

Author:

Mats Isaksson Lilian del Risco Norrlid

# 2015:20

Guide for thyroid monitoring in the event of release of radioactive iodine in a nuclear emergency

#### SSM perspective

#### Abstract

This report aims to serve as a guide in the execution of a thyroid monitoring program for laboratories with responsibility to respond with measurement capacity to a nuclear emergency.

#### Background

The dose contribution to the committed effective dose of <sup>131</sup>I accumulated in thyroids can be considerable as has been repeatedly shown in nuclear accidents. This makes thyroid monitoring, together with the short half-life of <sup>131</sup>I (8 days), relatively urgent in the intermediate phase of response to a nuclear emergency.

#### Objectives of the project

Enhance preparedness regarding in vivo thyroid monitoring

#### Results

For different times after intake, measured values in net count rate or dose rate are given for example instruments at the levels of the committed effective dose corresponding to a "no thyroid exposure" (< 1 mSv), the lower (20 mSv) and upper (200 mSv) action levels.



Author:

Mats Isaksson <sup>1)</sup>, Lilian del Risco Norrlid <sup>2)</sup> <sup>1)</sup> Göteborgs universitet <sup>2)</sup> Strålsäkerhetsmyndigheten

## **2015:20** Guide for thyroid monitoring in the event of release of radioactive iodine in a nuclear emergency

This report concerns a study which has been conducted for the Swedish Radiation Safety Authority, SSM. The conclusions and viewpoints presented in the report are those of the author/authors and do not necessarily coincide with those of the SSM.

## Content

| Ab | ostract                                                               | 2  |
|----|-----------------------------------------------------------------------|----|
| 1. | Thyroid monitoring in a nuclear emergency                             | 3  |
|    | 1.1. Action levels coupled to thyroid monitoring                      | 3  |
|    | 1.2. Monitoring flow chart                                            | 4  |
|    | 1.3. Intake of stable iodine                                          | 6  |
|    | 1.4. Contribution of other radionuclides to the thyroid dose          | 6  |
| 2. | From monitored activity in the thyroid to the effective dose          | 7  |
|    | 2.1. General assumptions                                              | 7  |
|    | 2.2. Committed effective dose per unit of the activity accumulated in |    |
|    | the thyroid at monitoring time                                        | 8  |
|    | 2.3. Threshold values corresponding to action levels                  | 9  |
|    | 2.4. "No thyroid exposure" level                                      | 10 |
| 3. | Dose conversion coefficients for selected instruments                 | 12 |
|    | 3.1 Exploranium GR-135                                                | 13 |
|    | 3.2 IndentiFinder                                                     | 15 |
|    | 3.3 Uptake meter THEO 10                                              | 17 |
| Re | ferences                                                              | 19 |

## Abstract

This report aims to serve as a guide in the execution of a thyroid monitoring program during the intermediate phase of response to a nuclear emergency. Calibration factors for some instruments verified in the framework of the Nordic project THY-ROID (Nyander P. 2014) are listed here as an example. For different times after the intake, we present in this guide the measured values in net count rate or dose rate for example instruments at the levels of the committed effective dose corresponding to a "no thyroid exposure" (< 1 mSv), the lower (20 mSv) and upper (200 mSv) action levels.

## 1. Thyroid monitoring in a nuclear emergency

The response to a nuclear emergency is based on plans where predetermined operational intervention levels have been set up. According to the Nordic guidelines on the protective measures in early and intermediate phases of response, thyroid monitoring is not usually needed as ground for decisions in the early phase (NEP, 2014).

The Nordic countries have agreed upon the automatic implementation of iodine prophylaxis with of iodine pills (KI) in the early phase, for residents nearby the nuclear facility and in the areas where predictions on thyroid doses exceed 50 mGy for adults and 10 mGy for children less than 18 years of age. The dose contribution from iodine -131 (<sup>131</sup>I) accumulated in thyroids to the committed effective dose can be considerable. This together with the short half-life of <sup>131</sup>I (8 days) makes thyroid monitoring a relatively urgent matter in the intermediate phase of response.

A thyroid monitoring program aims to identify the individuals, who may have inhaled or ingested <sup>131</sup>I in an amount that give rise to thyroid equivalent and effective doses exceeding the projected dose specified by the authority. The projected dose is the effective dose (often model-predicted) that would be expected to be incurred as consequence of the nuclear emergency (NEP 2014).

The projected dose is set as criterion for the decision of starting a thyroid monitoring program. The corresponding operational intervention levels are, for adults, dose rates over 100  $\mu$ Sv/h and/or iodine air concentration over 10 000 Bq/m<sup>3</sup> for two days; for children, 10  $\mu$ Sv/h and/or iodine air concentration over 1 000 Bq/m<sup>3</sup> for two days (NEP 2014).

The results of the monitoring program are useful for the assessment of thyroid doses to the different age-groups of the population that could have been exposed. These results will also serve for verifying the early phase predictions of thyroid doses based on the simulation of the transport of the radioactive plume.

General decisions concerning the allocation of responsibilities for the provision of information to the public and specifically to the persons that should be monitored, the activation of monitoring response plans, as well as the handling and storage of the monitoring data are managed by national authorities and are not in the scope of this report.

#### 1.1. Action levels coupled to thyroid monitoring

Two levels in terms of committed effective dose are recommended (Rojas-Palma 2009): an upper action level at 200 mSv and a lower action level at 20 mSv. That is,  $AL_U = 200 \text{ mSv}$  and  $AL_L = 20 \text{ mSv}$ . A level called "no thyroid exposure" is usually set to a committed effective dose of 1 mSv. This "no exposure" level serves the purpose of sorting out the individuals for whom no significant exposure can be confirmed.

The actions corresponding to the different levels can be summarized as follows: Action level 1, for measurements over the "no-exposure level but under 20 mSv: - Provision of information

- Consider giving priority to children in long term monitoring program Action level 2, for measurements over 20 mSv and under 200 mSv:

- Provision of information
- Consider additional thyroid and whole body monitoring (give priority to children)

- Include in long term monitoring program

Action level 3, for measurements over 200 mSv:

- Provision of information
- Referral for medical assessment
- Additional thyroid and whole body monitoring (give priority to children)
- Include in long term monitoring program

#### 1.2. Monitoring flow chart

The flow diagram below can support laboratories in the execution of the thyroid monitoring program.

In the diagram, the average environmental count rate, B, is the average reading in the location selected for the reception of possible contaminated persons. The average thyroid count rate, C, is the reading of the instrument placed close to the skin of the neck of the subject, with the subject standing or sitting alone in the monitoring room. The average body count rate, CB, is the reading for the instrument placed close to the skin of one of the subjects' lower thighs, as recommended by (Rojas-Palma 2009). Figure 1 illustrates the measurement to obtain C, to the left and to obtain CB, to the right.

All preparations preceding the start of the monitoring program such as personal resources, instruments' readiness, location, access to decontamination facilities, etc. must be covered by the preparedness plans of the responders to nuclear emergencies.



Figure 1: Illustration for thyroid (C) and corresponding body background (CB) measurement, as recommended in TMT handbook (Rojas-Palma 2009)



#### 1.3. Intake of stable iodine

The intake of stable iodine pills will block the accumulation of radioactive iodine in the thyroid. If stable iodine is administered before the exposure to the radioactive plum containing radioiodines, all radioactive iodine will be blocked. If, however, stable iodine is administered more than 10 h after the exposure, the values provided in tables 1 - 4 and 7 - 15 in this guide should be used with caution since the block-ing factor can be highly variable.

### **1.4.** Contribution of other radionuclides to the thyroid dose

The contribution to the equivalent thyroid dose from ingestion of long-lived radionuclides such as cesium-137 is small and can be considered negligible if proper food restrictions have been put in place (Minenko 2006). The contribution from the external exposure coming from the ground deposition is also small and depends on the geographical distribution of this deposition and should be assessed based on measurement data (Minenko 2006).

Three other radioactive isotopes of iodine and two precursor isotopes of tellurium behave in the reactor, in the environment, and the human body similarly to <sup>131</sup>I. These are <sup>132</sup>I (2.3 h), <sup>133</sup>I (20.8 h), <sup>135</sup>I (6.6 h), <sup>131m</sup>Te (30 h) precursor of <sup>131</sup>I and <sup>132</sup>Te (78.2 h) precursor of <sup>132</sup>I. The contributions to the equivalent thyroid dose from <sup>133</sup>I and <sup>135</sup>I have been found both in Chernobyl and Fukushima to be well under 1 % of the contribution from <sup>131</sup>I (Shinkarev 2014).

For the case of <sup>132</sup>I and its precursor <sup>132</sup>Te, the contribution to the thyroid dose is determined by the dominant pathway of the internal contamination. In Chernobyl the consumption of local cow milk was the main pathway and the contribution to the equivalent thyroid dose from <sup>132</sup>I and <sup>132</sup>Te ranged between 2 - 5 % of the contribution of <sup>131</sup>I (Gavrilin 2004).

If the dominant pathway for the internal contamination is inhalation, as it was in Fukushima, depending on the ratio  $^{132}\text{Te}/^{131}\text{I}$  at reactor shutdown and because of the main form of  $^{132}\text{Te}$  is aerosol, the contribution to the equivalent thyroid dose may be considerable higher. In the Fukushima scenario it has been found that  $^{132}\text{I}$  and  $^{132}\text{Te}$  these contributed to the equivalent thyroid dose by up to 40 % of the contribution from  $^{131}\text{I}$ , for one year old children (Shinkarev 2014).

If the presence of short-lived radioiodines such as <sup>132</sup>I, <sup>133</sup>I, <sup>135</sup>I is not considered, instruments that show a reading as count rate in cps would overestimate the committed effective dose just after a reactor release. From 12 hours and after the release, the contribution to the instruments reading from short-lived radioiodines and short-lived radiotelluriums can be considered negligible, except for <sup>131</sup>I.

# 2. From monitored activity in the thyroid to the effective dose

#### 2.1. General assumptions

Different quantities can be measured depending on the instruments that are used. A net count rate in units of cps is recorded by most intensimeters. Also dose rate meters displaying  $\mu$ Sv/h can be used. The instrument's reading can be converted to thyroid <sup>131</sup>I activity in Becquerel by applying the proper calibration factor. For a calibration procedure example regarding <sup>131</sup>I in thyroids see (Nyander P. 2014). The activity obtained is, however, NOT the actual intake but the <sup>131</sup>I activity that has accumulated in the thyroid at the measurement time.

The biokinetics of <sup>131</sup>I is described in the ICRP Publication 56 by a threecompartment model (ICRP 1990), see Figure 2. After entering the blood, either from the gastrointestinal tract or from the lungs (ingestion or inhalation), <sup>131</sup>I is accumulated and thereafter cleared. The recycling of iodine is due to the production of hormone in the thyroid gland, which is circulated in the body.



Figure 2. Three-compartment model of iodine biokinetics, from ICRP 56.

Inhalation of iodine in particulate form will result in absorption of 30 - 40 % into the blood, depending on the particle size and solubility in the lungs. Different chemical forms of iodine, aerosol particle size and solubility will influence the result of the calculation of committed equivalent thyroid dose and committed effective dose. Figure 3 shows the retention, including physical decay, of <sup>131</sup>I in the thyroid after intake of 1 Bq from inhalation and ingestion, respectively.

The retention curve for e.g. inhalation shows the fraction of the inhaled activity in the thyroid at various times after intake. If the time of intake is known it is then possible to determine the inhaled activity from a measurement of the activity in the thyroid.



Figure 3. Retention and clearance of <sup>131</sup>I after an intake of 1 Bq via ingestion and inhalation.

## 2.2. Committed effective dose per unit of the activity accumulated in the thyroid at monitoring time

The committed effective dose is calculated by dose coefficients from ICRP report 119 (ICRP 2012). In Figure 4 the dose coefficients are shown graphically. Table 1 contain the values of the dose coefficient (mSv/Bq) for various age groups, relating the measured <sup>131</sup>I activity in the thyroid at various times after intake to the committed effective dose.

The data from Table 1 may be used in case of a reactor release, if the time between release and measurement is more than 12 h. Otherwise; the measurement will be disturbed by the presence of short-lived iodine isotopes. In case of a laboratory accident, where only <sup>131</sup>I is handled, the data may be used from 1 hour after inhalation.



Figure 4. Dose coefficients (mSv per Bq) for adults, showing a minimum at 1 d after intake due to the shape of the retention function. The activity refers to the <sup>131</sup>I activity measured in the thyroid at the specified time after intake and the dose refers to the effective dose.

Assuming that the dose to the thyroid dominates among other contributions to the effective dose, the thyroid committed equivalent dose is obtained by dividing the committed effective dose by the organ weighting factor,  $w_{\rm T}$ , for the thyroid, which is 0.05 (ICRP 2007).

|                | 1                             |         |         |         |         |  |
|----------------|-------------------------------|---------|---------|---------|---------|--|
|                | Dose coefficient (mSv per Bq) |         |         |         |         |  |
| Time elapsed   | Infants & <1 a                | 5 a     | 10 a    | 15 a    | Adult   |  |
| between intake |                               |         |         |         |         |  |
| and monitoring |                               |         |         |         |         |  |
| 1 hour         | 0.011                         | 0.0057  | 0.0029  | 0.0017  | 0.0011  |  |
| 2 hours        | 0.0051                        | 0.0026  | 0.0013  | 0.00078 | 0.00052 |  |
| 3 hours        | 0.0034                        | 0.0017  | 0.00089 | 0.00052 | 0.00035 |  |
| 4 hours        | 0.0026                        | 0.0013  | 0.00067 | 0.00039 | 0.00026 |  |
| 6 hours        | 0.0018                        | 0.00091 | 0.00047 | 0.00027 | 0.00018 |  |
| 8 hours        | 0.0014                        | 0.00072 | 0.00037 | 0.00021 | 0.00014 |  |
| 12 hours       | 0.0011                        | 0.00055 | 0.00028 | 0.00016 | 0.00011 |  |
| 1 day          | 0.00083                       | 0.00043 | 0.00022 | 0.00013 | 0.00009 |  |
| 4 days         | 0.0010                        | 0.00052 | 0.00027 | 0.00015 | 0.00010 |  |
| 6 days         | 0.0012                        | 0.00062 | 0.00032 | 0.00019 | 0.00012 |  |
| 8 days         | 0.0015                        | 0.00075 | 0.00039 | 0.00022 | 0.00015 |  |
| 10 days        | 0.0018                        | 0.00091 | 0.00047 | 0.00027 | 0.00018 |  |
| 12 days        | 0.0021                        | 0.0011  | 0.00056 | 0.00033 | 0.00022 |  |
| 14 days        | 0.0026                        | 0.0013  | 0.00068 | 0.00039 | 0.00026 |  |
| 16 days        | 0.0031                        | 0.0016  | 0.00082 | 0.00047 | 0.00032 |  |
| 18 days        | 0.0037                        | 0.0019  | 0.0010  | 0.00057 | 0.00039 |  |
| 20 days        | 0.0045                        | 0 0023  | 0.0012  | 0 00060 | 0.00046 |  |

Table 1. Dose coefficients (mSv per Bq) for various age groups calculated from the retention function and dose coefficients given in ICRP report 119 (ICRP, 2012). The activity given here is the <sup>131</sup>I activity measured in the thyroid at the specified time after intake.

#### 2.3. Threshold values corresponding to action levels

The activities measured during thyroid monitoring corresponding to the lower (20 mSv) and upper (200 mSv) action levels, are given in Table 2 and Table 3 respectively. These values are 20 and 200 times the inverted values from Table 1, respectively.

The data from Table 2 & 3 may be used in case of a reactor release, if the time between release and measurement is more than 12 h. Otherwise; the measurement will be disturbed by the presence of short-lived iodine isotopes. In case of a laboratory accident, where only <sup>131</sup>I is handled, the data may be used from 1 hour after inhalation.

| Table 2. Activity (in kBq) measured in the thyroid at various times after intake, corresponding to |
|----------------------------------------------------------------------------------------------------|
| an intake that will give a committed effective dose of 20 mSv.                                     |

|                | Measured activity in thyroid (kBq) |      |      |      |      |  |  |  |
|----------------|------------------------------------|------|------|------|------|--|--|--|
| Time elapsed   | sed Infants & <1 a 5 a 10 a 15 a   |      |      |      |      |  |  |  |
| between intake |                                    |      |      |      |      |  |  |  |
| and monitoring |                                    |      |      |      |      |  |  |  |
| 1 hour         | 1.8                                | 3.5  | 6.9  | 11.9 | 17.7 |  |  |  |
| 2 hours        | 3.9                                | 7.6  | 14.9 | 25.7 | 38.1 |  |  |  |
| 3 hours        | 5.9                                | 11.5 | 22.5 | 38.8 | 57.7 |  |  |  |

| 4 hours  | 7.8  | 15.3 | 29.7 | 51.3  | 76.3  |
|----------|------|------|------|-------|-------|
| 6 hours  | 11.3 | 22.0 | 42.9 | 74.0  | 110.1 |
| 8 hours  | 14.3 | 27.8 | 54.1 | 93.5  | 138.9 |
| 12 hours | 18.7 | 36.5 | 71.0 | 122.6 | 182.3 |
| 1 day    | 24.2 | 47.0 | 91.6 | 158.2 | 235.1 |
| 4 days   | 19.9 | 38.7 | 75.3 | 130.1 | 193.4 |
| 6 days   | 16.5 | 32.0 | 62.4 | 107.7 | 160.1 |
| 8 days   | 13.6 | 26.5 | 51.7 | 89.2  | 132.6 |
| 10 days  | 11.3 | 22.0 | 42.8 | 73.9  | 109.9 |
| 12 days  | 9.4  | 18.2 | 35.5 | 61.3  | 91.1  |
| 14 days  | 7.8  | 15.1 | 29.4 | 50.8  | 75.5  |
| 16 days  | 6.4  | 12.5 | 24.4 | 42.1  | 62.6  |
| 18 days  | 5.3  | 10.4 | 20.2 | 34.9  | 51.9  |
| 20 days  | 4.4  | 8.6  | 16.8 | 29.0  | 43.1  |

Table 3. Activity (in kBq) measured in the thyroid at various times after intake, corresponding to an intake that will give a committed effective dose of 200 mSv.

|                | Measured activity in thyroid (Bq) |       |       |        |        |  |
|----------------|-----------------------------------|-------|-------|--------|--------|--|
| Time elapsed   | Infants & <1 a                    | 5 a   | 10 a  | 15 a   | Adult  |  |
| between intake |                                   |       |       |        |        |  |
| and monitoring |                                   |       |       |        |        |  |
| 1 hour         | 18.2                              | 35.4  | 68.9  | 118.9  | 176.8  |  |
| 2 hours        | 39.2                              | 76.3  | 148.6 | 256.6  | 381.4  |  |
| 3 hours        | 59.3                              | 115.4 | 224.7 | 388.1  | 576.9  |  |
| 4 hours        | 78.4                              | 152.5 | 297.0 | 513.1  | 762.6  |  |
| 6 hours        | 113.1                             | 220.1 | 428.6 | 740.4  | 1100.5 |  |
| 8 hours        | 142.8                             | 277.8 | 541.0 | 934.5  | 1389.2 |  |
| 12 hours       | 187.3                             | 364.5 | 709.9 | 1226.1 | 1822.6 |  |
| 1 day          | 241.7                             | 470.3 | 915.8 | 1581.8 | 2351.3 |  |
| 4 days         | 198.8                             | 386.8 | 753.2 | 1301.0 | 1934.0 |  |
| 6 days         | 164.6                             | 320.2 | 623.6 | 1077.2 | 1601.2 |  |
| 8 days         | 136.3                             | 265.2 | 516.5 | 892.1  | 1326.2 |  |
| 10 days        | 112.9                             | 219.7 | 427.9 | 739.1  | 1098.7 |  |
| 12 days        | 93.6                              | 182.1 | 354.6 | 612.6  | 910.6  |  |
| 14 days        | 77.6                              | 151.0 | 294.0 | 507.8  | 754.9  |  |
| 16 days        | 64.3                              | 125.2 | 243.8 | 421.1  | 625.9  |  |
| 18 days        | 53.4                              | 103.8 | 202.2 | 349.2  | 519.1  |  |
| 20 days        | 44.3                              | 86.1  | 167.7 | 289.7  | 430.6  |  |

#### 2.4. "No thyroid exposure" level

The "no thyroid exposure" is the activity measured during thyroid monitoring assumed to give a committed effective dose of 1 mSv as maximum. It can be determined as the inverse of the values in Table 1. This data in Table 4 may be used in case of a reactor release, if the time between release and measurement is more than 12 h. Otherwise; the measurement will be disturbed by the presence of short-lived iodine isotopes. In case of a laboratory accident, where only <sup>131</sup>I is handled, the data may be used from 1 hour after inhalation.

|              | Measured activity in thyroid (kBq) |       |       |       |        |  |
|--------------|------------------------------------|-------|-------|-------|--------|--|
| Time between | Infants & <1 a                     | 5 a   | 10 a  | 15 a  | Adult  |  |
| intake and   |                                    |       |       |       |        |  |
| monitoring   |                                    |       |       |       |        |  |
| 1 hour       | 0.091                              | 0.177 | 0.344 | 0.595 | 0.884  |  |
| 2 hours      | 0.196                              | 0.381 | 0.743 | 1.283 | 1.907  |  |
| 3 hours      | 0.296                              | 0.577 | 1.123 | 1.94  | 2.884  |  |
| 4 hours      | 0.392                              | 0.763 | 1.485 | 2.565 | 3.813  |  |
| 6 hours      | 0.566                              | 1.101 | 2.143 | 3.702 | 5.503  |  |
| 8 hours      | 0.714                              | 1.389 | 2.705 | 4.673 | 6.946  |  |
| 12 hours     | 0.937                              | 1.823 | 3.549 | 6.131 | 9.113  |  |
| 1 day        | 1.208                              | 2.351 | 4.579 | 7.909 | 11.757 |  |
| 4 days       | 0.994                              | 1.934 | 3.766 | 6.505 | 9.67   |  |
| 6 days       | 0.823                              | 1.601 | 3.118 | 5.386 | 8.006  |  |
| 8 days       | 0.682                              | 1.326 | 2.583 | 4.461 | 6.631  |  |
| 10 days      | 0.565                              | 1.099 | 2.14  | 3.696 | 5.494  |  |
| 12 days      | 0.468                              | 0.911 | 1.773 | 3.063 | 4.553  |  |
| 14 days      | 0.388                              | 0.755 | 1.47  | 2.539 | 3.774  |  |
| 16 days      | 0.322                              | 0.626 | 1.219 | 2.105 | 3.13   |  |
| 18 days      | 0.267                              | 0.519 | 1.011 | 1.746 | 2.596  |  |
| 20 days      | 0.221                              | 0.431 | 0.839 | 1.448 | 2.153  |  |

Table 4. Activity (in kBq) measured in the thyroid at various times after intake, corresponding to an intake that will give a committed effective dose of 1 mSv.

## 3. Dose conversion coefficients for selected instruments

The instruments in this report were selected from those calibrated under the Nordic project THYROID in 2014 (Nyander P. 2014). The measured quantities were count rate in units of cps, for counters, spectrometers and gamma cameras, and ambient dose rate in units of  $\mu$ Sv/h, for dose rate meters. Table 5 summarizes the main features of example instruments.

Table 5. Main features of example instruments (Nyander P., 2014). MCA stands for signal handling by multichannel analyser.

| Instrument              | Туре            | Technical specifications |                           | ons        |
|-------------------------|-----------------|--------------------------|---------------------------|------------|
|                         |                 | Detector                 | Volume (mm <sup>3</sup> ) | Electronic |
| SAIC Exploranium GR-135 | Spectrometer    | Nal                      | 65                        | MCA        |
| FLIR IdentiFINDER2      | Dose rate meter | Nal                      | 49                        | MCA        |
| Theo10                  | Spectrometer    | Nal                      | 110                       | MCA        |

The calibration factors for activity in thyroid given, as example, in Table 6 serve only as a guide. The calibration of these instruments was performed using mock-iodine as a substitute for <sup>131</sup>I. The mock-iodine consists of a mix of <sup>133</sup>Ba and <sup>137</sup>Cs and the calibration factor will depend on the settings of energy range for each individual instrument. The calibration factors given in Table 6 are corrected to show the activity of <sup>131</sup>I. A discussion of this correction is given in (Nyander P. 2014).

|                         |              |                                 | C              | alibration fact     | or                  |
|-------------------------|--------------|---------------------------------|----------------|---------------------|---------------------|
| Instrument              | Unit         | Calibration<br>distance<br>(cm) | Child<br>(5 y) | Young<br>(13 – 16y) | Adult<br>(over 18y) |
| SAIC Exploranium GR-135 | Bq per cps   | 0                               | 50             | 71                  | 110                 |
| FLIR IdentiFINDER       | Bq per µSv/h | 0                               | 15843          | 20622               | 35634               |
| Theo10                  | Bq per cps   | 10                              | 813            | 902                 | 1021                |

Table 6. Example calibration factors for the instruments described in Table 5.

The Tables 7-15 list the conversion factors to obtain the committed effective dose per unit of the measurement quantity, and the values of the measurements quantities corresponding to the upper, lower and "no exposure" dose levels, at different time intervals between intake and monitoring, for children, young and adults.

Tables 7 – 9 correspond to the counter Exploranium GR-135, monitoring at close distance; Tables 10 -13 to the dose rate meter IdentiFINDER, monitoring at close

distance; Tables 13 - 15 correspond to the uptake meter Theo10, monitoring at 10 cm away from the neck.

In case the main contribution to the effective dose is just the thyroid dose, to obtain the committed equivalent dose to the thyroid the values in tables 7, 10 and 13 should be multiply by a factor of 20.

#### 3.1 Exploranium GR-135

3.1.1. Committed effective dose per unit of the measurement quantity

Table 7. Committed effective dose per units of the net monitored count rate with the spectrometric instrument **Exploranium GR-135** monitoring at close distance

|                      | Dose conversion factor for Exploranium GR-135 monitoring at close |            |            |  |  |  |
|----------------------|-------------------------------------------------------------------|------------|------------|--|--|--|
|                      | distance (mSv per cps)                                            |            |            |  |  |  |
| Time from suspected  | Child                                                             | Young      | Adult      |  |  |  |
| intake to monitoring | (5 y)                                                             | (13 – 16y) | (over 18y) |  |  |  |
| 1 hour               | 0.283                                                             | 0.119      | 0.124      |  |  |  |
| 2 hours              | 0.131                                                             | 0.055      | 0.058      |  |  |  |
| 3 hours              | 0.087                                                             | 0.037      | 0.038      |  |  |  |
| 4 hours              | 0.066                                                             | 0.028      | 0.029      |  |  |  |
| 6 hours              | 0.045                                                             | 0.019      | 0.020      |  |  |  |
| 8 hours              | 0.036                                                             | 0.015      | 0.016      |  |  |  |
| 12 hours             | 0.027                                                             | 0.012      | 0.012      |  |  |  |
| 1 day                | 0.021                                                             | 0.009      | 0.009      |  |  |  |
| 4 days               | 0.026                                                             | 0.011      | 0.011      |  |  |  |
| 6 days               | 0.031                                                             | 0.013      | 0.014      |  |  |  |
| 8 days               | 0.038                                                             | 0.016      | 0.017      |  |  |  |
| 10 days              | 0.046                                                             | 0.019      | 0.020      |  |  |  |
| 12 days              | 0.055                                                             | 0.023      | 0.024      |  |  |  |
| 14 days              | 0.066                                                             | 0.028      | 0.029      |  |  |  |
| 16 days              | 0.080                                                             | 0.034      | 0.035      |  |  |  |
| 18 days              | 0.096                                                             | 0.041      | 0.042      |  |  |  |
| 20 days              | 0.116                                                             | 0.049      | 0.051      |  |  |  |

#### 3.1.2. Threshold values corresponding to the action levels

Table 8. Net count rate thresholds corresponding to the upper and lower action levels ( $AL_U = 200 \ mSv$ ,  $AL_L = 20 \ mSv$ ) for the spectrometric instrument **Exploranium GR-135** monitoring at close distance

|                    | Thresholds for Exploranium GR-135 monitoring at close distance (cps) |                                       |            |       |            |            |  |
|--------------------|----------------------------------------------------------------------|---------------------------------------|------------|-------|------------|------------|--|
|                    | Up                                                                   | Upper action level Lower action level |            |       |            |            |  |
| Time from suspect- | Child                                                                | Young                                 | Adult      | Child | Young      | Adult      |  |
| ed intake to moni- | (5 y)                                                                | (13 – 16y)                            | (over 18y) | (5 y) | (13 – 16y) | (over 18y) |  |
| toring             |                                                                      |                                       |            |       |            |            |  |
| 1 hour             | 707                                                                  | 1675                                  | 1607       | 71    | 167        | 161        |  |
| 2 hours            | 1526                                                                 | 3614                                  | 3468       | 153   | 361        | 347        |  |
| 3 hours            | 2308                                                                 | 5466                                  | 5244       | 231   | 547        | 524        |  |

| 4 hours  | 3051 | 7226  | 6933  | 305 | 723  | 693  |
|----------|------|-------|-------|-----|------|------|
| 6 hours  | 4402 | 10428 | 10005 | 440 | 1043 | 1000 |
| 8 hours  | 5557 | 13162 | 12629 | 556 | 1316 | 1263 |
| 12 hours | 7290 | 17269 | 16569 | 729 | 1727 | 1657 |
| 1 day    | 9405 | 22279 | 21376 | 941 | 2228 | 2138 |
| 4 days   | 7736 | 18324 | 17582 | 774 | 1832 | 1758 |
| 6 days   | 6405 | 15171 | 14556 | 640 | 1517 | 1456 |
| 8 days   | 5305 | 12565 | 12056 | 530 | 1257 | 1206 |
| 10 days  | 4395 | 10410 | 9988  | 439 | 1041 | 999  |
| 12 days  | 3642 | 8628  | 8278  | 364 | 863  | 828  |
| 14 days  | 3019 | 7152  | 6862  | 302 | 715  | 686  |
| 16 days  | 2504 | 5931  | 5690  | 250 | 593  | 569  |
| 18 days  | 2077 | 4919  | 4719  | 208 | 492  | 472  |
| 20 days  | 1722 | 4080  | 3915  | 172 | 408  | 391  |

#### 3.1.3. "No thyroid exposure" values

Table 9. Maximum net count rate to confirm a "no thyroid exposure" level ( $E \le 1 \text{ mSv}$ ) for the dose rate meter **Exploranium GR-135** monitoring at close distance

|                                          | No thyroid exposure leve | No thyroid exposure level for <b>Exploranium GR-135</b> monitoring at |                     |  |  |
|------------------------------------------|--------------------------|-----------------------------------------------------------------------|---------------------|--|--|
| Time from suspected intake to monitoring | Child<br>(5 y)           | Young<br>(13 – 16y)                                                   | Adult<br>(over 18v) |  |  |
| 1 hour                                   | 3.54                     | 8.37                                                                  | 8.04                |  |  |
| 2 hours                                  | 7.63                     | 18.07                                                                 | 17.34               |  |  |
| 3 hours                                  | 11.54                    | 27.33                                                                 | 26.22               |  |  |
| 4 hours                                  | 15.25                    | 36.13                                                                 | 34.67               |  |  |
| 6 hours                                  | 22.01                    | 52.14                                                                 | 50.02               |  |  |
| 8 hours                                  | 27.78                    | 65.81                                                                 | 63.14               |  |  |
| 12 hours                                 | 36.45                    | 86.35                                                                 | 82.85               |  |  |
| 1 day                                    | 47.03                    | 111.39                                                                | 106.88              |  |  |
| 4 days                                   | 38.68                    | 91.62                                                                 | 87.91               |  |  |
| 6 days                                   | 32.02                    | 75.86                                                                 | 72.78               |  |  |
| 8 days                                   | 26.52                    | 62.83                                                                 | 60.28               |  |  |
| 10 days                                  | 21.97                    | 52.05                                                                 | 49.94               |  |  |
| 12 days                                  | 18.21                    | 43.14                                                                 | 41.39               |  |  |
| 14 days                                  | 15.10                    | 35.76                                                                 | 34.31               |  |  |
| 16 days                                  | 12.52                    | 29.65                                                                 | 28.45               |  |  |
| 18 days                                  | 10.38                    | 24.59                                                                 | 23.60               |  |  |
| 20 days                                  | 8.61                     | 20.40                                                                 | 19.57               |  |  |

#### 3.2 IndentiFinder

## 3.2.1. Committed effective dose per unit of the measurement quantity

| Table 10 Committed effective of | dose per units of the net monitored | d dose rate with the dose rate |
|---------------------------------|-------------------------------------|--------------------------------|
| meter IdentiFinder monitoring   | at close distance                   |                                |

|                      | Dose conversion factor for IdentiFinder monitoring at close distance |            |            |  |  |  |
|----------------------|----------------------------------------------------------------------|------------|------------|--|--|--|
|                      | (mSv per µSv/h)                                                      |            |            |  |  |  |
| Time from suspected  | Child                                                                | Young      | Adult      |  |  |  |
| intake to monitoring | (5 y)                                                                | (13 – 16y) | (over 18y) |  |  |  |
| 1 hour               | 89.62                                                                | 34.68      | 40.31      |  |  |  |
| 2 hours              | 41.54                                                                | 16.07      | 18.68      |  |  |  |
| 3 hours              | 27.46                                                                | 10.63      | 12.35      |  |  |  |
| 4 hours              | 20.77                                                                | 8.04       | 9.34       |  |  |  |
| 6 hours              | 14.40                                                                | 5.57       | 6.48       |  |  |  |
| 8 hours              | 11.40                                                                | 4.41       | 5.13       |  |  |  |
| 12 hours             | 8.69                                                                 | 3.36       | 3.91       |  |  |  |
| 1 day                | 6.74                                                                 | 2.61       | 3.03       |  |  |  |
| 4 days               | 8.19                                                                 | 3.17       | 3.69       |  |  |  |
| 6 days               | 9.89                                                                 | 3.83       | 4.45       |  |  |  |
| 8 days               | 11.95                                                                | 4.62       | 5.37       |  |  |  |
| 10 days              | 14.42                                                                | 5.58       | 6.49       |  |  |  |
| 12 days              | 17.40                                                                | 6.73       | 7.83       |  |  |  |
| 14 days              | 20.99                                                                | 8.12       | 9.44       |  |  |  |
| 16 days              | 25.31                                                                | 9.79       | 11.39      |  |  |  |
| 18 days              | 30.52                                                                | 11.81      | 13.73      |  |  |  |
| 20 days              | 36.79                                                                | 14.24      | 16.55      |  |  |  |

#### 3.2.2. Threshold values corresponding to the action levels

Table 11. Net dose rate thresholds corresponding to the upper and lower action levels ( $AL_U$  =  $200\ mSv,\ AL_L$  =  $20\ mSv$ ) for the dose rate meter <code>IdentiFinder</code> monitoring at close distance

|                    | Thresholds for IdentiFinder monitoring at close distance ( $\mu$ Sv/h) |                 |            |       |               |            |
|--------------------|------------------------------------------------------------------------|-----------------|------------|-------|---------------|------------|
|                    | Up                                                                     | oper action lev | rel        | Lov   | ver action le | evel       |
| Time from suspect- | Child                                                                  | Young           | Adult      | Child | Young         | Adult      |
| ed intake to moni- | (5 y)                                                                  | (13 – 16y)      | (over 18y) | (5 y) | (13 – 16y)    | (over 18y) |
| toring             |                                                                        |                 |            |       |               |            |
| 1 hour             | 2.23                                                                   | 5.77            | 4.96       | 0.22  | 0.58          | 0.50       |
| 2 hours            | 4.82                                                                   | 12.44           | 10.70      | 0.48  | 1.24          | 1.07       |
| 3 hours            | 7.28                                                                   | 18.82           | 16.19      | 0.73  | 1.88          | 1.62       |
| 4 hours            | 9.63                                                                   | 24.88           | 21.40      | 0.96  | 2.49          | 2.14       |
| 6 hours            | 13.89                                                                  | 35.90           | 30.88      | 1.39  | 3.59          | 3.09       |
| 8 hours            | 17.54                                                                  | 45.32           | 38.98      | 1.75  | 4.53          | 3.90       |
| 12 hours           | 23.01                                                                  | 59.46           | 51.15      | 2.30  | 5.95          | 5.11       |
| 1 day              | 29.68                                                                  | 76.70           | 65.99      | 2.97  | 7.67          | 6.60       |
| 4 days             | 24.41                                                                  | 63.09           | 54.27      | 2.44  | 6.31          | 5.43       |
| 6 days             | 20.21                                                                  | 52.23           | 44.93      | 2.02  | 5.22          | 4.49       |
| 8 days             | 16.74                                                                  | 43.26           | 37.22      | 1.67  | 4.33          | 3.72       |

| 10 days | 13.87 | 35.84 | 30.83 | 1.39 | 3.58 | 3.08 |
|---------|-------|-------|-------|------|------|------|
| 12 days | 11.49 | 29.70 | 25.55 | 1.15 | 2.97 | 2.56 |
| 14 days | 9.53  | 24.63 | 21.18 | 0.95 | 2.46 | 2.12 |
| 16 days | 7.90  | 20.42 | 17.57 | 0.79 | 2.04 | 1.76 |
| 18 days | 6.55  | 16.94 | 14.57 | 0.66 | 1.69 | 1.46 |
| 20 days | 5.44  | 14.05 | 12.08 | 0.54 | 1.40 | 1.21 |

#### 3.1.3. "No thyroid exposure" values

Table 12. Maximum net count rate to confirm a "no thyroid exposure" level ( $E \le 1 \text{ mSv}$ ) for the dose rate meter Identifiender monitoring at close distance

|                      | No thyroid exposure level for <b>IdentiFinder</b> monitoring at close distance $(\mu Sv/h)$ |            |            |  |  |
|----------------------|---------------------------------------------------------------------------------------------|------------|------------|--|--|
| Time from suspected  | Child Young Adult                                                                           |            |            |  |  |
| intake to monitoring | (5 y)                                                                                       | (13 – 16y) | (over 18y) |  |  |
| 1 hour               | 0.011                                                                                       | 0.029      | 0.025      |  |  |
| 2 hours              | 0.024                                                                                       | 0.062      | 0.054      |  |  |
| 3 hours              | 0.036                                                                                       | 0.094      | 0.081      |  |  |
| 4 hours              | 0.048                                                                                       | 0.124      | 0.107      |  |  |
| 6 hours              | 0.069                                                                                       | 0.180      | 0.154      |  |  |
| 8 hours              | 0.088                                                                                       | 0.227      | 0.195      |  |  |
| 12 hours             | 0.115                                                                                       | 0.297      | 0.256      |  |  |
| 1 day                | 0.148                                                                                       | 0.384      | 0.330      |  |  |
| 4 days               | 0.122                                                                                       | 0.315      | 0.271      |  |  |
| 6 days               | 0.101                                                                                       | 0.261      | 0.225      |  |  |
| 8 days               | 0.084                                                                                       | 0.216      | 0.186      |  |  |
| 10 days              | 0.069                                                                                       | 0.179      | 0.154      |  |  |
| 12 days              | 0.057                                                                                       | 0.149      | 0.128      |  |  |
| 14 days              | 0.048                                                                                       | 0.123      | 0.106      |  |  |
| 16 days              | 0.040                                                                                       | 0.102      | 0.088      |  |  |
| 18 days              | 0.033                                                                                       | 0.085      | 0.073      |  |  |
| 20 days              | 0.027                                                                                       | 0.070      | 0.060      |  |  |

#### 3.3 Uptake meter THEO 10

## 3.3.1. Committed effective dose per unit of the measurement quantity

|                                                         | Table 13. Committed effective dose per units of the net monitored count rate with the upta | ke |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------|----|
| meter Theo10 monitoring at 10 cm distance from the neck | meter Theo10 monitoring at 10 cm distance from the neck                                    |    |

|                      | Dose conversion factor for Theo10 monitoring 10 cm distance from |            |            |  |  |  |
|----------------------|------------------------------------------------------------------|------------|------------|--|--|--|
|                      | the neck (mSv per cps)                                           |            |            |  |  |  |
| Time from suspected  | Child                                                            | Young      | Adult      |  |  |  |
| intake to monitoring | (5 y)                                                            | (13 – 16y) | (over 18y) |  |  |  |
| 1 hour               | 4.60                                                             | 1.52       | 1.16       |  |  |  |
| 2 hours              | 2.13                                                             | 0.70       | 0.54       |  |  |  |
| 3 hours              | 1.41                                                             | 0.46       | 0.35       |  |  |  |
| 4 hours              | 1.07                                                             | 0.35       | 0.27       |  |  |  |
| 6 hours              | 0.74                                                             | 0.24       | 0.19       |  |  |  |
| 8 hours              | 0.59                                                             | 0.19       | 0.15       |  |  |  |
| 12 hours             | 0.45                                                             | 0.15       | 0.11       |  |  |  |
| 1 day                | 0.35                                                             | 0.11       | 0.09       |  |  |  |
| 4 days               | 0.42                                                             | 0.14       | 0.11       |  |  |  |
| 6 days               | 0.51                                                             | 0.17       | 0.13       |  |  |  |
| 8 days               | 0.61                                                             | 0.20       | 0.15       |  |  |  |
| 10 days              | 0.74                                                             | 0.24       | 0.19       |  |  |  |
| 12 days              | 0.89                                                             | 0.29       | 0.22       |  |  |  |
| 14 days              | 1.08                                                             | 0.36       | 0.27       |  |  |  |
| 16 days              | 1.30                                                             | 0.43       | 0.33       |  |  |  |
| 18 days              | 1.57                                                             | 0.52       | 0.39       |  |  |  |
| 20 days              | 1.89                                                             | 0.62       | 0.47       |  |  |  |

#### 3.3.2. Threshold values corresponding to the action levels

Table 14. Net count rate thresholds corresponding to the upper and lower action levels ( $AL_U$  =  $200\ mSv,\ AL_L$  =  $20\ mSv$ ) for the <code>uptake meter Theo10</code> monitoring at 10 cm distance from the neck

|                    | Thresholds for Theo10 monitoring at 10 cm distance |                |            |       |               |            |
|--------------------|----------------------------------------------------|----------------|------------|-------|---------------|------------|
|                    | (cps)                                              |                |            |       |               |            |
|                    |                                                    |                |            |       |               |            |
|                    | Up                                                 | per action lev | el         | Lov   | wer action le | vel        |
| Time from suspect- | Child                                              | Young          | Adult      | Child | Young         | Adult      |
| ed intake to moni- | (5 y)                                              | (13 – 16y)     | (over 18y) | (5 y) | (13 – 16y)    | (over 18y) |
| toring             |                                                    |                |            |       |               |            |
| 1 hour             | 43                                                 | 132            | 173        | 4.35  | 13.18         | 17.31      |
| 2 hours            | 94                                                 | 284            | 374        | 9.38  | 28.45         | 37.36      |
| 3 hours            | 142                                                | 430            | 565        | 14.19 | 43.03         | 56.50      |
| 4 hours            | 188                                                | 569            | 747        | 18.76 | 56.88         | 74.70      |
| 6 hours            | 271                                                | 821            | 1078       | 27.07 | 82.08         | 107.79     |
| 8 hours            | 342                                                | 1036           | 1361       | 34.17 | 103.61        | 136.06     |
| 12 hours           | 448                                                | 1359           | 1785       | 44.84 | 135.93        | 178.51     |
| 1 day              | 578                                                | 1754           | 2303       | 57.84 | 175.37        | 230.30     |
| 4 days             | 476                                                | 1442           | 1894       | 47.58 | 144.24        | 189.42     |
| 6 davs             | 394                                                | 1194           | 1568       | 39.39 | 119.42        | 156.83     |

| 8 days  | 326 | 989 | 1299 | 32.62 | 98.91 | 129.89 |
|---------|-----|-----|------|-------|-------|--------|
| 10 days | 270 | 819 | 1076 | 27.03 | 81.95 | 107.61 |
| 12 days | 224 | 679 | 892  | 22.40 | 67.91 | 89.18  |
| 14 days | 186 | 563 | 739  | 18.57 | 56.30 | 73.93  |
| 16 days | 154 | 467 | 613  | 15.40 | 46.68 | 61.30  |
| 18 days | 128 | 387 | 508  | 12.77 | 38.72 | 50.85  |
| 20 days | 106 | 321 | 422  | 10.59 | 32.12 | 42.18  |

#### 3.3.3. "No thyroid exposure" values

Table 15. Maximum net count rate to confirm a "no thyroid exposure" level ( $E \le 1 \text{ mSv}$ ) for the **uptake meter Theo10** monitoring 10 cm distance from the neck

|                      | No thyroid exposure level for <b>Theo10</b> monitoring 10 cm distance (cps) |            |            |  |  |
|----------------------|-----------------------------------------------------------------------------|------------|------------|--|--|
| Time from suspected  | Child                                                                       | Young      | Adult      |  |  |
| intake to monitoring | (5 y)                                                                       | (13 – 16y) | (over 18y) |  |  |
| 1 hour               | 0.22                                                                        | 0.66       | 0.87       |  |  |
| 2 hours              | 0.47                                                                        | 1.42       | 1.87       |  |  |
| 3 hours              | 0.71                                                                        | 2.15       | 2.83       |  |  |
| 4 hours              | 0.94                                                                        | 2.84       | 3.73       |  |  |
| 6 hours              | 1.35                                                                        | 4.10       | 5.39       |  |  |
| 8 hours              | 1.71                                                                        | 5.18       | 6.80       |  |  |
| 12 hours             | 2.24                                                                        | 6.80       | 8.93       |  |  |
| 1 day                | 2.89                                                                        | 8.77       | 11.51      |  |  |
| 4 days               | 2.38                                                                        | 7.21       | 9.47       |  |  |
| 6 days               | 1.97                                                                        | 5.97       | 7.84       |  |  |
| 8 days               | 1.63                                                                        | 4.95       | 6.49       |  |  |
| 10 days              | 1.35                                                                        | 4.10       | 5.38       |  |  |
| 12 days              | 1.12                                                                        | 3.40       | 4.46       |  |  |
| 14 days              | 0.93                                                                        | 2.81       | 3.70       |  |  |
| 16 days              | 0.77                                                                        | 2.33       | 3.07       |  |  |
| 18 days              | 0.64                                                                        | 1.94       | 2.54       |  |  |
| 20 days              | 0.53                                                                        | 1.61       | 2.11       |  |  |

#### References

- Gavrilin 2004. Gavrilin Y., Khrouch V., Shinkarev S. et al., "Individual thyroid dose estimates for a case-control study of Chernobyl-related thyroid cancer among children of Belarus Part I. Contributions from short-lived radioiodines (132I, 133I, 135I) and short-lived radiotelluriums (131mTe and 132Te)", *Health Physics* 86 (6) 2004.
- ICRP 2007. Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP 2012.Compendium of Dose Coefficients based on ICRP Publication60. ICRP Publication 119. Ann. ICRP 41(Suppl.).
- Minnenko 2006. Minenko V. F., Ulanosky A. V., Drozdovitch V. V. et al., "Individual thyroid dose estimates for a case-control study of Chernobyl-related thyroid cancer among children of Belarus Part II. Contributions from long-lived radionuclides and external radiation", *Health Physics* 90 (4) 2006.
- NEP 2014. Nordic Guidelines and Recommendations, Protective Measures in Early and Intermediate Phases of a Nuclear or Radiological Emergency, Nordic Emergency Preparedness Group - NEP. (http://www.stralsakerhetsmyndigheten.se/Global/Pressmeddelan den/2014/Nordic%20Flagbook%20February%202014.pdf)
- Nyander P. 2014. Nyander Poulsen A., Lind B., del Risco Norrlid L., et al., "Assessment of accidental uptake of iodine-131 in emergency situations". Nordic nuclear safety research NKS-298. ISBN 978-87-7893-374-4
- Rojas-Palma 2009. TMT handbook, Triage, Monitoring and Treatment of people exposed to ionising radiation following a malevolent act, SCK-CEN, NRPA, HPA, STUK, WHO 2009.
- Shinkarev 2014. Shinkarev A., Kotenko K., Granovskaya E. et al., "Estimation of the contribution of short-lived radio-iodines to the thyroid dose for the public in case of inhalation intake following the Fukushima accident", Proceedings of the 4th European Regional IR-PA Congress, Genève 2014

#### 2015:20

The Swedish Radiation Safety Authority has a comprehensive responsibility to ensure that society is safe from the effects of radiation. The Authority works to achieve radiation safety in a number of areas: nuclear power, medical care as well as commercial products and services. The Authority also works to achieve protection from natural radiation and to increase the level of radiation safety internationally.

The Swedish Radiation Safety Authority works proactively and preventively to protect people and the environment from the harmful effects of radiation, now and in the future. The Authority issues regulations and supervises compliance, while also supporting research, providing training and information, and issuing advice. Often, activities involving radiation require licences issued by the Authority. The Swedish Radiation Safety Authority maintains emergency preparedness around the clock with the aim of limiting the aftermath of radiation accidents and the unintentional spreading of radioactive substances. The Authority participates in international co-operation in order to promote radiation safety and finances projects aiming to raise the level of radiation safety in certain Eastern European countries.

The Authority reports to the Ministry of the Environment and has around 300 employees with competencies in the fields of engineering, natural and behavioural sciences, law, economics and communications. We have received quality, environmental and working environment certification.

#### Strålsäkerhetsmyndigheten Swedish Radiation Safety Authority

SE-17116 Stockholm Solna strandväg 96 Tel: +46 8 799 40 00 Fax: +46 8 799 40 10 E-mail: registrator@ssm.se Web: stralsakerhetsmyndigheten.se