons at time t is given by

(72)

where  is the prompt neutron time constant, given by . Here  is the
subcritical reactivity (to be determined in the measurement) and  the prompt neutron
generation time. Both  and  can be expressed by nuclear physics parameters such as
cross sections and neutron speed, and are known in a calculation.

The second quantity we shall need is the expected number of counts, which is given as

(73)
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where 

(74)

From Eqs. (72)-(74) it readily follows that

(75)

In a similar manner, 

(76)

denotes the probability of finding  neutrons at  and  counts in the time interval ,
due to a source being switched on at . As it is usual in the literature, all distributions
and moments, corresponding to the source-induced case, will be denoted by a tilde. The
generating function of  is defined as

(77)

As it will be seen in the next subsection, one can derive a direct relationship between  and
 such that the latter is given as an exponential integral over the former. Calculation of the

moments of the source-induced distribution requires in general the calculation of multiple
nested integrals over certain functions of the various moments of the single-particle induced
distribution.

2.3  Calculation of the variance-to-mean for deterministically pulsed sources

As mentioned earlier, the novelty of the Feynman-alpha method with a pulsed source
consists of the time dependence of the source. Some characteristic properties follow directly
from the fact that the source consists of a train of pulses, independently of the form of the
pulses. These will be first investigated here. For the sake of concreteness, whenever explicit
formulae are necessary, square pulses will be assumed. The case of Gaussian pulses will be
treated in Subsection (2.3.5). 

2.3.1  The source and its Laplace transform for square pulses

The time-dependent neutron source is represented by a sequence of square functions: 

(78)

where  is Heaviside’s step function,  the pulse period, and  the pulse width. In
Fig. 18 the function is plotted.

The Laplace transform of the source is given by:
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. (79)

Eq. (79) shows that the singularities of  are determined by the zeros of the
denominator, which arise from the periodicity of the pulse train.

2.3.2  Calculation of the source induced neutron number (square pulses)

We know from earlier calculations that the Bartlett-formula, i.e the relationship
between the generating functions of the source induced and single-particle induced
distributions, for the case of a time-dependent source reads as

. (80)

From Eq. (80) we obtain that the source induced neutron number,  is given by

(81)

and the source induced detector count,  reads as 

. (82)

Further, the source induced modified variance, defined in Eq. (69), derives from the above
as
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Fig. 18. The source function S(t), numerical values are found in Table II on page 54.
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(83)

Here

(84)

with

. (85)

and where  is the single-particle induced detector count, given in Eq. (75). Hence,
using Eqs. (81) and (82) we can write Eq. (83) as

. (86)

The Laplace transform of Eq. (81) is

(87)

where 

(88)

since

(89)

where  and  as usual.

Hence

. (90)

From Eq. (90) we can obtain  with inverse Laplace transform. Let 

(91)
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then 

(93)

µ̃Z t T,( ) S t'( )MZ t t' T,–( ) t'd

0

t

∫=

MZ t T,( ) QZ t' T,( )N t t'–( ) t'd

0

t

∫=

QZ t T,( ) λf ν ν 1–( )〈 〉Z2 t T,( )=

Z t T,( )

µ̃Z t T,( ) QZ t' T,( )Ñ t t'–( ) t'd
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For the inversion of Eq. (90), we note that its singularities are defined by three different
types of poles, each corresponding to a different type of behaviour in the time domain after
inversion. 

1. A pole at ; the corresponding residue gives the asymptotic mean value of the
oscillating function ;

2. A pole at , which describes the transient after switching on the source at
;

3. An infinite number of complex conjugate roots on the imaginary axis, yielding har-
monic functions in the time domain, representing a Fourier series expansion of the
oscillating part of .

As mentioned earlier, the positions of these poles are independent of the form of the
pulse shape, because they are given by the zeros of the function , which later was
given rise by the summation of the geometric series in Eq. (79) expressing the periodicity of
the pulse. It is only the value of the residues which is affected by the pulse shape. In other
words, the result for the asymptotic value of  can always be written in the form of
Eq. (102) below, only the values of the  and  will be different.

Let us write now the inverse Laplace transform of Eq. (90) in terms of the inverse of
the function , introduced in Eq. (92), in a sum corresponding to the three types of poles
above. That is, let us write  and calculate each term separately.
Then the theorem of residues gives:

(94)

(95)

and

. (96)

Hence, also in view of Eq. (93), one has

. (97)

A plot of  is shown in Fig. 19. It is obvious that after a number of pulses the initial
transient decays and the system converges to an asymptotic state.

When ,  simplifies into:

. (98)

Using trigonometric identities and introducing , we get:
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where 

(100)

and

. (101)

Thus, the asymptotic source induced neutron number, , is:

. (102)
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Fig. 19.  with its asymptotic behaviour indicated as a dotted line. Numerical values
are found in Table II on page 54.
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This function is shown in Fig. 20.

As will be seen in the next two subsections, in all subsequent calculations of the
source-induced asymptotic detector count  and the Feynman -function, the
solution given for  above is used in various nested integrals in combination with
functions that do not depend on source properties. The functional dependence of  is
given by the trigonometric functions that do not depend on the pulse shape. Hence in the
resulting expressions using a different pulse shape means just changing the parameters ,

 and the first term on the r.h.s. of Eq. (102).

2.3.3  Calculation of the source-induced detector count for arbitrary pulses

The single-particle induced detector count,  is given, as usual (c.f. Eq. (75)):

(103)

where  was defined in Eq. (74).

From Eq. (82) the source-induced detector count, , is given by:

. (104)

The easiest way to calculate the integral is not with the same method as was used for ,
i.e. writing the Laplace transform of  as:

. (105)

The reason is, that for Eq. (105) it is rather complicated to use the same trick as for Eq. (91)
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Fig. 20.  and the constant term in  i.e. . Numerical values are
found in Table II on page 54. 
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due to the factor . Further, it is easier to let  in Eq. (104) than in
Eq. (105). But, since we have a simple expression for , i.e. Eq. (102), we are able to
obtain the asymptotic source-induced detector count by calculating the integral in Eq. (104)
when . Thus, 

. (106)

As a result of deterministic pulsing we have  and it is obvious that letting
 equals to letting . With that, we have:

. (107)

The last step above results from the periodic character of . The above gives, with
Eq. (102):

. (108)

Plots of the linear and oscillating terms can be found in [39].

2.3.4  Calculation of the modified variance for arbitrary sources

The asymptotic modified variance is obtained from Eq. (86) using the asymptotic
source induced neutron number, : 

(109)

where  is defined in Eq. (85) with  given by Eq. (103). 

Let , and for  we define with Eq. (103): 
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Correspondingly, the expression for the modified variance, eq. (109) will be broken up into
two parts, i.e. , with  and  corresponding to the
integrals over  and , respectively. If we also let , we obtain:
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. (112)

When : 

. (113)

Using Eqs. (98) and (99) the -integral becomes:
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Using Eq. (110), the result of the first integral is:
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The second integral in Eq. (114) is somewhat more difficult to evaluate. We notice that,
according to Eq. (110), we have:
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(120)

and

. (121)

Finally, we have from Eqs. (115) and (121):
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Using Eqs. (98) and (99) the -integral in Eq. (113) becomes:
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The first term in the integral above results in:
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The first part of the -integral gives:

, (125)

and the second:
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Then the result to Eq. (123) is:
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The sum of Eqs. (122) and (127) is the result to Eq. (113): 
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(128)

Finally, the Feynman -function is given by Eqs. (108) and (128), as usual as:

. (129)

Fig. 21 shows the resulting Feynman -function for the case with square pulses. The
function is multiplied with a factor . The source pulses and the case
with no pulsing are included in the figure as well.

2.3.5  The case with Gaussian pulses

It is possible to use Gaussian pulses instead of the square pulses in Eq. (78). Then the
time-dependent neutron source is represented by:

(130)

where  and . The parameter  here plays the role of the source
intensity, i.e. the same as  for the square pulses in Eq. (78). Its numerical value does not
play a role in the derivation of the formulae, since it drops out from the Feynman-alpha
function, which is one of the advantages of the variance-to-mean method. Hence its value
was chosen such that the maximum value of the pulse function is unity. This choice has no
other motivation than easy comparison of the source forms in the plots. Likewise, the
choice of  is also arbitrary, and again was made so that the square and Gaussian
pulses are comparable. One representation of such a Gaussian train, with its square pulse
companion with the same repetition frequency and corresponding width , is shown in
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Fig. 21. Feynman -curve for square pulses.The numerical values used are found in
Table II on page 54.
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Fig. 22. 

The Laplace transform of  is then

. (131)

The task is hence to calculate the integral for the term . This can be simplified as
follows:

. (132)

As is seen, the lower limit of the integral was extended to minus infinity. The error
committed by this step is rather small, given the fast decay of the Gauss function. This may
not be so obvious when it is expressed in terms of the very first pulse, which starts close to
the origin. However, for the later pulses it becomes a better and better approximation. Since
the Feynman-alpha measurement relates to the stationary case, i.e. times long after the
switching on the source, the error committed by this approximation is indeed negligible. In
return, it leads to a compact analytic form.

Thus, the Laplace transform of the sum in Eq. (132) is equal to
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. (133)

According to Eqs. (87) and (88) we have:

. (134)

For the inversion of Eq. (134) we note that the singularities are of the same three types as in
Eq. (90). We write the inverse Laplace transform, in a similar manner as for the square
pulse, as  and calculate each term separately. Then the theorem
of residues gives:

(135)

(136)

and

(137)

where 

(138)

. (139)

It is obvious that when ,  and the asymptotic source-induced neutron
number is:

(140)

where  and  are as in Eqs. (138) and (139), respectively.

Above,  is written in a similar way as in the case with the square pulse, i.e. 

, (141)

where  is a constant that depends on the pulse form. Thus, we are able to use the same
formulas for the source induced detector count, Eq. (108), and modified variance, Eq. (128)
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as for the square pulse with minor modifications. So, we have:

(142)

and

(143)

where  and  are as in Eqs. (118) and (120), respectively. The resulting Feynman -
function is given by Eq. (129), as usual. 

Fig. 23 shows the resulting -curve for both the Gaussian and the square pulses. In the
Figure, the function is multiplied with a factor . The source pulses
and the case with no pulsing are included in the Figure as well. The Figure shows that the

-curve due to the Gaussian source shape is smoother than the one due to the square
counterpart. This is because a Gaussian pulse does not contain sharp edges (discontinuous
derivatives) as the square function does.
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2.4  Analysis of the behaviour

In this section a number of plots of Feynman -function for a number of - and -
values are presented. All curves are normalized with a factor . In the
numerical work that follows, in this and the following Section, the following numerical
values will be used:

With the above data, one obtains 

The effect of the pulse width is illustrated in Figs. 24 and 25 for square pulses. It is
seen that the wider the pulse is, the smoother the curves become. This is not surprising,
since the continuous source corresponds to the case when the pulse is as wide as the pulsing
period, which gives a completely smooth curve. Fig. 25 corresponds to the pulsing with a
very narrow pulse. Such results were obtained by other groups e.g. in Japan, and are in
agreement with our results.

Table II. : Numerical parameters

Parameter Value

T0  s

W  s

S0 1 n/s

k 0.95

Λ  s

Y W T0
α2 λdλf ν ν 1–( )〈 〉( )⁄

2 10 3–⋅

5 10 4–⋅

5 10 5–⋅

α ρ– Λ⁄ 1052. 6( )= =   s
1–
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Fig. 24.  Feynman Y-curve for W=0.001 and T0=0.002
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For the sake of comparisons, a Feynman -curve with Gaussian pulses, with the same
repetition frequency as with the square pulses above, is shown in Fig. 26. Although it

corresponds to much narrower pulses than the case in Fig. 24 for the square pulses, the -
curve is just as smooth as for a wider square pulse. This is because of the smoother
character of the Gaussian pulse shape.

The effect of the repetition frequency, with a given prompt neutron time constant, is
shown in Figs. 27-30. The Figures show that for a sufficiently high repetition frequency
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Fig. 25.  Feynman Y-curve for W=1e-6 and T0=0.002
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Fig. 26. The resulting Feynman -curve for Gaussian and square pulse, included numerical values are Y
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(Figs. 27 and 28), the pulsed curve remains smooth and close to the continuous curve even
for narrow pulses. However, for a repetition frequency which is low compared to the reactor
prompt time constant, the deviations between the pulsed and the continuous case are rather
large (Figs. 29 and 30). This is the case with the majority of the MUSE experiments. The
only way of compensating for this would be to use pulses as wide as possible.     

A similar figure, showing the Y-curve for both Gaussian and square pulses is shown in
Fig. 31 below. It illustrates the already mentioned fact that the Y-curve corresponding to
Gauss pulse shapes is smoother than its counterpart which is due to square pulses. 
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Fig. 27.  Feynman Y-curve for W=0.0002 and T0=0.001
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Fig. 28.  Feynman Y-curve for W=0.0005 and T0=0.001
- 56 -



2.5  Determination of the parameter α from a simulated measurement

It is possible to simulate a measurement using the formulas in Section 2.3 and adding a
random noise to it, to simulate the imperfect character of an experiment. Using a MATLAB
routine, lsqcurvefit, which solves curve-fitting problems in the least-squares sense, it is
possible to estimate the value of . Figs. 32 and 33 show Feynman -curves with
simulated measurements for two different noise levels. In this study only square pulses are
assumed, and the pulse repetition frequency and the pulse width are assumed to be known
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Fig. 29.  Feynman Y-curve for W=0.001 and T0=0.005
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Fig. 30.  Feynman Y-curve for W=0.0005 and T0=0.005
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exactly. In reality this is not true, and a sensitivity analysis of the unfolding method to
inaccuracies in those parameters should also be performed, which will be made at a later
stage. 

The resulting curve for the estimated α is included in the Figures below as well. The
true -curve and the one obtained by the parameter  from the fitting procedure cannot be
distinguished in the Figures. In all Figures,  denotes the original value and  denotes
the estimated value. In Figs. 32 and 33 the noise level is 4 and 8 percent of the asymptotic
value of the original Feynman-  curve, respectively.
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Fig. 31. The resulting Feynman -curve for Gaussian and square pulse, included
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In both cases, the true value  was 1053. In the case with lower noise level, the 

determined from the curve fitting was 1052, while in the second case  was 1051.
However, the precision of the method depends on the level of the added noise and even for
the same noise strength, the particular realisation of the random noise. This is illustrated
with the case shown in Fig. 34. The noise level is the same as in Fig. 33, i.e. 8 percent, but
the estimated  is 1062.

The few cases shown here support the statement that with the formula for the
deterministically pulsed Feynman-alpha measurements, the prompt neutron time constant
can be estimated with curve fitting similarly to the traditional case of constant source. Test
of the method with real measurement data will be reported in a forthcoming publication.

2.6  Conclusions

Calculation of the deterministically pulsed Feynman-alpha formula with the method
introduced in this report leads to a compact solution which is easy to use in numerical work.
One particular advantage, demonstrated in this report, is the ease with which various forms
of the pulse shape can be handled. All that is needed is a Fourier-series expansion of the
asymptotic form of the source-induced neutron number. Once the coefficients of this
quantity are obtained, they can be substituted into a general formula for the relative
variance, which was derived in the report. 

The Feynman formula obtained was investigated quantitatively for various pulse
parameters and even shapes. The possibility of using the formula for determining the
prompt neutron time constant, and through that the reactivity, was investigated in
simulations. It was found that despite the much more complicated structure of the Feynman

-curve as compared to that with constant (time-independent) sources, the prompt alpha
parameter can be extracted from a simulated experiment with methods of parameter fitting.
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Section 3

Classification of two-phase flow regimes via images analysis and a 
neuro-wavelet approach

3.1  Introduction

Determination of the type of flow regime from measurements can be performed by
several methods, but none of them is fully reliable. Therefore, there is a need to study an
alternative method. It is very important to classify the different flow regimes since they
have quite different flow properties. Hence, before using a flow equation, the regime must
be determined so that the right expression can be chosen for i.e. the interfacial shear
coefficient or some other coefficients like the heat transfer coefficient. The applied method
of flow regime identification is based on intelligent computing methods and in particular
the use of wavelets for feature extracting from images of the different flows, and Artificial
Neural Network (ANN) algorithms, for the classification. 

The focus in this report is on the following four vertical flow regimes: bubbly flow,

slug flow, churn flow and finally annular flow (Fig. 35). White parts represent bubbles or
steam and the darker areas are the liquid water. Bubble flow is the flow of dispersed gas in
continuous liquid, small bubbles of gas in the liquid. In slug flow the bubbles of gas have
formed larger regions, with a size of approximately the size of the pipe diameter. If even
more gas is introduced into the pipe the bubbles break and there is an unstable regime of
liquid mix with gas, churn flow. In the last type, annular flow, the pipe is almost filled with
gas and just a small part, close to the wall, contains liquid.

Fig. 35. Schematic drawings of the different phases of vertical two-phase flow.
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3.2  The flow images

Two different types of images were used. The first one was obtained with neutron
radiography, and it comprises all four flow regimes (Fig. 36). The second one was obtained
with visible light of only bubbly and slug flow (Fig. 37).

The neutron radiographic images were made by sending a collimated neutron beam
through a metallic pipe filled with water. After penetrating the pipe and the flow, the beam
hits a neutron converter, which converts the neutron beam into visible light. This light, after
reflection on a mirror (in order to filter out gamma-rays coming from the neutron source,
usually a reactor), are recorded with a video camera. By heating up the vertical pipe, in
which the water flows upwards, the different flow regimes are created. The images were
recorded by the Division of Nuclear Engineering, Kyoto University Reactor Research
Institute (KURRI). A drawback of this setup is the poor quality of the images, a lot of noise
is present, as Fig. 36 shows.

To improve the quality of the images, a simpler experimental setup was used at our
Department. In this case a thin transparent plastic pipe, filled with coloured water, was used
to generate the images. The images were recorded with a digital video camera. The two-
phase flow was simulated by injecting air in the bottom of the pipe. By this way only two-
component flow could be created, with only bubbly and slug flow regimes.

From the neutron radiographic images a total of 200 frames from each of the four
regimes were used for the identification and classification process, whereas from the visible
light experiment 75 frames from each of the two regimes were used.

3.3  Wavelet introduction

In order to improve the classification process of the flows, it is advisable to pre-process
the images using wavelet techniques [41]-[44] before extracting the input data for the
Artificial Neural Networks (ANNs). The advantages using wavelet transform include some
noise reduction and feature extracting at different scales and directions of the images. First a

Fig. 36. Images of two-phase flow using neutron radiography.
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short introduction to the wavelet transform is given followed by a description of the
algorithms applied in this report.

The one-dimensional wavelet transform maps a time signal into a time and frequency
signal at different frequency levels, N, [45]-[47]. At each level the signal is decomposed
into an approximation and a detail. It is possible to do both a discrete (with discrete
frequency levels), and a continuous (with continuous frequency levels), transform. In the
case with an image one uses the two-dimensional wavelet transform, which maps a two-
dimensional signal (image), in spatial rather than time coordinates, into the two coordinates
at different frequency (wave number) levels. The two-dimensional transform can also be
both discrete and continuous in the frequency coordinate or level.

At the first level of a 2-D discrete wavelet transform, the coarsest level of
approximation coefficients, A1 contains 25% of the information of the original image, S0.
The approximation coefficients, A1, at level 1, can be used to make a reconstruction of an
approximation, S1, of the original image. In the same way the detail coefficients, , ,
and  (Fig. 38) containing the high frequency information of the image, at level 1 can be
used to reconstruct horizontal, , vertical, , and diagonal, , details of the original
image. Adding the details to the approximation one can reconstruct the original image
completely without any loss of information. 

(144)

It is possible to do the transformation into lower levels were the details at each level
contain the information of the signal corresponding to the frequency of that level. But in this
report only the first level of transformation is used. The coefficients and the corresponding
reconstructed images contain the same information, hence it is possible to use the
coefficients when extracting input data for the ANNs. The reconstructed images are useful
when displaying the transform. 

Fig. 37. Images of two-phase flow using visible light and coloured water.
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3.4  Wavelet pre-processing

As mentioned above, it is possible to improve the classification if the input data are
pre-processed with wavelets before using them in the ANN. With the wavelets it is possible
to extract features which are not visible in the original data. One set of features, mentioned
in [41], is the mean and variance of the first level approximation coefficients. Another
possibility would be to use the energy of the different wavelet details. The energy of each
detail is defined as the sum of the square of the absolute value of the detail coefficients,
[45].

(145)

In the first run, the neutron radiography images were analysed. Input data from the raw
images were extracted and compared with the wavelet pre-processed input data. In this case
the mean and variance from both the raw images and the first level approximation
coefficients were used first, as reference input data. It turned out that, due to the poor image
quality, no other features could be successfully used in the classification procedure.

In the second case the images produced with visible light, that had much better quality,
were used. Again the mean and variance of the raw data were used as reference. Here,
however, wavelet transform preprocessing did lead to improvement. With the wavelet
preprocessing, the energy of the first level of detail coefficients and their variances were
used, giving a total of 6 inputs for the ANN (see Fig. 40).

As usual with wavelet analysis, the choice of the right wavelet for the task at hand is
not obvious. A guideline for choosing a suitable wavelet is to select one that has the same
features as the data analysed. For this classification task the following wavelets were tested:
Daubechies of order 8 (db8), Symmlet of order 6 (sym6), Coiflet of order 4 (coif4),
Daubechies of order 1 (Haar) and biorthonormal (bior3.1). These are all available in the
Wavelet Toolbox in MatLab [48]. 

3.5  Classification using artificial neural networks

ANNs are capable to tackle very complicated tasks, including non-linear classification
problems. The backpropagation (BP) algorithm is the most frequently used algorithm for

Fig. 38. First level of the 2 D wavelet transform. S0 is original image or data, A1 is the
set of the first level approximation coefficients and T1 are the first level detail
coefficients in each of the three directions, vertical, horizontal and diagonal.
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the training of such networks. We have used the multi-layered perceptron (or simply the
feed-forward network) consisting of an input layer, an output layer and one hidden layer.
The network receives input through the nodes in the input layer, from which the signals
propagate forward to the nodes of the consecutive layer and output signals are produced in
the output layer. In the backward phase, error signals are propagated backward through the
network and some parameters are adjusted in reference to the error signals. 

The performance of ANNs depends strongly on input parameters. We have
investigated ANNs performance for various input parameter sets. The number of the input
and output nodes is defined by the problem itself. For the radiographic images, the number
of input nodes was 2 and for the visible light images it was 6, as mentioned before. All the
input feature vectors were normalized so that they fall in the range [-1, 1]. For each type of
flow, a corresponding output class is associated. The ANN has 4 output nodes for the
radiographic case and 2 output nodes for the visible light case, corresponding to the 4 or 2
different flow types (Fig. 39). The target value, during training, for each class contains the
value of 0.9 for the correct category and three or one dummy variables with value of 0.1. 

Since the output layer chosen for this classification task has a log-sigmoid transfer
function, the output values range from 0 to 1, and thresholding has to be preformed on the
output data, to get 0 or 1, when classifying. Two different threshold levels were used, 0.5
and 0.7. All output values larger than the threshold are set to unity and all other to zero. If
the output data, after the thresholding, are all four zeros, the corresponding image is
classified as unknown or unclassified flow regime. The same applies for the case of more
than one non-zero value. Lower threshold makes the classification less certain but a too
high threshold will classify many images as unknown.

The optimal number of nodes in the hidden layer, the training algorithm and the
activation functions were determined by trial and error. Tan-sigmoid function was used for
the hidden layer and log-sigmoid for the output layer. A few of the modified
backpropagation (BP) algorithms such as adaptive learning rate, resilient BP, scaled
conjugate gradient and gradient descent algorithm with momentum were examined for
training the ANN. Cross-validation was used to estimate which learning ANN model will
perform the best on the problem at hand. For each of the models a 5-fold cross-validation
over the training set was used, which means that 1/5th of the training data was used as a
validation set and the process was repeated with non-overlapping rotations. In the case of

ANN
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Fig. 39. The Artificial Neural Network used in the classification process of the neutron
radiographic images. The thresholding is only used during testing.
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the neutron radiographic images, each learning model was trained with 640 samples for the
four various types of flow, and then they were tested on one subset of 160 samples which
was not used during training. For the visible light images, the training set consisted of 120
samples and the test subset of 30 samples (Fig. 40). The resilient backpropagation (RP)
algorithm was found to have the highest average test set score. Namely, the classification
efficiency with RP algorithm was 100% (the percentage of the flows that were correctly
classified) when the recall test was performed on the training set, and 95% when the recall
test was made on the subset not used during training. The best performance was obtained
for the training and validation test set with an ANN structure consisting of one hidden layer
having 40 nodes. The default performance function for feedforward networks was the mean
square error, i.e. the average squared error between the network outputs and the target
outputs. The ANN training was performed until the maximum number of epochs, set to
30000, was reached or the mean square error, MSE, target value of 10-3 was achieved. All
calculations were carried out by using the toolboxes available with the technical computing
software MATLAB [48]. 

Fig. 40. Input data of the images made with visible light after wavelet pre-processing.
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3.6  Results & Conclusions

3.6.1  Neutron Radiographic images

The effect of different wavelets, db8, sym6, coif4, haar and bior3.1, on the
classification efficiency has been investigated. The classification efficiency is defined as the
percentage ratio of the number of flow pictures correctly classified to the total number of
pictures corresponding to one type of flow. The average efficiency of the flow classification
for each type of the chosen wavelets by using ANN with mean values and variance as input
and for threshold levels of 0.5 and of 0.7, is depicted in Fig. 41. The average efficiency is
shown with error bars (standard deviations). Almost the same result is achieved
independently of which wavelet type that is used. Though, coif4 has a slightly lower
percentage of correct classified regimes and haar has the best classification efficiency.

Clearly a threshold of 0.5, with accuracy of about 95%, is better than a threshold of 0.7,
which only has about 87% correctly classified images. But even by using the mean and
variance of the original image values, the efficiency is the same. There is consequently not
much improvement, in classification, using the wavelet transform in this case. 

All of the different wavelets classified the annular flow with 100% efficiency, which is
also the case for the original data. In Fig. 42 each bar represents the 200 images from each
flow and the different colours show which regime the images are classified as. White is for
unknown or unclassified images. As it is seen, not that many images turn out to be
unclassified for a threshold of 0.5. The most difficult regimes to classify for both the
wavelet and the original data are the slug and churn flow. This is of course due to the fact
that these flows have similar features. 

The maximum number of epochs, 30 000, were used in the training process, meaning
that the MSE target value of 10-3 was not reached.

3.6.2  Visible light images

The same five wavelets as above were used also in the case with visible light images.
The results are partly similar to the radiographic images. Namely, there is not much
increase of the classification efficiency when using wavelets compared to the features of the
raw images. However, in this case there is a large improvement in the number of epochs

Fig. 41. Classification efficiency for the different wavelets and the original data,
threshold 0.5 to the left and 0.7 to the right.
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(iterations) used when training the ANN. When using the wavelet pre-processed data, the
number of epochs is reduced by a factor of 100, compared to the raw data input (Fig. 43).
With the raw data, the number of epochs always exceeds the maximum number of 30 000,
before reaching the MSE target values of 10-3. The classification efficiency is also slightly
better in this case, compared to the neutron radiographic case. This is presumably also
attributed to the better quality of the images. For the wavelet pre-processed data one slug
flow image was classified as bubbly and the rest was correctly classified. That is, 149/
150=99.33% for wavelet pre-processing, whereas the success ratio of classification with the
raw image inputs was 146/150=97.33%. The result was the same for all wavelets with a
threshold of 0.7.

Fig. 42. Result of the classification of the neutron radiographic two-phase flow images
using input data pre-processed with the db8 wavelet, with a threshold of 0.5 to the
left and 0.7 to the right.
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Fig. 43. Depicted is the number of epochs used when training the network. The input
data are wavelet pre-processed visible light images.
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Plans for the continuation

In stage 11 we plan to include the following parts in the current R&D program:

• A preliminary study for the development of core calculational methods for calculating
higher eigenvalues and eigenfunctions;

• Development of the theory of neutron fluctuations in a system varying randomly in time
with the master equation approach;

• A pilot experiment in a moderator with a Cf-252 source in order to test the Feynman- or
the Rossi-alpha method.
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