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SSM perspective 

Background 
During the supervisory work of the Swedish Radiation Safety Authority 
(SSM), a need was identified to develop the methods used when evaluating 
control room work in the central control rooms of nuclear power plants. 
Benchmarking is commonly used today, with reference values from earlier 
Integrated System Validation (ISV), when ISV is available. Often, ISV per-
forms well but has some weaknesses. Some of the elements of knowledge 
that are currently missing include how to establish strict clarity concerning 
the aspects that have individual importance and which aspects are impor-
tant collectively, as well as how to match different measurable aspects. 
Improved knowledge in this area, in addition to an advanced method, can 
give a credible outcome and provide guidance when formulating specifica-
tions of requirements for requisite skills, provide input for education and 
training programmes which may need sharper focus, and achieve a higher 
level of knowledge in-house at SSM in relation to supervision in the field. 

The assignment to investigate the methods used when evaluating control 
room work in the central control rooms was given to GEISTT, which as part 
of a research project, placed a focus on how the methods of evaluation 
might be improved. This was done by means of an in-depth study of how 
data can be analysed and presented using a static method for modelling 
called Structural Equation Modelling (SEM). Examples of useful output 
from/benefits of SEM include the possibility to integrate the analysis of 
several different data collection methods and scales, as well as the possibil-
ity to present the outcomes in a way defining the factors of greatest sig-
nificance, e.g. in order to illustrate acceptance values for different criteria. 
SEM can also be used for plant modifications both large and small.

Objective
The method has not yet been applied by the Swedish nuclear power indus-
try. On the other hand, forms of cooperation for development of evaluation 
methods have been established not only with other agencies that regulate 
the nuclear power industry, but also with IFE/Halden, which have shown 
great interest. Based on the stringency and the outcomes produced within 
the project, SSM expects that further research will be carried out using 
quantities of data formulated/designed/adapted?? to better suit SEM, to 
which other sources of funding will also contribute.

Results
The results indicate that SEM is a statistical modelling method that can 
meet needs and increase the level of knowledge to possibly benefit indi-
vidual facilities, educational institutions and the Authority. The results also 
indicate that when conducting evaluations, it is essential from the outset, 
prior to the evaluations, to conscientiously look into how measures and 
variables are formulated and to set the parameters for the quantity of data 
while considering how the outcomes should be collected and analysed. 



SSM 2018:24

Need for further research
A current evaluation method such as ISV is designed to make detailed 
information available regarding Human Error Discrepancies, which is spe-
cific to and appropriate for the nuclear power plant in question, and lim-
ited to benchmarking only at this facility. However, since there is a need to 
have capability to perform comparisons on a more general level in order to 
develop this area of competence, SSM has established that there is a need 
for further research. One need that has been identified is investigating 
whether it is valuable to study the outcomes from previous evaluations of 
integrated systems and to raise them to a higher level of abstraction for the 
purpose of achieving comparability and reinforcing the reference values.

Project information
Contact person at SSM: Yvonne Johansson 
Reference: SSM2016-690 / 7030057-00
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1. Executive Summary 
Major changes to a nuclear power plant, e.g. modernization of the central control 

room, usually requires an Integrated System Validation (ISV) evaluation to be 

conducted to ensure that safe operations can be maintained after the changes have 

been implemented. For changes to a central control room, the impact on human and 

organizational factors such as interactions between humans and systems as well as 

work process, instructions etc. need to be carefully evaluated, proposedly supported 

by a range of heterogeneous datasets to be assessed before changes can be declared 

safe for implementation. 

 

Structural Equation Modelling (SEM) is a quantitative, second generation 

multivariate statistical analysis method that combines the benefits of path analysis, 

factor analysis, and multiple regression analysis. Basically, SEM tests if a modellers 

theory, expressed in the model, fits the data and SEM is thus primarily a so called 

confirmatory method. Several alternative models can usually be specified, but SEM 

provides several goodness of fit - values of how well a model explains the variance of 

the dataset, which can then be used to compare alternative models.  

 

SEM requires a level of statistical understanding that is often beyond laymen’s 

understanding. The report provides description of SEM at several different levels, 

from high level descriptions of the potential of SEM application to step by step 

descriptions of how a model is developed.  

 

A dummy data set was developed, inspired by a recent ISV process of a Swedish 

nuclear power plant central control room. SEM models from this dataset are presented 

to show the potential of SEM for ISV.  

 

The fact that SEM can be used to express relations between variables collected during 

an ISV is not surprising, given that SEM is a general statistical method designed to 

describe relations between many variables. The conclusion of the report is that SEM 

represents a powerful statistical analysis method which is useful for analysis of large 

and heterogeneous datasets, which is often the case with datasets from operational 

settings and processes. Accordingly, SEM-analyses make it possible to draw 

scientifically valid conclusions in operational settings of high operational realism and 

complexity.  
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2. Sammanfattning 
För att säkerställa att säker drift kan upprätthållas efter det att större anläggnings-

ändringarna har genomförts i ett kärnkraftverk, t.ex. modernisering av det centrala 

kontrollrummet, krävs vanligen att Integrerad System Validering (ISV) genomförs. 

För anläggningsändringar i ett centralt kontrollrum ska påverkan på mänskliga och 

organisatoriska faktorer som t.ex. samspelet mellan människor och system samt 

arbetsprocesser, instruktioner m.m. utvärderas noggrant, förslagsvis med stöd av en 

rad heterogena datamängder som skall analyseras innan förändringar kan förklaras 

säkra att införa. 

 

Strukturella ekvationsmodeller (SEM) är en kvantitativ, andra generationens multi-

variat statistisk analysmetod som kombinerar fördelarna med ”path analysis”, 

faktoranalys, och multipel regressionsanalys. I grund och botten svarar en SEM analys 

på hur väl en modellerares teorier, som uttryckts i modellen, passar gentemot en 

databas. SEM är alltså i första hand en hypotesprövande så kallad konfirmatic 

statistisk metod. Flera alternativa modeller prövas ofta, och SEM ger värden på hur 

väl en modell passar eller kan förklara en viss datamängd, vilket således kan användas 

för att jämföra alternativa modeller. 

 

SEM kräver en nivå av statistisk förståelse som ofta är bortom lekmäns gängse 

kunskap. Denna rapport beskriver SEM i flera olika nivåer, från att övergripande 

beskriva SEM och dess potential till att förklara hur SEM bör genomföras steg för 

steg. 

 

För att svara på frågan avseende lämpligheten i att använda SEM för att analysera 

ISV-data avseende utvärderingen av operatörers arbete i centralt kontrollrum 

utvecklades en s.k. ”dummy databas”. Det är alltså en fiktiv databas, men som 

utvecklats för att i hög utsträckning återspegla hur en databas från en ISV-process 

avseende centralt kontrollrum skulle kunna se ut. SEM modeller baserat på denna 

fiktiva databas presenteras för att studera lämplighet och potential i användandet SEM 

för ISV. 

 

Det faktum att SEM kan användas för att förklara relationer mellan variabler som 

samlas in under en ISV är inte förvånande med tanke på att SEM är en generell 

statistisk metod som syftar till att beskriva relationerna mellan många variabler. 

Slutsatsen i rapporten är att SEM representerar en kraftfull statistisk analysmetod som 

är användbar för analys av stora och heterogena datamängder, vilket ofta är fallet med 

datamängder från operativa miljöer och processer.  
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3. Introduction 

3.1. Background 

The reported study was commissioned to GEISTT AB by the Swedish Radiation 

Safety Authority (SSM, Sw. Strålsäkerhetsmyndigheten) to inform them on the 

applicability and value of utilizing the statistical method Structural Equation 

Modelling (SEM) for analysis and modelling of Human and Organizational Factors 

(HOF)-data collected during Integrated System Validation (ISV) processes. 

3.2. Rationale for the study 

The primary purpose of the research was to investigate benefits of SEM as a 

component of the ISV toolbox. Hence, the focus of the research is method 

development by evaluating the applicability and value of SEM as a component of ISV.  

 

Compared to many ISV processes, where the purpose is to identify detailed HEP or 

HED (Human Error Probabilities or Human Error Discrepancies) associated with 

plant or procedures changes, the purpose of this type of modelling effort is to create 

comparability across ISV results, and build scientific and operational understanding 

across studies. 

 

SEM has been used as a statistical analysis and modelling method in many 

behavioural research efforts. SEM can be used to develop data-driven models that 

explain how selected behavioural constructs relate to each other. Through the 

modelling process it is also often the case that the measurement tools are refined and 

the understanding of how different measures relate to each other is further developed. 

 

Data collection and data analysis is a constantly recurring challenge when describing 

and analysing a complex teamwork situation. Typically, numerous, heterogeneous 

data sources are used to describe the work process and the interaction between human 

operators, technical systems, and organizational factors. This may generate a dataset 

which is challenging to compile and present effectively, especially for some types of 

stakeholders, such as an reviewer at a regulatory agency. SEM provides the statistical 

capability to quantify the relations between directly measured variables and the not 

directly measurable variables believed to cause the variations in data. SEM can also 

express the results in a visual format which facilitates human interpretation. 

 

For situations like control room environments, classical experimental designs are 

often less appropriate. The complexity and dynamics of the situation is obvious, and 

it is often not possible to maintain experimental control without losing realism and 

dynamics. As a complement to classical experimentation, SEM-analyses make it 

possible to draw scientific conclusions hard to achieve from classical experimental 

designs (cf. Svensson & Nählinder, 2014). 
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3.3. SEM at a glance 

As noted, SEM is a quantitative, second generation statistical analysis method that 

combines the benefits of path analysis, factor analysis, and multiple regression 

analysis. LISREL and AMOS are two of the more commonly known software 

packages offering the computational capability of SEM. 

 

SEM is based on correlational statistics, which means that the linear relationships 

between variables and the common variance between these variables form the basis 

for the analyses. Like all statistical methods, SEM has several statistical requirements 

on the dataset (e.g. normal distribution and independent measures) and assuming those 

requirements are fulfilled SEM offers powerful capabilities for analysing datasets 

with diverse variables, e.g. different types of measures (e.g. system-generated 

measures, self-observations, observer measures etc.) and different scales (e.g. ordinal 

and interval scales).  

 

SEM presents the degree of relationship between variables in terms of explained 

variance by statistically testing a hypothesized model in a simultaneous analysis of 

the entire system of variables, to determine the extent to which the covariance or 

correlation matrix stipulated by the model is consistent with the matrix based on the 

empirical data. If the statistical goodness of fit between the two compared matrices is 

adequate, the model is a plausible representation of the relations between variables 

that the model developer has specified. It is worth noting that a stipulated model shall 

reduce the complexity of the manifest or measured variables in terms of a few latent 

variables or factors of high explanatory power. 

 

Basically, SEM tests if the theory, expressed by the model, fits the data. However, it 

is important to realize that a SEM never can be accepted, it can only avoid being 

rejected and several alternative models can usually be specified. SEM provides 

several goodness of fit values, i.e. values of how well a model explains the variance 

of the dataset, which can then be used to compare alternative models. Basically, the 

fit-indices announce the proportion of the common variance between the measured 

variables that can be explained by the stipulated model. In this way SEM as a tool can 

advance understanding of the measures along with their relations, allowing an 

empirically supported model of current best fit to be proposed. 

 

SEM requires a level of statistical understanding that is often beyond laymen’s 

understanding. SEM is not a “silver bullet” for analysis of human and organizational 

factors during an ISV, but represents a powerful statistical analysis method which is 

useful for analysis of large and heterogeneous datasets, which is often the case with 

datasets from operational settings and processes.  

3.4. Caveats and delimitations 

Due to a lack of access to a larger data-set from ISV-evaluations of operator 

performance in the central control room (CKR), analyses and modelling of relevant 

concepts have been conducted based on dummy data generated for the purposes of 

showing the steps of SEM. A specific purpose of the report was also to show examples 

of how results can be reported. This exemplifying SEM-analysis is found in Appendix 

C. 
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The design of the dummy dataset was inspired by how data was collected during a 

recent ISV process conducted in Sweden, i.e. it contains similar variables and 

constructs, but is constructed by the report’s authors. The authors of the report had no 

influence on the measures used during the real ISV process and there are some notable 

deviations between the dataset regarding the individual measures and the distribution 

of the data. The dummy data is far from a random dataset, and data points have been 

created with careful attention, but it is dummy data and any analysis of the data, e.g. 

the estimates (values) in the SEM-models presented in the report, must be seen in this 

light.  

 

Late in the project, SEM was tried on a dataset from a real ISV process. However, this 

modelling effort did not result in models with satisfactory fit values, which is 

summarised in Appendix E. 

3.5. Structure of the report 

The study and this report are intended to describe SEM on several levels, from 

summaries of the method’s potential to detailed descriptions.  

 

The report initially presents an overview of the purpose and process of an ISV-process 

(Section 4). The report then describes relevant modelling constructs based on the 

literature on Human Reliability Analysis (HRA) and specifically Performance 

Shaping Functions, PSFs (Section 5 and Appendix B). The report then elaborates on 

the statistical method SEM (Section 6 and Appendix A). The report concludes with a 

discussion of the value of statistical modelling through SEM (Section 0). More in-

depth information, e.g. concerning the SEM-process and PSFs are provided in 

appendices. A summary of the modelling effort with data from a live ISV process in 

provided in Appendix E.  

 

To further the understanding of SEM-application, the development of a model, based 

on a dummy data set, is provided in Appendix C. This appendix contains a dummy 

example of the method and result sections that typically are reported in experimental 

studies. The method section describes the measures that the dummy data set was 

designed to replicate. Rather than just providing a final SEM-model and assuming 

SEM knowledge of the behalf of the reader, the report provides a worked example of 

a model development process, based on the dummy-data.  
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4. Integrated System Validation (ISV) 
This section contains a brief description of the ISV-process to provide context for the 

further analysis. The literature offers numerous alternatives for more detailed 

descriptions of ISV processes, including recommendations and potential for 

development (e.g. Boring & Lau, 2017; NRC, 2012a; Simonsen, 2016a; Simonsen, 

2016b; Rollenhagen, Bladh, Borg, & Evénius, 1998). 

 

NUREG-0711 (NRC, 2012a) state that the objective of validation is to provide 

evidence, that the integrated system supports plants personnel in safe operation of the 

plants, i.e., that the integrated design remains within acceptable performance 

envelopes. ISV is intended to be a validation of the composed functionality of the 

control room together with all human operators from a human factors perspective. 

ISV of the central control room (CKR) is further described as performance-based 

tests, which attempt to determine whether an integrated system’s design (i.e. 

hardware, software, and personnel elements) meets performance requirements and 

supports the plant’s safe operation. HEDs (Human Error Discrepancies) are identified 

if performance criteria are not met. Baseline comparisons are often used, with the 

requirement that the new control room must function at least as well as the old control 

room.  

 

NUREG-0711 further describes that ISV employs a hierarchical set of performance 

measures including measures of plant performance, personnel task performance, 

situation awareness, cognitive workload, and anthropometric/physiological factors. 

Errors of omission and commission also are identified. The hierarchal set of measures 

provides sufficient information to validate the integrated system design and affords a 

basis to evaluate deficiencies in performance and thereby identify needed 

improvements. Pass/fail measures are those used to determine whether the design is 

considered to have successfully passed the validation or not. Diagnostic measures are 

used to better understand personnel performance and to facilitate the analyses of errors 

and HEDs. 

 

Changes conducted during for example the upgrade of a CKR of a nuclear power plant 

(NPP) warrants an ISV process to be conducted. Most commonly these are technical 

system changes, e.g. modernization of a CKR, which results in an ISV process, but 

potentially changes triggering an ISV process may be of other natures, e.g. 

organizational changes. Halbert, Park, Boring, and Jung (2016) describes a long range 

of common human performance issues identified in scientific and operational 

literature regarding the development of digital control rooms that could be triggered 

or be detected during an ISV. They summarize their findings in a list of fifteen 

categories: 

 

 Change in the role/function of human operators 

 Cognitive workload 

 Confirmation/trust on a digital system 

 Crew performance 

 Dealing with different information available across different sources 

 Decrease of the range of vision (visual momentum) 

 Digital environment 

 Digital fatigue 
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 HMI complexity 

 Novel human error in a digital system 

 Opacity in a digital system 

 Physical workload 

 Recovery of human error in a digital system 

 Situation assessment 

 Training 

 

To identify issues such as the ones listed above, the NPP-community often used 

methods labelled Human Reliability Analysis (HRA) which are briefly described in 

the next Section.  
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5. Modelling constructs from Human Reli-
ability Analysis (HRA) 

The phenomena or concepts of interest to human factors researchers are often not 

directly measurable. In statistics, these abstract phenomena have been called latent 

variables, factors or constructs. Examples of latent variables in psychology are, e.g. 

different types of intelligence or motivation. The same measurement problem is true 

for many of the constructs relevant during an ISV. The label construct or latent 

variable is used from here on in the report. 

 

A clear example and analogy of a latent variable from the physical sciences is 

provided by Wilson et al. (2004). The temperature can be measured with several 

different scales such as the Kelvin (K), Réaumur (R), Fahrenheit (F), and Celsius (C) 

scales. However, the manifest and measurable variation in the scales is a consequence 

of the amount of excitation of nuclear particles, and it is not the movement of the 

particles that is observed directly. Thus, temperature can be considered as the 

hypothetical phenomenon affecting and explaining the variation in the scales, and is 

thus considered a latent variable which finds manifest expression on the different 

temperature scales, as illustrated in Figure 1. 

 

 
 

Figure 1. The latent construct Temperature and some manifest measures.  

A critical question in any SEM effort is of course which latent variables that should 

be included in the modeling. Which and how many latent variables that are important 

for the modelling effort naturally depends of the purpose of the model. For application 

of SEM to an ISV-process, the authors consulted the scientific HRA-literature to 

identify latent variables that would be important to assess during an ISV in a nuclear 

power plant. 

 

Human Reliability Analysis (HRA) should be a part of an ISV, and several methods 

exist, see e.g. Bell and Holroyd (2009) for a concise review. Gertman, Blackman, 

Marble, Byers, Haney, and Smith (2005) describe six HRA methods common in the 

nuclear domain: 

 

 THERP 

 HEART 

 CREAM 

 ASEP 

 SHARP 

 SPAR-H 

 

These six methods and several other methods found in the HRA literature use the 

concept of Performance Shaping Functions (PSFs) to describe constructs that are 

important to consider when assessing the performance of human operators. The 



 

13 

 

differences, pros and cons of these different HRA methods are beyond the scope of 

the present report, but NUREG/IA-0216 (IAR, 2009) describe twelve HRA methods 

and compare experiences of their application on a set of common scenarios.  

 

Groth (2009) lists 53 PSF’s often used in THERP HRA (i.e. originally from Swain & 

Guttman, 1983) analyses. Based on these, Groth (2009) has refined and rearranged 

the 53 PSFs into a 9-bubble model (Figure 2) while Groth and Mosleh (2010a, 2010b) 

describes a 6-bubble model (Figure 3) to provide a tiered classification of PSFs, as 

different levels of resolution are suitable for different purposes. Further detailed 

description of these PSF taxonomies are provided in Appendix B.  

 

 

 

 
 

Figure 2. 9-bubble model from Groth (2009). 
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Figure 3. 6-bubble model from Groth and Mosleh (2010a). 

 

Gertman, Blackman, Marble, Byers, Haney, and Smith (2005) and Blackman, 

Gertman, and Boring (2008) describe the Standardized Plant Analysis of Risk-Human 

Reliability (SPAR-H) method. SPAR-H uses a number of PSFs derived from the 

THERP method, while SPAR-H is designed to be a less resource demanding method 

than THERP. SPAR-H suggests a set of nine PSFs which are presented in Figure 4. 

The SPAR-H PSFs all have their individual scales described in Blackman et al. 

(2008). The path diagram in Figure 4 shows the predicted relationships between the 

PSFs in the model of Blackman et al., where solid lines indicate high degree of 

relationship and dashed lines indicate medium degree of relationship. 

 

 
 

Figure 4. Path diagram showing the relative relationship among SPAR-H PSFs. 
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Boring (2010) provides a crosswalk, see Table 1, of PSFs used in four HRA methods 

which have explicit PSF models: 

 

● HRA good practices guide (Kolaczkowski, Forester, Lois, & Cooper, 2005) 

● SPAR-H (Gertman, Blackman, Marble, Byers, Haney, & Smith, 2005) 

● CREAM (Hollnagel, 2005) 

● 9-bubble PSF model (Groth, 2009) 

 

Table 1. Crosswalk of PSFs by Boring (2010).  

Good practices 

(Kolaczkowski et 

al., 2005) 

SPAR-H 

(Gertman et al., 

2005) 

CREAM 

(Hollnagel, 2005) 

9-bubble model 

(Groth, 2009) 

Training and 

Experience 

Experience/Training Adequacy of Training 

and Preparation 

Training 

Knowledge 

Procedures and 

Administrative 

Controls 

Procedures Availability of 

Procedures/Plans 

Resources 

Instrumentation Ergonomics/HMI Adequacy of HMI and 

Operational Support 

Machine 

Time Available Available Time Available Time Loads/Perceptions 

Complexity 

Workload/Time 

Pressure/Stress 

Complexity 

Stress/Stressors 

Number of 

Simultaneous Goals 

Complexity 

Loads/Perceptions 

Team/Crew Dynamics Work Processes Crew Collaboration 

Quality 

Team 

Available Staffing Work Processes Adequacy of 

Organization 

Resources 

Human-System 

Interface 

Ergonomics/HMI Adequacy of HMI and 

Operational Support 

Machine 

Environment Stress/Stressors Working Conditions Complexity 

Accessibility/Operabil

ity of Equipment 

Ergonomics/HMI Adequacy of HMI and 

Operational Support 

Machine 

Need for Special Tools Ergonomics/HMI Adequacy of HMI and 

Operational Support 

Resources 

Communication Work Processes Crew Collaboration 

Quality 

Team 

Special (Equipment) 

Fitness Needs 

Ergonomics/HMI Adequacy of HMI and 

Operational Support 

Resources 

Considerations of 

‘Realistic’ Accident 

Sequence Diversions 

and Deviations 

-- -- -- 

-- Fitness for Duty Time of day -- 

-- Work Processes Adequacy of 

Organization 

Organizational Culture 

-- -- -- Attitude 
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NUREG-0711 (NRC, 2012a), in the section on performance measurement, 

recommends evaluation of the following performance related factors as a part of ISV 

processes: 

 

● Plant performance 

● Personnel task performance 

● Situation awareness 

● Cognitive workload 

● Anthropometric/physiological factors 

 

During recent and current ISVs conducted at Swedish NPPs, a data collection setup 

developed by the Institute for Energy Technology (IFE, Nw. Institutt for 

Energiteknikk) has been used. The measurement model used in Appendix C is 

inspired by the measurement setup used in the OKG O2 ISV (Braarud, Eitrheim, & 

Svengren, 2015), which were developed by IFE, based on NUREG-0711 (NRC, 

2012a) and earlier ISV experiences, where the following constructs is assessed: 

 

● Task performance 

● Situation Awareness 

● Workload 

● Teamwork 

● Usability 

 

As hopefully evident from the above descriptions of PSFs in different HRA methods, 

it would be very useful from both operational and scientific perspectives to quantify 

the relations between identified PSFs. SEM provides a method for quantifying these 

relations and to present the results in a graphical form. 
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6. Structural Equation Modelling (SEM) 

6.1. Background to SEM 

To advance scientific theories and compare results from different studies, many 

researchers in different fields have had the need of statistical methods that enable them 

to quantify the relations between different types of not directly observable constructs 

or latent variables. The researchers often need to: a) to be able to estimate latent 

variables of interest through multiple directly measurable and manifest variables to 

get better measurement, b) to be able to accommodate for measurement error, and c) 

to be able to statistically compare alternative models.  

 

For many human factors related studies it is also a fact that experimental design, data 

collection and analysis of human work, at least from realistic settings, are resource 

demanding activities. Different methodological approaches and measurement setups 

in different studies also make it hard to integrate experimental results from different 

studies with each other.  

 

SEM is a quantitative statistical method that was developed to manage these types of 

methodological needs. SEM combines the benefits of path analysis, factor analysis, 

and multiple regression analysis (Jöreskog & Sörbom, 1984, 1993; Tabachnick & 

Fidell, 1996). SEM is based on correlational statistics, i.e. the linear relationships 

between variables, and the common variance between the variables forms the basis 

for the analyses. SEM identifies the degree of relationship between variables in terms 

of explained variance. One or more hypothesized models are tested statistically in a 

simultaneous analysis of the entire system of variables, to determine the extent to 

which the covariance or correlation matrix stipulated by the model, is consistent with 

the matrix based on the empirical data. If the statistical goodness of fit between the 

two compared matrices is adequate, the model developer can argue that the model is 

a plausible representation of the relations between variables that the model developer 

has specified. 

 

Due to these methodological possibilities, SEM has been used for many years and is 

a popular methodology for non-experimental research, where methods for testing 

theories are not well developed, and ethical or practical considerations make 

traditional experimental designs unfeasible. Diamantopoulos and Siguaw (2000) 

provide an excellent introduction to the SEM process and recent introductory reviews 

to SEM can be found in Byrne (2016) and Blunch (2013). 

 

While most other multivariate procedures essentially are descriptive by nature (e.g. 

exploratory factor analysis), SEM takes a confirmatory (i.e. hypothesis-testing) 

approach to data analysis, even though exploratory research questions can be 

addressed. Whereas traditional multivariate procedures are incapable of assessing 

measurement errors, SEM provides explicit estimates of these parameters.  

 

Hoyle (1995) describes three main differences between SEM and other approaches. 

First, SEM requires formal specification of a model to be estimated and tested. It 

forces the model developer to think carefully about their data and to formulate 

hypotheses regarding each variable. Second, SEM has the capacity to estimate and 
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test relationships between latent variables. Third, SEM is a more comprehensive and 

flexible approach to research design and data analysis than any other single statistical 

model in standard use by social and behavioural scientists. Hoyle also describes SEM 

as similar to correlation analysis and multiple regression analysis in four specific 

ways. First, SEM is based on linear statistical models. Second, there are similar 

requirements, such as independence of observations and multivariate normality. 

Third, SEM promises no test of causality - it merely tests relations among different 

variables. Finally, like any other quantitative analysis, post-hoc adjustments to a SEM 

model require cross-validations.  

 

Causality is a natural and important aspect of modelling, and in a model of explanatory 

power you can predict the effects of some factors on others. Even if SEM-analyses do 

not promise a test of causality, the fit or explanatory power of a SEM-model gives 

support for a causal model. That some manifest measures or variables are measured 

before others in time can be used to strengthen conclusions of causality in SEM-

analyses. Background-variables, measures of information complexity, mental 

workload and situation awareness are often registered before different aspects of 

performance. And, most important, good scientific judgement and experience of the 

domain must be applied (in Swedish called ‘saklogik’ by the LISREL-developer K. 

G. Jöreskog).  

 

The development of a structural equation model is supported by special software 

packages. The first software package developed was LISREL (Jöreskog & Sörbom, 

1984; 1993) which is an acronym for LInear Structural RELations (Sw. Linjära 

Strukturella Relationer). LISREL was originally developed by the two Swedish 

professors Karl Gustaf Jöreskog and Dag Sörbom, and one of the earliest references 

to LISREL methodology is Jöreskog (1973). Since then, SEM-methodology and 

software has been developed by many researchers and companies. AMOS (SPSS, 

2016) and EQS (MVSOFT, 2016) are probably the most widely spread, apart from 

LISREL. The strongly evolving R community has also developed several SEM 

packages1. 

6.2. Basic SEM concepts 

A structural equation model has several components. One component that is present 

in all structural equation models is the measurement model, which defines the latent 

variables through manifest variables. Another important component is the structural 

model. The structural model tests relationships between several latent variables.  

 

Measurement model 

The measurement model is the part of a SEM model which defines relations between 

the latent variables or constructs and their manifest variables. The manifest variables 

are often the items/questions of a questionnaire, but can be any type of measured data. 

To provide a well-rounded measurement of the construct the manifest variables should 

be chosen or designed so that they assess different aspects of the construct, i.e. the 

manifest variables should not be too similar. A pure measurement model represents a 

confirmatory factor analysis (CFA) model in which there is undetermined covariance 

                                                           
1
 R, the platform of open-source statistics packages contains packages named e.g. SEM, LAVA and 

LAVAAN. Bayesian SEM estimation is implemented in the blavaan package. 
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between each possible pair of latent variables. The pure measurement model is 

frequently used as the “null model”, where all covariances in the covariance matrix 

for the latent variables are all assumed to be zero, i.e. the constructs are totally 

unrelated to each other. For the proposed structural model, i.e. the part where relations 

between the constructs are hypothesized, to be investigated further, differences from 

the null model must be significant. 

 

Structural model 

The structural model describes how the researcher has defined the relationships 

between the latent variables. It consists of a set of latent variables in the model, 

together with the direct effects connecting them, and the error variance for these 

variables. Diamantopoulos and Siguaw (2000) state that models with five to six latent 

variables, each measured by three to four manifest variables can be considered an 

appropriate upper level of complexity. Many models found in the literature are not as 

complex and consist of two or three latent variables. Increases in model size typically 

results in increasing difficulty to meet the recommended thresholds for model fit. 

 

Residual error terms 

For the majority of variables that are of interest within the HOF field it is typically 

challenging to design measures that capture a phenomenon perfectly. Thus, error in 

measurement is assumed, and with SEM such are addressed by the inclusion of error 

terms for each variable. Residual error terms reflect the unexplained variance in latent 

variables. 

6.3. Example model 

To exemplify, a structural equation model from the military aviation domain Castor 

(2009) is shown in Figure 5, where ovals are latent variables forming the structural 

model, while squares are manifest variables forming the measurement model. Error 

residuals are not shown in this figure. 

 

 
Figure 5. Example model from aviation research (Castor, 2009). 



 

20 

 

In Castor (2009) the data from 308 simulated fighter aircraft engagements with four 

pilots and 24 variables measured during each engagement were analysed and 

compiled into the statistical model shown in Figure 5. The database thus consisted of 

1232 cases with 24 variables, generated by 37 pilots. The resulting model summarizes 

more than 700 hours of experienced pilots’ complex behaviour in an operationally 

valid environment. 

 

The model describes the relations between 24 manifest variables in the measurement 

model, which are used to describe relations among the seven latent variables. The 

model demonstrates how changes in Sensor management (SENSOR), explains 

changes in Usability of Information (INFO), Mental workload (MWL), Situation 

Awareness (SA), Teamwork (TEAM), Offensive Performance (OFFPERF) and 

Defensive Performance (DEFPERF). In other words, if SENSOR is high, then INFO 

is high, and then MWL is low (which is desirable). If MWL is low then SA is high, 

which relates to high TEAM, which in turn is used to describe changes in OFFPERF 

and DEFPERF. Instead of showing a correlation matrix of the 24 manifest variables 

against each other, a SEM analysis was conducted resulting in the model in Figure 5 

which is an adequate and more succinct way to show important relations between the 

variables of the database.  

 

As demonstrated by Figure 5, SEM forces an analyst or researcher to be very explicit 

concerning the relations between all chosen latent and manifest variables, e.g. the 

omission of an arrow in the model is a quite strong theoretical statement. For example, 

in Figure 5 there is no direct effect between SENSOR and OFFPERF/DEFPERF. 

These effects are instead mediated by the other latent variables. This implies that 

changes in SENSOR, e.g. through increased technical performance of an aircraft 

radar, are mediated by the pilot and the team, (INFO-TEAM) before there are effects 

in the tactical outcome (number of enemies shot down and the own team’s survival, 

i.e. the manifest variables of OFFPERF/DEFPERF). The estimates between the latent 

variables warrant them all as being useful as separate concepts and show that there is 

explanatory power between them. Too high estimates would imply that they are the 

same thing and too low estimates would show that concepts not really, at least not 

directly, are statistically related. 

 

Experiences from SEM-modelling in the aviation domain, such as Castor (2009) and 

Nählinder, Berggren, and Svensson (2004), were used as starting point for the analysis 

reported in Appendix C. One resulting model from this modelling effort, based on the 

dummy data replicating an ISV is presented in Figure 6. This should thus be seen as 

an example of potential outcome of SEM modelling during an ISV, i.e. a model that 

can be analysed to further understand the work processes it was designed to assess. 

For further explanation of this model, see Appendix C. 
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Figure 6. Example model based on ISV dummy data. 

6.4. SEM development process 

The SEM development process is quite complicated, with many steps and 

requirements concerning e.g. the data distribution, model complexity versus amount 

of data, model fit indices, and so forth. This process and its requirements are further 

elaborated in Appendix A.  
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7. Discussion 
For many studies of human behaviour in applied settings, SEM should not be seen as 

a replacement to more classical statistical analyses, e.g. variance analysis through 

ANOVA or presentation of descriptive data. Rather, SEM provides a powerful 

complementary analysis capability, which provides advanced understanding of the 

process where data was collected. For some studies and research questions, SEM can 

provide one of the few or the only statistical analysis method(s) that can be applied. 

Repeated testing and analysis of the manifest variables and their properties are the 

foundation for useful and valid SEM models. The finally proposed model from one 

data collection campaign, e.g. a model from one ISV process, can provide important 

understanding of how variables, in a data-driven view, relate to each other. If the same 

patterns are seen in other studies and a similar structural model repeatedly can be 

found, e.g. as reported by Nählinder, Berggren and Svensson (2004), the theoretical 

importance of the SEM model grows over time. 

A recent empirical study using SEM-analyses concerns performance of a command 

and control centre of the Swedish Armed Forces. The study analysed models of mental 

workload, individual and team performance, and relates highly to performance and 

function of nuclear power plant central control rooms. Among other things of practical 

value, it was found that mental workload has a predictive power on individual and 

team performance up to 30 minutes ahead (Svensson, Rencrantz, Marklund, & 

Berggren, 2014).  

SEM typically supports the analyst in his or her understanding of selected manifest 

and latent variables. Examples of conclusions/findings from the analyses presented in 

Appendix C, i.e. analysis of Figure 7, are presented below to show example results. 

However, remember that the database was designed to demonstrate these findings. 

 

Figure 7. Model based on dummy data before specification search. 

 

Chi square = 320.3 

DF = 131 

RMSEA = 0.088 

p = 0.000 

NFI = 0.864 

AIC = 436 
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Figure 8. Model based on dummy data after specification search. 

 
Figure 9. Model from dummy database, testing the original main hypothesis. 

Some changes (or potential for changes) that the model development in Appendix C 

led to are summarized below: 

 Changes to the measurement model, e.g. the EFA showed that U_Overview 

manifest variable should load on the SA/Workload latent variable. 

 Changes to the structural model, e.g. the new construct of SA/Workload, 

called Operator. The original hypothesis for the analysis, see Section X, 

considered Situation Awareness and Workload to be two separate constructs, 

based on earlier research. However, in this analysis (based on dummy data), 

data suggested that the two constructs should be regarded as the same 

construct. 

 Management of items with low loadings. This was not shown in examples in 

Appendix C, but could be applied to e.g. SA_PlantStatusReport in the 

analysis of the dummy database. If the variable does not load strongly 

anywhere, the variable either measures something else, which not is covered 

by the selected latent variables, or has other measurement issues. 

 Management of variables with low variance and non-normal distributions. 

The modelling and the preparations for modelling put “an analytical 

Chi square = 220.6 

DF = 125 

RMSEA = 0.064 

p = 0.000 

NFI = 0.909 

AIC = 352.6 

Chi square = 345.8 

DF = 126 

RMSEA = 0.096 

p  = 0.000 

NFI = 0.858 

AIC = 473.4 
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spotlight” on variables that have low variance or non-normal distributions. 

The usefulness of a variable with low variance must be discussed, but the 

potential decision to exclude it must be made on a case by case basis, 

depending on what the variable measures. 

 Manage co-variances between the manifest variables, as exemplified by 

comparing Figure 7 and Figure 8. The arrows between the error variables 

estimate the co-variance between manifest variables, and ca to some extent 

be tolerated as the manifest variables can be assumed to co-vary in this study. 

Through inclusion of these co-variances the model fit of the proposed model 

barely reached common acceptable criteria, c.f. recommendations on model 

fit indices in Appendix A.  

 Comparison of models, e.g. if the models in Figure 8 and Figure 9 are 

compared with regard to fit indices, the model in Figure 8 is at better model 

of the data than the model of Figure 9. Theoretical justification might lead a 

modeller to retain worse fitting models, but the goal is to find the model 

which both has theoretical justification, explanatory value and acceptable fit 

indices. 

The AMOS software that was used in the reported analysis provides a number of 

additional analysis capabilities that not are described in the report. Further details of 

these capabilities are provided by Byrne (2016). 

 Bayesian SEM analyses, which is useful when the analysts, in general or for 

the specific analysis, cannot not accept the assumption that ordinal data, 

generated by Likert-type questions, e.g. rating on a 1-5 scale concerning 

some relevant aspect, can be treated as data with continuous scale properties 

data. 

 Multigroup analyses, which are useful when different groups of data samples 

need to be compared, e.g. do the SEM look different for data from different 

ISV’s or for different control room operator roles.  

 Bootstrapping, useful when analysing data with non-normal distributions. 

As stated above, SEM is a powerful statistical method, but there are several issues 

that must be understood and accepted by the reader to appreciate SEM.  

 

Multidimensional constructs 

The latent variables are often multidimensional and hard to exactly define, which is 

one of the reasons to analyse them through SEM. Some of the latent variables 

described in Appendix C have been debated in the scientific literature, (c.f. the 

discussion concerning the validity of the situation awareness construct). However, 

they all represent very useful constructs that instructors and designers use, and the 

terms are also used in the regulatory documents.  

 

Depending on the reason for the ISV, it might be necessary to study other latent 

variables than the ones used in the example modelling of this report. The latent 

variables chosen for the OKG O2 ISV (Braruud et al., 2015) would often be important, 

but for a ISV triggered by procedural changes or training, some new latent and 
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manifest variables might need to be identified. The PSF taxonomies described in 

Section 5 and Appendix B provide a good guide to latent variables other researchers 

have found to be important. Boring’s (2010) crosswalk of PSF build on a large amount 

of research from different perspectives and could be used as a starting point.  

 

Subjective ratings 

Subjective ratings or answers to surveys, questionnaires and interview questions often 

provide very valuable data concerning psychological phenomena. However, they must 

be carefully designed and tested to ensure validity and reliability.  

 

Sources of variance 

For the modelling effort presented in this report several assumptions concerning the 

source of variance in the data have been made.  

 

The number of domain experts, e.g. nuclear power plant operators, that practically can 

be assessed is generally too low for multivariate statistical analysis, even if the whole 

national population would be part of an evaluation, which, on the other hand, reduces 

the statistical problem of generalizability from sample to population.  

 

Consider the case of the dummy database that was developed for the purposes of this 

report. The database was inspired by typical ISV data (c.f. Braruud et al., 2015) from 

control room operators, but to be statistically strict the data of the 189 cases (i.e. rows) 

in the database should be independent from the other cases. Given the available 

number of operators and the fact that the real work tasks largely are team tasks, this 

strict independence requirement will be practically unachievable. The database, from 

which the model in Appendix C was based, was generated by 21 operators distributed 

over seven team across nine scenarios. So, from a strict statistical point of view, the 

189 cases do not represent independent measurements. 

 

For assessments of operational performance in realistic domains, the variance that 

exists in the database can be assumed to be a result of interindividual (difference in 

rating patterns for each participant), intra-individual (difference in rating patterns 

between participants), and situational variance (changes in rating due to events in 

scenarios). If the assumption that the events in the scenarios contributes with more 

variance than the participants rating patterns can be accepted, and by combining inter- 

intra-, and situational variance sources in repeated measurement studies, databases 

and models of practical and theoretical importance can be developed, especially if 

similar structural models repeatedly can be demonstrated.  

 

The differences between how variables vary across the different scenarios and 

operator types should be analysed before they are combined into one database. Castor 

(2009) provides some examples of how differences can be analysed to justify whether 

they can be combined into the same database (which briefly relate to comparing the 

correlation matrices between different subsets of the data, e.g. the three types of 

operators or scenarios). Byrne (2016) also demonstrates different ways to compare 

different datasets, e.g. through latent mean analysis. 

 

Causality in the model 

As stated earlier, SEM does not in itself provide clues concerning causality between 

variables. From a SEM perspective, the effect (e.g. the arrow from Usability to 

Workload) could just as well be in the other direction. Hypotheses about causality and 
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the direction of arrows representing regression weights in a model are typically based 

on earlier observations and understanding of the domain. More insights concerning 

defending the causal interpretation of structural equations can be found for example 

in Bollen and Pearl (2013), and Pearl (2009). It is also important to realise that the 

presence or absence of specific arrows in a model are rather strong statements. For 

example, if the is no direct arrow between two latent variables, the modeller explicitly 

states that there is no direct relation between these variables, and that any effect are 

mediated by other latent variables.  

 

It also important to realize that SEM models are not process models, but models of 

how the relations between variables in the collected dataset can be described.  

 

Properties of data 

Proper application of SEM requires the data to display multi-variate normality. If 

severe deviations from non-normality are observed in the dataset the analysis is at 

risk, but there are also means to manage the non-normality, e.g. through the 

bootstrapping functions of AMOS (e.g. Byrne, 2016).  

 

One of many models 

The fact that SEM can be used to express relations between variables collected during 

an ISV is not surprising, given that SEM is a multivariate statistical method designed 

to describe relations between many variables. 

 

Appendix C provides an example model, based on the dummy data set that was 

created by the authors. Any conclusions regarding the estimates between the latent 

variables in Figure 8 or Figure 9 must be avoided as it is based on dummy data, but 

the figures exemplify results that can be expected after a SEM modelling process.  

 

The potential to draw operationally relevant conclusions from a SEM model is based 

on the design of the measurement model. If the measurement model does not contain 

any criteria variables, e.g. measures of production or safety, the model can of course 

not be used to draw conclusion concerning this, however it may still be a very useful 

descriptive model of how included variables relate to each other.  

 

SEM provides a powerful analysis tool that enables theories that are more specific 

than “everything is connected” as it quantifies relations and shows abstracted 

relations. It is also very important to realize that the essence of SEM is modelling, 

implying a simplification of reality.  

 

Models, as almost anything else, can be described on different levels of abstraction, 

and to exemplify, Figure 10 show three models of a snowflake on different levels of 

abstraction. All three of the models in the figure, to different degrees, capture essential 

properties of a snowflake, even though every real snowflake is said to be unique. 

There are patterns which clearly identify a snowflake and these patterns are found in 

every snowflake, i.e. it is possible to design models of what snowflakes look like.  
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Figure 10. Three models of a snowflake, described on three levels of 

abstraction. 

 

Expanding on the visual analogy shown in Figure 10, and considering the ISV process 

and the need to model work process in a central control room, with all technical 

systems, operators capabilities and processes, Figure 11 is another visual analogy of 

the challenges of statistical modelling, i.e. what resolution is needed in order to 

recognize the important characteristics of the process.  

 

 
 

Figure 11. Visual analogy of the challenge of selecting the appropriate level of 

resolution in a model. 

 

Useful models capture the essential properties of a system or process and facilitate 

insights of their nature. Thereby models can be used as predictive tools, providing a 

foundation for important decisions. Regardless of simplicity, the model still needs to 

contain the essential information to be useful. As conceptualized in Figure 10 and 

Figure 11, the search for the “one and only” model or level of representation is a dead 

end, and the abstraction level of choice instead depends upon the purpose of the 

model. A model can, as shown, be described on different levels of abstraction, and 

any model will face challenges regardless of level of abstraction. The model can be 

challenged because it fails to provide an idealization about the structure of the system, 

which approximates the actual behaviour of the system good enough, or that it buries 

the important processes in a mass of “irrelevant” detail.  

 

For a modeller, it is a trade-off between maximizing explanatory power without 

oversimplifying. It is the modeller who defines the frame of the model and chooses 

which variables to include, based on experience, previous scientific findings, theory, 

and model purpose.  

 

  



 

28 

 

8. References 
Bell, J., & Holroyd, J. (2009). Review of human reliability assessment methods. HSE 

RR679. Buxton, Health and Safety Laboratory.  

 

Bollen, K.A., & Pearl, J. (2013). Eight Myths About Causality and Structural Equation 

Models. In S.L. Morgan (Ed.), Handbook of Causal Analysis for Social Research, 

Chapter 15, 301-328, Springer. Available at: http://ftp.cs.ucla.edu/pub/stat_ser/r393-

reprint.pdf 

 

Boring, R. (2010). How Many Performance Shaping Factors are Necessary for Human 

Reliability Analysis. Proceedings of 10th International Conference on Probabilistic 

Safety Assessment and Management PSAM 2010. 

 

Boring, R., & Lau, N. (2017). Measurement Sufficiency Versus Completeness: 

Integrating Safety Cases into Verification and Validation in Nuclear Control Room 

Modernization. In S. Cetiner, P. Fechtelkotter, & M. Legatt, (Eds.) Proceedings of 

AHFE 2016 - Advances in Human Factors in Energy: Oil, Gas, Nuclear and Electric 

Power Industries, pp.79-90.  

 

Blunch, N.J. (2013). Introduction to Structural Equation Modelling using IBM SPSS 

Statistics and AMOS. Los Angeles, CA: SAGE. 

 

Braarud, P.Ø., & Berntsson, O. (2016). Assessment of Situation Understanding 

Mission, Control and Teamwork in the Control Room: The Development and Initial 

Testing of the SCORE Measure. EHPG MTO-6.7 HWR-1125. Proceedings of EHPG 

2016.  

 

Braarud, P.Ø., Eitrheim, M., & Svengren, H. (2015). Results from the Integrated 

System Validation of the Modernized OKG Oskarshamn 2 Control Room. 

IFE/HRF/F-20/1632. Halden, Institute for Energy Technology.  

 

Byrne, B. (2016). Structural Equation Modeling with AMOS 3rd Edition. New York, 

NY; Routledge.  

 

Collier, S., & Follesø, K. (1995). SACRI: A measure of situation awareness for 

nuclear power plant control rooms", Proceedings of an International Conference: 

Experimental Analysis and Measurement of Situation Awareness, pp. 115-122, 1995-

November-1-3. 

 

Diamantopoulos, A., & Siguaw, J. (2000). Introducing LISREL. London, Sage 

Publications. 

 

Garson, G. D. (2015). Structural Equation Modeling. Asheboro, NC: Statistical 

Associates Publishers. 

 

Gertman, D., Blackman, H., Marble, J., Byers, J., & Smith, C.  (2005). The SPAR-H 

Human Reliability Analysis method. NUREG/CR-6883. Washington, DC: United 

States Nuclear Regulatory Commission. 

 



 

29 

 

Groth, K.M. (2009). A Data-Informed Model of Performance Shaping Factors for use 

in Human Reliability Analysis. PhD thesis. College Park, MD: University of 

Maryland. Available at: http://drum.lib.umd.edu/bitstream/handle/ 1903/9975/ 

Groth_umd_0117E_10944.pdf;sequence=1 

 

Groth, K.M., & Mosleh, A. (2010a). A data-informed model of performance shaping 

factors and their interdependencies for use in human reliability analysis. In Briš, 

Guedes Soares & Martorell (Eds.) Reliability, Risk and Safety: Theory and 

Applications. London, Taylor & Francis Group. Available at: 

http://www.sandia.gov/~kgroth/publicationfiles/Groth_ESREL2009.pdf 

 

Groth, K.M., & Mosleh, A. (2010b). A Performance Shaping Factors Causal Model 

for Nuclear Power Plant Human Reliability Analysis. Proceedings of 10th 

International Conference on Probabilistic Safety Assessment and Management PSAM 

2010. 

 

Halbert, B., Park, J., Boring, R, & Jung, W. (2016). Methods and measures for 

characterizing nuclear power plant operator performance to support control room 

modernization. Proceedings of 13th International Conference on Probabilistic Safety 

Assessment and Management PSAM 2016.  

 

Hart, S.G., & Staveland, L. (1988). Development of the NASA task load index (TLX): 

Results of empirical and theoretical research. In P.A. Hancock and N. Meshkati 

(Eds.), Human Mental Workload, pp 139-183. Amsterdam, Elsevier. 

 

Hollnagel, E. (1998). Cognitive reliability and error analysis method. Oxford, 

Elsevier. 

 

IAR (2009). International HRA Empirical Study – Phase 1 Report. NUREG/IA-

0216 Vol 1.  

 

Jöreskog, K.G., & Sörbom, D. (1984). Analysis of linear structural relationships by 

maximum likelyhood, instrumental variables, and least squares methods. Uppsala, 

University of Uppsala. 

 

Jöreskog, K.G., & Sörbom, D. (1993). LISREL 8: Structural Equation Modeling with 

the SIMPLIS Command Language. Chicago, IL: Scientific Software International. 

 

Kline, R. B. (2011). Principles and practice of structural equation modeling. New 

York, NY: Guilford. 

 

Kolaczkowski, A., Forester, J., Lois, E., & Cooper, S. (2005). Good practices for 

implementing human reliability analysis. NUREG-1792.  Washington, DC; US 

Nuclear Regulatory Commission. 

 

NRC (2012a). Human Factors Engineering Program Review Model. NUREG-0711, 

Rev. 3. Washington, DC: US Nuclear Regulatory Commission. Available at: 

http://www.nrc.gov/docs/ML1232/ML12324A013.pdf 

 



 

30 

 

NRC (2012b). The International HRA Empirical Study - Lessons Learned from 

Comparing HRA Methods Predictions to HAMMLAB Simulator Data. NUREG-

2127. Washington, DC: US Nuclear Regulatory Commission.  

 

Nählinder, S., Berggren, P., & Svensson, E. (2004). Re-occurring LISREL patterns 

describing mental workload, situation awareness and performance. Proceedings of the 

HFES 48th Annual meeting. New Orleans, LA: Human Factors and Ergonomics 

Society.  

 

Pearl, J. (2009). Causality – Models, reasoning, inference 2nd Ed. Cambridge, 

Cambridge University Press.  

 

Rollenhagen, C., Bladh, K., Borg, A. & Evénius, P. (1998). Handbok – 

Validering av kontrollrumsändringar. 

 

Simonsen, E. (2016a). Measures and method characteristics for early evaluation of 

safe operation in nuclear power plant control room systems. Licentiate thesis no 99-

2016. Göteborg, Chalmers University of Technology. Available at: 

http://publications.lib.chalmers.se/records/fulltext/232267/232267.pdf 

 

Simonsen, E. (2016b). Measures and method characteristics for early evaluation of 

safe operation in nuclear power plant control room systems. SSM report 2016:31. 

Stockholm, Swedish Radiation Safety Authority. Available at: 

http://www.stralsakerhetsmyndigheten.se/Global/Publikationer/Rapport/Sakerhet-

vid-karnkraftverken/2016/SSM-Rapport-2016-31.pdf 

 

Strand, S., & Svengren, H. (in progress). The Process Understanding Assessment 

Technique (PUAT). HWR-907. Halden, OECD Halden Reactor Project. 

 

Swain, A.D., & Guttman, H.E. (1983). Handbook of Human Reliability Analysis with 

Emphasis on Nuclear Power Plant Applications. NUREG/CR- 1278. Albuquerque, 

NM: Sandia National Laboratories.  

 

Svensson, E., & Nählinder, S. (2014). Dynamic measures of effectiveness in 

command and control. In P. Berggren, S. Nählinder & E. Svensson (Eds.), Assessing 

Command and Control Effectiveness: Dealing with a changing world, pp 49-70. 

Farnham: Ashgate Publishing Limited. 

 

Svensson, E., Rencrantz, C., Marklund, J., & Berggren, P. (2014). Empirical studies 

of command and control centres at the Swedish Airforce. In P. Berggren, S. Nählinder 

& E. Svensson (Eds.), Assessing Command and Control Effectiveness: Dealing with 

a changing world, pp 103-125. Farnham: Ashgate Publishing Limited. 

 

Wilson, G.F., Frazer, W., Beamont, M., Grandt, M., Gundel, A., Varoneckas, G., 

Veltman, H., Svensson, E., Burov, A., Hockey, B., Edgar, G., Stone, H., Balkin, T., 

Gilliland, K., Schlegel, R.E. & van Orden, K. (2004). Operator Functional State 

Assessment (RTO-TR-HFM-104). Paris: NATO Research and Technology 

Organisation. Available at: handle.dtic.mil/100.2/ADA422195 

 



 

31 

 

Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size 

requirements for structural equation models an evaluation of power, bias, and solution 

propriety. Educational and Psychological Measurement, 73(6), 913-934.  

 

  



 

32 

 

9. Appendices 

9.1. Appendix A: Structural equation modelling pro-
cess 

 

Structural equation modelling (SEM) is almost a research field of its own, and 

therefore only a brief introduction to the model development process is provided here. 

Introductory texts concerning the SEM development process accessible for non-

experts, are, for example, provided in Diamantopoulos and Siguaw (2000) and Byrne 

(2016). 

 

Jöreskog (1993) distinguishes between three use scenarios of SEM: Strictly 

Confirmatory, Alternative Models, and Model Generating. In the Strictly 

Confirmatory scenario the researcher formulates a single model based on theory, 

collects the appropriate data, and then test the fit of the model to the collected data. 

The researcher does no modifications to the model and either accepts or rejects the 

model. However, as other unexamined or nested models may fit the data as well or 

better, an accepted model is only a model that has not been rejected.  

 

In the Alternative Models scenario, the researcher proposes several alternative 

competing theory-driven models. Based on the analysis of the collected data, the most 

appropriate model is chosen. Although this approach is desirable in principle, a 

problem is that in many specific research topic areas, the researcher does not find two 

or more well-developed alternative models to test.  

 

In the Model Generating scenario, the researcher proceeds in a more exploratory 

fashion, often after first having had to reject an initial model after assessment of its 

poor fit. Jöreskog (1993) notes that although re-specification may be either driven by 

theory or data, the goal is to find a model that is both theoretically meaningful and 

with strong statistical fit. The problem with the model development approach is that 

models developed in this way are post-hoc models, which may not be stable and may 

not fit new datasets. Using a cross-validation strategy, where the initial model is 

developed using one data sample and then tested statistically for another independent 

sample, some of this concern can be addressed. The models presented in this report 

most closely matches the Model Generating scenario. 

 

Regardless of which of these three approaches that have been chosen, SEM does not 

in itself provide clues concerning causality in a model, i.e. in what directions the 

effects go (and specifically in the modelling software, in which directions the arrows 

point). The causality must be justified by theory and the scientific judgment by the 

modeler.  

 

In a description of the SEM development process, Jöreskog and Sörbom (1993) 

describe the validation of the measurement model and the fitting of the structural 

model as the two main steps. The validation of the measurement model is 

accomplished primarily through confirmatory factor analysis, while the fitting of the 

structural model is accomplished primarily through path analysis with latent variables. 

The model that is being developed is specified based on available theory. Constructs 



 

33 

 

are chosen and operationalized by multiple manifest variables and tested through 

confirmatory factor analysis to establish that indicators seem to measure the 

corresponding constructs. The researcher proceeds to development of the structural 

model only when the measurement model has been validated. Two or more alternative 

models (one of which may be the null model) are then compared in terms of model 

fit, which measures the extent to which the covariance predicted by the model 

correspond to the observed covariance in the data. Modification indexes, suggested 

by the analysis software, may be used by the researcher to alter one or more model 

specifications to improve fit, but only if supported by theory. 

 

Hence, a solid theoretical foundation is thus needed before a structural equation model 

is developed, as theory warns us of potential problems such as, for example, excluded 

variables. Theoretical support is also necessary to distinguish between statistically 

equivalent models. Good definitions are also helpful when identifying appropriate 

manifest variables/measures. 

 

In another step by step description of the SEM development process Diamantopoulos 

and Siguaw (2000) describes eight relatively distinct but related steps that a researcher 

goes through when developing a structural equation model: 

 

1. Model conceptualization 

2. Path diagram construction 

3. Model specification 

4. Model identification 

5. Parameter estimation 

6. Assessment of model fit 

7. Model modification 

8. Model cross validation 

 

Brief descriptions of the basic outline and considerations of each of Diamantopoulos 

and Siguaw’s steps will be provided below.  

 

Model conceptualization 

In this initial step, the researcher defines his or her conceptual model, which translates 

theoretical assumptions into a conceptual framework. This conceptual model needs to 

be identified based on existing literature and theory. In this step, the researcher decides 

which latent variables or constructs that will need to be included, and how they are to 

be operationalized through manifest variables. During this stage, it is crucial to make 

every effort to include any important factors that can affect the variables that are 

included in the model. An omission of important factors represents a specification 

error and the result can be that the proposed model in the end does not represent the 

“whole” truth. The structural model consists of a set of exogenous and endogenous 

latent variables in the model, together with the direct effects connecting them, and the 

error variance for these variables. The error variance reflects the effects of 

unmeasured variables and error in measurement. The exogenous latent variables are 

those that are conceptualized as to cause variance in the values of other latent variables 

in the model. Changes in the values of exogenous variables are not explained by the 

model and they are considered to be influenced by factors external to the model. 

Endogenous latent variables, those that are influenced by the exogenous variables in 

the model, either directly, or indirectly affect each other. Variance in the values of 
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endogenous variables is explained by the model because all latent variables that 

influence them are included in the model specification. 

 

Successful development of a structural equation model is to a large extent based on a 

sound model conceptualization. It is rare that a SEM development process that does 

not start from well-established theoretical concepts and tested manifest measures 

result in a useful model.  

 

Path diagram construction 

In this second step of the modelling process the model developer can describe his or 

her model graphically as a path diagram. This is not a mandatory step, but it is helpful 

to make the model more explicit for the model developer. 

 

Model specification 

The third step is model specification, where the researcher specifies which effects that 

are null, which are fixed to some constant and which ones that vary through the 

specification of a syntax file for the analysis software. The researcher now needs to 

be very explicit on which variables that will be included and how they shall relate. 

The specification of a syntax file can be either through a text or a graphical format. 

 

Effects are represented by an arrow in a path diagram, while null effects result in the 

absence of an arrow. Note that the existence or absence of an arrow represents a rather 

strong theoretical assumption. A model where no effect is constrained to zero will 

always fit the data, and the closer one is to this most complex model, the better the fit 

of the model to the data. Thus, for a model where many effects are included in the 

specification, the fit indices reported are better, but the model is also more complex 

and harder to grasp for the researcher. 

 

Model identification 

The fourth step in the process is model identification, which is performed by the 

analysis program, e.g. AMOS. In this step, the empirical data is investigated to see 

whether there is enough information in the data to do the parameter estimation that is 

performed in the next step, i.e. that a unique value can be identified for each parameter 

in the model. If there is a lack of information, i.e. the number of parameters estimated 

is less than the number of variances and covariances, the model becomes under-

identified and the analysis is cancelled. The model can also become just-identified or 

over-identified. If the number of parameters estimated are greater than the number of 

variances and covariances, the model is over-identified. 

 

To exemplify what is done during the model identification the following simple 

example can be used: Is there enough information to uniquely identify the values of 

A and B in the equation A * B = 100? The answer is no, as there are several different 

possible solutions and this would equal to when a model is unidentified. However, if 

A is fixed to 10 you know that B must be 10, and the equation can be identified.  

 

Parameter estimation 

If the model can be identified, the parameter estimation step can be executed. During 

the parameter estimation, the analysis software creates a covariance matrix based on 

the specified model. If there is no relation between two variables specified during the 

model specification the covariance is set to zero. The covariance matrix that is 

proposed by the model is then compared to the matrix produced by the data. 
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The selection of method of estimation is also an important component of the model 

specification. Several methods of estimation can be used and ordinarily one will get 

similar estimates by any of the methods (Garson, 2015). Maximum Likelihood 

estimation is by far the most common method and Garson (2015) recommends that it 

is used, unless the researcher has good reason or counterarguments. Unlike some of 

the other estimation methods, Maximum Likelihood does not assume uncorrelated 

error terms. Key assumptions are large samples, manifest variables with multivariate 

normal distribution, valid specification of the model, and manifest variables on an 

interval or ratio scale, although ordinal variables are widely used in practice. If ordinal 

data are used, they should have at least five categories and not be strongly skewed. 

 

Assessment of model fit 

Once a model converges and parameter estimates are presented, the question is to 

what extent the empirical data fit the proposed model. In other words, how well the 

correlation or covariance matrix produced by the data matches the matrix that is 

implied by the model. Assessment of model fit is one of the more complex tasks of a 

SEM analysis. Model fit is related to data, model, and estimation methodology and a 

plethora of fit indices has been developed over the years.  

 

Jaccard and Wan (1996) describe three classes of fit indices (absolute, parsimonious, 

and relative) that should be considered when evaluating the fit of a structural equation 

model. Absolute fit compares the predicted and observed covariance matrices. The 

chi-square (χ2), goodness of fit index (GFI), and standardized root mean square 

residual (Standardized RMR) are indicators of absolute fit.  

 

Large values of chi-square reflect a discrepancy between the observed and predicted 

matrices. The chi-square is reported with the number of degrees of freedom associated 

with the model, and a significance test. The degrees of freedom are a function of the 

number of covariances provided and the number of paths specified and a statistically 

significant model suggests that the specified paths do not provide a perfect fit to the 

data. Hence a non-significant value (p > 0.05) is desired, but Hair et al. (1995) note 

that the chi-square is sensitive to sample size and that it is rare to find a non-significant 

value when sample size is over 500 cases. 

 

The GFI is a function of the absolute discrepancies between the observed and 

predicted covariance matrices. The recommended threshold for the GFI is 0.90. GFI 

is sensitive to sample size. 

 

The Root Mean Square Residuals (RMR) are the coefficients which result from taking 

the square root of the mean of the squared residuals, which are the amounts by which 

the sample variances and covariances differ from the corresponding estimated 

variances and covariances. The Standardized RMR (S RMR) is the average difference 

between the predicted and observed variances and covariances in the model, based on 

standardized residuals. The recommended threshold for the standardized RMR is 0.05.  

 

The second category also considers absolute fit, but penalizes model complexity. The 

more paths specified, the lower the models’ parsimony. The Root Mean Square Error 

of Approximation (RMSEA) is the common choice for measure of parsimony. The 

RMSEA fit index values approaching zero are desired. Many recommendations state 

that it should be less than 0.05 to represent a good model fit, but for example Bollen 
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(1989), and Browne and Cudeck (1993), state that a value of 0.08 or less could be 

considered acceptable. RMSEA is sensitive to sample size. 

 

The third category of fit scales compares the absolute fit to an alternative model. The 

relative goodness of fit measures compares the evaluated model to the fit of another 

model. When none is specified, the analysis software packages usually default to 

comparing the model with the independence model, or even allow this as the only 

option. The Comparative Fit Index (CFI) is a commonly used fit index and Byrne 

suggest that the CFI should be a fit statistic of choice. The value for the CFI indicates 

the fit of the model compared to the null model and the recommended threshold is 

0.90.  

 

Numerous measures based on information theory have also been developed. These 

measures are appropriate when comparing models which have been estimated using 

maximum likelihood estimation. They do not have thresholds, like 0.90, and rather 

they are used when comparing models, with a lower value representing a better fit. 

AIC is the Akaike Information Criterion and is a goodness-of-fit measure which, 

adjusts model chi-square to penalize for model complexity. CAIC is the Consistent 

AIC, which penalizes for sample size as well as model complexity. 

 

Most important when considering different fit indices, and expressed by Byrne (2016) 

is that model adequacy should be based on theoretical, statistical as well as practical 

considerations. Thus, the causal logic and good judgment of the model developer can 

never be underestimated. This has also been emphasized from the beginning by 

Jöreskog and Sörbom (1984; 1993). 

 

Model modification 

When a model has been evaluated with respect to its fit, the modeler can decide 

whether the model is acceptable or that it needs to be modified to better fit the 

empirical data. The SEM software packages presents suggestions for model 

improvement, so called modification indices. These modifications are entirely data 

driven and careful deliberation and theoretical support must substantiate any changes 

to the model based of the modification indices.  

 

Model cross-validation 

The last step of the modelling process is to conduct cross-validation of the proposed 

model against a new dataset, or a part of the dataset that have been kept aside for 

cross-validation purposes. This step is extra important if major changes have been 

made to the model as a result of the model modification phase. This has not been 

conducted for the current “dummy data” model reported in this report. 

 

Guidelines for model development 

There are many issues to consider when developing a model, which hopefully is 

evident from the above description of the development process. Thompson (2000) has 

suggested the following ten guidelines when developing and reporting structural 

equation models: 
1. Do not conclude that a model is the only model to fit the data.  

2. Test re-specified models with split-halves data or new data.  

3. Test multiple rival models.  

4. Use a two-step approach of testing the measurement model first, then the structural 

model.  

5. Evaluate models by theory as well as statistical fit.  
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6. Report multiple fit indices.  

7. Show that you meet the assumption of multivariate normality.  

8. Seek parsimonious models.  

9. Consider the level of measurement and distribution of variables in the model.  

10. Do not use small samples.  

 

Mulaik and Millsap (2000) suggested a stringent four-step approach to modelling: 

1. Exploratory factor analysis to estimate the number of latent variables or 

factors. 

2. Confirmatory factor analysis to confirm the measurement model. As a fur-

ther refinement, factor loadings can be constrained to 0 for any measured 

variable's cross loadings on other latent variables, so every measured varia-

ble loads only on one latent variable. 

3. Test the structural model. 

4. Test nested models to get the most parsimonious one. Alternatively, test 

other researchers’ findings or theory by constraining parameters as they 

suggest should be the case.  
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9.2. Appendix B: Performance shaping functions (PSF) 
taxonomies 

 

Table 2. THERP PSFs (Swain & Guttman, 1983). 

External PSFs   

 Situational 

Characteristics 

a) Control room architectural features 

b) Quality of the working environment 

c) Work hours and work breaks 

d) Shift rotation and night work 

e) Availability/Adequacy of special 

equipment/tools and supplies 

f) Manning parameters 

g) Organizational structure and actions by 

others 

h) Rewards, recognition and benefits 

   

 Task and 

equipment 

characteristics 

a) Perceptual requirements 

b) Motor requirements 

c) Control-Display requirements 

d) Anticipatory requirements 

e) Interpretation 

f) Decision-making 

g) Complexity/Information load 

h) Frequency and repetitiveness 

i) Task criticality 

j) Long- and short-term memory 

k) Calculation requirements 

l) Feedback 

m) Dynamic versus Step by step activities 

n) Team structure 

o) Man-machine interface factors 

   

 Job and task 

instructions 

a) Operating procedures 

b) Oral instructions 

   

Internal PSFs   

 Psychological 

Stressors 

a) Suddenness of onset 

b) Duration of stress 

c) Task speed 

d) Task load 

e) High jeopardy risk 

f) Threat of failure, loss of Job 

g) Monotonous, degrading or meaningless 

Work 

h) Long, uneventful vigilance periods 

i) Conflicts of motives about Job performance 

j) Reinforcement absent or negative 

k) Sensory deprivation 

l) Distraction (Noise, Glare, Movement, 
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Flicker, Colour) 

m) Inconsistent cueing 

   

 Physiological 

Stressors 

a) Duration of stress 

b) Fatigue 

c) Pain or discomfort 

d) Hunger or thirst 

e) Temperature extremes 

f) Radiation 

g) G-Force extremes 

h) Atmospheric insufficiency 

i) Vibration 

j) Movement constriction 

k) Lack of physical exercise 

l) Disruption of circadian rhythms 

   

 Organizational 

Factors 

a) Previous training/Experience 

b) State of current practice or skill 

c) Personality and attitudes 

d) Motivation and attitudes 

e) Knowledge of required performance 

standards 

f) Sex differences 

g) Physical condition 

h) Attitudes based on influence of family and 

other outside persons or agencies 

i) Group identification 

 

Table 3. Groth’s (2009) 9-bubble model of PSFs. 

Model Node Included PSFs 

Training Training 

Organizational Culture Safety Culture, Management Activities, 

Corrective Action Program 

Resources Procedures, Tools, Necessary Information 

Team Communication, Team Coordination, Team 

Cohesion, Direct Supervision, Role 

Awareness 

Attitude Morale/Motivation/Attitude, Bias, Attention 

Knowledge Skills, Knowledge and Experience, 

Familiarity with Situation, Physical and 

Psychological Abilities 

Machine Human-System Interfaces, System Responses 

Loads/Perceptions Task Load, Time Load, Other Loads, 

Perceived Situation Severity, Perceived 

Situation Urgency, Perceived Decision 

Responsibility 

Complexity Task Complexity, Hardware and Software 

Conditions 
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Table 4. Groth and Mosleh’s (2010a) 6-bubble model of PSFs. 
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9.3. Appendix C: Dummy data modelling 

The underlying research question for the project reported was if and how SEM can 

contribute with important analytical support during an ISV process. 

To exemplify how results would be reported, this appendix contains a modelling effort 

based on the dummy database that was developed in the project. This appendix entails 

two sections, Method and Results. The structure and format of these two sections quite 

strictly follows the academic publication guidelines of American Psychological 

Association (APA) 6th Edition Publication Manual (2010). 

The goal for this dummy analysis is to present a SEM model of the performance of 

teams of shift operators in a nuclear power plant’s (NPP) central control room (Sw. 

Centralt kontrollrum, CKR), as expressed by the latent variables of usability, 

workload, situation awareness, teamwork, and task performance. These latent 

variables were chosen as they were evaluated during the PLEX ISV of the OKG O2 

power plant in 2015 (c.f. Braruud et al., 2015). The model can thus be said to be a 

model that quantifies the relation between the latent variables and expresses the 

relation between properties of technical systems, individual’s cognition and 

interaction within a team, and the performance of the total human-machine system. 

Theoretically, and almost philosophically, it is interesting whether the complex 

processes studied can be expressed in something as abstracted and simplified as a 

simplex structure. The main hypothesis is presented graphically in Figure 12. For the 

model described in this appendix, the goal was to describe the relation between the 

selected variables in one of the conceptually simplest, yet modelling wise most 

challenging way, i.e. in a so called simplex structure. 

 

Figure 12. Main hypothesis for example model based on ISV dummy data. 

The rationale behind this graphical representation of this hypothesis was Castor’s 

(2009) conceptualization that lower level processes (to the left in the figure) form the 

foundation of higher level processes that eventually builds up to performance, c.f. 

Figure 5. It also relates to the modelling efforts reported by Nählinder, Berggren, and 

Svensson (2004), where the constructs of workload, situation awareness and 

performance show reoccurring patterns. 
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This main hypothesis could also be described through several sub-hypotheses that are 

presented in the bullet list below: 

 H1: Usability is negatively correlated with Workload. 

 H2: Workload is negatively correlated with Situation Awareness. 

 H3: Situation Awareness is positively correlated with Teamwork. 

 H4: Teamwork is positively correlated with Task Performance. 

 H5: All latent variables are useful and appropriate (valid and reliable) in a 

SEM model describing the collected data. 

 H6: It is possible to describe the constructs in a simplex structure while 

retaining reasonable model fit. 

9.3.1. Method 

 

Participants 

 

Participant characteristics 

To be eligible to participate in the experimental part of the study, participants had to 

be regular employees at the nuclear power plant and be member of a shift team, be 

between 25 and 65 years of age and have been employed as a control room operator 

for at least 3 years. 

Sampling procedures 

The participants were all regular control rooms operators and members of the regular 

shift team at the power plant. No participants were in any type of dependency toward 

the research team, or any other people or organizations involved in this research. 

Thirty persons were approached and a total of 21 were available, willing, and eligible 

to participate. Participation in the ISV and the data collection used for the reported 

modelling was conducted as a part of the operators’ regular work duties and no extra 

benefits were received for participation. 

Sample size, power, and precision 

The required sample size in SEM depends on model complexity, but several other 

factors, e.g., normality of the data, affect the sample size decision. Many 

recommendations suggest between 5 to 15 cases per parameter that will be estimated 

or at least 200 cases, for an overview see e.g. Kline (2011). Recent simulations by 

Wolf, Harrington, Clark, and Miller (2013) indicate the sample size requirements are 

lower. For the current study, the ISV sampled the whole population of shift teams at 

the power plant, and the databases thus consisted of 189 cases, generated by seven 

shift teams of three operators, i.e. 21 actual operators. 

Measures and covariates 

The measures used in this report to a large, but not complete, extent replicate the ISV 

evaluation used at OKG O2 in late 2015. In the current modelling effort, and the 

dummy database, 18 manifest variables/measures were used to replicate the OKG O2 

ISV which are listed below and briefly described at their respective subheadings. Full 

descriptions of the measures are available in Braarud, Eitrheim, and Svengren (2015). 
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 TP_Performance time 

 TP_ProcessExpertRating 

 TP_OperatorSelfRating 

 TW_ProcessExpertRating 

 TW_OperatorSelfRating 

 SA_PUAT 

 SA_OperatorSelfRating 

 SA_PlantStatusReport 

 W_WorkloadAcceptability 

 W_NASATLX_ME 

 W_OperatorRatingStaffingLoad 

 U_Overview 

 U_DetailedInfoProcess 

 U_Navigation 

 U_AlarmSystems 

 U_EventLists 

 U_LogsTrends 

 U_OverallFunctionality 

 

The Institute for Energy Technology in Halden (Nw. Institutt for Energiteknikk, IFE) 

is currently developing a measurement tool/method called SCORE (Supervisory 

COntrol and Resilience Evaluation) (e.g. Braarud, Eitrheim, & Fernandez, 2015; 

Fernandez, & Braarud, 2015; Braarud, & Berntsson, 2016; Braarud, Eitrheim, 

Holmgren, & McDonald, 2016). A replication of the SCORE expert ratings was not 

included in the dummy database. 

Task Performance 

Task Performance was operationalized through the measures: 

 TP_Performance time – in this report and the dummy database this is 

represented as a deviation from “goodness” concerning the time to manage 

incidents during the scenarios. 

 TP_ProcessExpertRating – Process expert rating of task performance on a 1-

6 scale which represented from Not Acceptable to Acceptable. 

 TP_OperatorSelfRating – Operator self-rating of task performance on a 1-6 

scale which represented from Not Acceptable to Acceptable. 

 

Teamwork 

Teamwork was operationalised through the measures: 

 TW_ProcessExpertRating – Process expert rating of teamwork on a 1-6 scale 

which represented from Not Acceptable to Acceptable. 

 TW_OperatorSelfRating – Operator self-rating of teamwork on a 1-6 scale 

which represented from Not Acceptable to Acceptable. 

 

Situation Awareness 

SA was operationalised through the measures: 

 SA_PUAT – The PUAT (Process Understanding Assessment Technique) by 

Strand and Svengren (in progress) is a variant of the SACRI measure (Collier 
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& Follesø, 1995) where questions concerning process understanding are 

answered by the operator and converted in a scale from 0=worst to 1=best. 

In this report one PUAT variable is used. 

 SA_OperatorSelfRating – Operator self-rating of situation awareness on a 1-

6 scale which represented from Not Acceptable to Acceptable. 

 SA_PlantStatusReport – Process expert rating of how a plant status report by 

the shift team adhered to guidelines for such a report. Rated on a scale from 

0=worst to 1=best. 

 

Workload 

Workload was operationalised through the measures: 

 W_WorkloadAcceptability – Workload acceptability rated by the operators 

on a 1-6 scale which represented from Not Acceptable to Acceptable. 

 W_NASATLX_ME – the mental effort dimension from the NASA TLX 

(Hart & Staveland, 1988) measure. NASA TLX contains six dimensions but 

for this ISV process the mental effort rating was deemed necessary. The 

NASA TLX value was in this report transformed into a 1-6 scale. 

 W_OperatorRatingStaffingLevel – Operator ratings of frequency of staffing 

inadequacy. The Operator rating of staffing level value was for this report 

transformed into a 1-6 scale. 

 

Usability 

During the OKG O2 PLEX ISV Usability was operationalised through 78 ratings on 

7 dimensions. In this report and the dummy database Usability was measured through 

mean ratings on the seven manifest variables below: 

 U_Overview – 16 ratings on a 1-6 scale concerning different aspects of the 

usability of Overview information. 

 U_DetailedInfoProcess – 15 ratings on a 1-6 scale concerning different 

aspects of the usability of detailed information about processes, parameters, 

components and other objects. 

 U_Navigation – 6 ratings on a 1-6 scale concerning different aspects of 

usability of the navigation in the technical systems. 

 U_AlarmSystem – 21 ratings on a 1-6 scale concerning different aspects of 

the alarm system. 

 U_EventLists – 4 ratings on a 1-6 scale concerning different aspects of the 

usability of the event lists. 

 U_LogsTrends – 8 ratings on a 1-6 scale concerning different aspects of 

usability of the logs and trend displays. 

 U_OverallFunctionality – 8 ratings on a 1-6 scale concerning different 

aspects of usability of the overall functionality and interaction of the 

technical systems. 
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OKG 02 central control room simulator 

The experiment was conducted in a CKR simulator, with technical capabilities to 

simulate both the previous and the modernized OKG O2 CKR. 

Figure 13. OKG O2 control room simulator. 

Research design 

Figure 14 schematically describes the research design with seven shift teams 

performing in nine scenarios with rating for the data collection conducted after each 

scenario. The seven teams of three operators with Shift supervisor (SS), Reactor 

operator (RO) and Turbine operator (TO) all participated in all scenarios 

 

Figure 14. A schematic representation of the research design. 

9.3.2. Results 

 

Participant flow 
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Figure 15. Participant flow through the stages of experiment preparation and 

scenario execution. 

Recruitment 

The data collection of the experimental phase of the study was conducted during a 

total of twenty-one days in May and June 2015. The recruitment of the participants 

was conducted during the weeks before each specific day of the experiment, with 

participant confirmation about a week in advance. The participants received no 

monetary compensation for their participation. 

Data analysis and statistics 

The statistical software packages SPSS 24 and AMOS 24 was used for all statistical 

analyses. 

Normality of data 

SEM requires the data to exhibit both single variable and multi-variate normality. 

Both statistical univariate and multivariate normality as well a set of assumptions 

concerning linearity, outliers, and multicollinearity of the collected data, which is a 

prerequisite for the planned statistical analyses, was initially assessed through 

inspection of different types of graphs and plots. Descriptive data are provided below, 

at the appropriate subsection. The Kolmogorov-Smirnov (K-S) values for each 

measure are presented in Table 5 - Table 9 below; a non-significant result (i.e. a sign. 

value >.05) indicates normality. For all the variables in the dummy database non-

normality was detected. However, all variables were retained after visual inspection, 

accepting the risk of effects on the estimates in the models, given the observed 

distributions. Figure 16 shows an example of a histogram showing distribution of one 

of the variables. 

 

Figure 16. Data normality example. 
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Missing data 

Due to the strict procedural discipline during the experiment no missing data exists. 

At three occasions, the simulator had to be restarted due to technical problems, but 

the individual participants could quickly complete the scenarios and data collection 

due to the simulator's capability to resume aborted scenarios at the exact place where 

problems occurred. 

Demographics 

The mean age of the participants in the dummy data set (4 female and 17 male) was 

45.29 years with a standard deviation of 11.95, and a range of 25-64 years. As a 

comparison, the mean age of the operators in the nuclear power plant of FKA is 44.31 

years. 

Task Performance 

Descriptive data concerning the Task Performance measures are provided in Table 5. 

Table 5. Descriptive statistics Task Performance measures. 

Measure N Mean SD Min Max Skewness Kurtosis K-S K-S Sig. 

TP_PerformanceTime 189 4.84 .886 2 6 -.727 -.307 .139 .000 

TP_ProcessExpertRating 189 4.85 1.021 2 6 -.426 -.842 .203 .000 

TP_OperatorSelfRating 189 5.11 .951 3 6 -.739 -.502 .260 .000 

 

In Figure 17, the TP_PerformanceTime variable is presented as a bar graph to, as an 

example, show the variance in the data graphically. 

 

Figure 17. Bar graph of the TP_PerformanceTime variable. 

 

Teamwork 

Descriptive data concerning the Teamwork measures are provided in Table 6. 

Table 6. Descriptive statistics Teamwork measures. 

Measure N Mean SD Min Max Skewness Kurtosis K-S K-S Sig. 

TW_ProcessExpertRating 189 4.76 1.022 2 6 -.687 -.037 .259 .000 

TW_OperatorSelfRating 189 4.66 1.012 2 6 -.604 -.165 .268 .000 
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Situation Awareness 

Descriptive data concerning the Situation Awareness measures are provided in Table 

7. 

Table 7. Descriptive statistics Situation Awareness measures. 

Measure N Mean SD Min Max Skewness Kurtosis K-S K-S Sig. 

SA_PUAT 189 .84 .110 0 1 -1.080 1.511 .093 .000 

SA_OperatorSelfRating 189 4.75 .939 2 6 -.601 -.119 .284 .000 

SA_PlantStatusReport 189 .83 .092 0 1 -.627 -.148 .119 .000 

 

Workload 

Descriptive data concerning the Workload measures are provided in Table 8. 

Table 8. Descriptive statistics Workload measures. 

Measure N Mean SD Min Max Skewness Kurtosis K-S K-S Sig. 

W_WorkloadAcceptability 189 3.84 1.227 1 6 .591 -.369 .212 .000 

W_NASATLX_ME 189 3.38 .938 2 6 .889 .648 .307 .000 

W_OperatorRatingStaffingLoad 189 4.74 .963 2 6 -.398 -.446 .225 .000 

  

Usability 

In Table 9 the means of ratings for the seven usability dimensions are presented. 

Table 9. Descriptive statistics Usability measures.  

Measure N Mean SD Min Max Skewness Kurtosis K-S K-S Sig. 

U_Overview 189 3.57 1.063 1 6 .053 -.734 .182 .000 

U_DetailedInfoProcess 189 4.04 1.291 1 6 -.249 -.561 .193 .000 

U_Navigation 189 4.35 1.182 1 6 -.257 -.525 .205 .000 

U_AlarmSystems 189 5.15 .889 2 6 -.766 -.081 .263 .000 

U_EventLists 189 5.17 .871 2 6 -.727 -.148 .269 .000 

U_LogsTrends 189 4.29 1.243 1 6 -.289 -.527 .157 .000 

U_OverallFunctionality 189 3.12 1.635 1 6 .212 -.571 .176 .000 

  

Models 

 

Exploratory factor analysis 

After the initial statistical assumption and data quality testing that was reported above, 

the 18 variables in the database that was intended to be used as manifest variables 

were analysed with an Exploratory Factor Analysis, EFA. This was done to be able to 

do initial justification of the measurement model. The pattern of how the 18 manifest 

variables, in factor analysis terms called items, group themselves in the Pattern Matrix 

of Table 10, can be interpreted to see how the different items the variables load on the 

expected factors, which in turn can be used to specify and justify the measurement 

model. 
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The resulting pattern matrix presented in Table 10 show how the manifest variables 

load on five factors, with factors loadings less than .30 being suppressed for 

readability. The Kaiser-Meyer-Olkin value was .799, exceeding the recommend value 

of .6 and Bartlett’s Test of Sphericity reached statistical significance, supporting the 

factorability of the correlation matrix. The maximum likelihood analysis revealed the 

presence of five factors with eigenvalues over 1, explaining 33.6%, 14.5%, 13.8%, 

7.1% and 6.3% of the variance respectively. An inspection of the scree plot in Figure 

18 suggests that a four or five factor solution should be considered. The Pattern Matrix 

also show that the individual items primarily load on one factor (all other loadings fall 

below the recommended threshold of .30 and are thus suppressed in Table 10 and not 

further considered in the analysis), i.e. a quite clear indication of how the manifest 

variables group themselves, from the perspective of the data, i.e. not considering 

theoretical differences between them and what they are assumed to measure. 

Table 10. Pattern Matrix for Exploratory Factor Analysis with Direct Oblimin 

rotation and Maximum Likelihood extraction. 

Items 1 2 3 4 5 

TP_ProcessExpertRating   .831   

TP_OperatorSelfRating   .864   

TP_PerformanceTime   .961   

TW_ProcessExpertRating    .794  

TW_OperatorSelfRating    .982  

SA_PUAT_rev     .792 

SA_OperatorSelfRating_rev     .437 

SA_PlantStatusReport_rev     .474 

CW_WorkloadAcceptability     .657 

CW_NASATLX_ME     .812 

CW_OperatorRatingStaffingLoad_rev     .582 

U_Overview     .620 

U_DetailedInfoProcess .992     

U_Navigation .805     

U_AlarmSystems  -.792    

U_EventLists  -.931    

U_LogsTrends  -.728    

U_OverallFunctionality .730     

Values under .30 suppressed. 

 

Figure 18. Scree plot from EFA. 

The factor correlation matrix is presented in Table 11. 
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Table 11. Factor correlation matrix.  

Factor 1 2 3 4 5 

1 1,000 -,428 -,195 ,185 -,173 

2 -,428 1,000 ,006 -,343 ,368 

3 -,195 ,006 1,000 ,198 ,159 

4 ,185 -,343 ,198 1,000 -,477 

5 -,173 ,368 ,156 -,477 1,000 

Extraction Method: Maximum Likelihood.  

Rotation Method: Oblimin with Kaiser Normalization. 

Some observations from the exploratory factor analysis are: 

 The Task Performance and the Teamwork related items load on their own 

respective factors. 

 The Situation Awareness and Workload related items load on the same factor 

and this can be interpreted, from a pure data perspective, that they should 

load on the same latent variable, tentatively called Operator Capacity. The 

raw data provide both negative and positively loadings on this factor, but 

some of the variables ratings have been reversed as indicated by the _rev 

endings in Table 10. 

 The Usability related items do not load on the same factor. The Overview 

item load together with Situation Awareness and Workload, and the other six 

items load on two different factors, tentatively called Usability 1 and 

Usability 2. 
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Confirmatory factor analysis 

Based on the result of the EFA, a confirmatory factor analysis, CFA, was conducted. 

See Figure 19. CFA results for results. One factor called OperatorCapacity and two 

Usability related factors, here called Usability 1 and Usability 2 were used. The 

U_Overview item here loads on Operator Capacity, rather than any of the Usability 

factors. 

 

Figure 19. CFA results. 
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Structural Equation Model 

In this section, the actual full SEM model results are described. In Figure 20 a SEM 

with a simplex structure is proposed, based on the observations from the EFA. In the 

figure, error terms and residuals not shown to maintain readability. 

 

Figure 20. Full structural model, based on EFA observations.  

The fit indices in Figure 20 indicate that the model to some extent capture the variance 

in the data, but would benefit from further refinement, since the RMSEA is above 

recommended thresholds levels and the NFI is below the threshold. See Appendix A 

for a further description of fit indices, their use and recommended thresholds. 

The software packages that enable SEM calculations provide so called modification 

indices, that from a pure data driven perspective, provide recommendations on how 

to modify a model to achieve a better fitting models, called specification search. 

Figure 21 shows the model with some new arrows, as suggested by the modification 

indices. As a result, the RMSEA and the NFI indices have improved somewhat and 

just barely reach acceptable values. 

Chi square = 320.3 

DF = 131 

RMSEA = 0.088 

p = 0.000 

NFI = 0.864 

AIC = 436 
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Figure 21. Full structural model, based on EFA observations and after consulting the 

modification indices.  

Some observations concerning the full SEM models based on the dummy data set are: 

 The model has a low regression weight, i.e. values on the arrow, between 

Teamwork and Task Performance, which should be interpreted as, the 

manifest variables that currently have been used to assess the latent variable 

named Teamwork, do no strongly explain the variation in the manifest 

variables used to measure the latent variable Task Performance. The 

variation in Task Performance probably depends on something else, 

variables which were not included in the data collection. In SEM 

nomenclature, this would be an example of misspecification, i.e. we do not 

assess all relevant factors, if we want to be able to explain changes in Task 

Performance. Another latent variable with associated manifest variables or 

other manifest variables for the current latent variables need to be 

considered. Note that the weak connection between Teamwork and Task 

Performance is only intended as a pedagogical example for the current 

report. 

The model presented in Figure 22 disregards the EFA and test the main hypothesis, 

with manifest variables loading on the latent variables as expected by manifest 

variable names.  

Chi square = 220.6 

DF = 125 

RMSEA = 0.064 

p = 0.000 

NFI = 0.909 

AIC = 352.6 
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Figure 22. Full structural model testing the original main hypothesis.  

The model presented in Figure 22, even after modification indices does not reach 

recommended thresholds for fit indices, and hence describe a model which not to the 

same degree as Figure 21 describe the variation in the data.  

Thomsons (2000) guidelines, see Appendix A, have to the extent possible been 

followed in the development of these models of the dummy data. Recommendation 

#2 could not be followed due to the limited size of the database, and recommendation 

#10 is debatable for the same reason since the 189 cases in the database, generated by 

21 operators cannot be a large sample. 

  

  

Chi square = 345.8 

DF = 126 

RMSEA = 0.096 

p  = 0.000 

NFI = 0.858 

AIC = 473.4 
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9.4. Appendix D. Alternative and nested models 

Numerous alternative models, e.g. nested models and sub-models, can typically be 

explored in a modelling process. Some examples are provided below, Figure 23 to 

Figure 28, however these are not elaborated in further detail since the report is 

intended to describe what SEM is and test its application for as part of CKR evaluation 

in ISV processes. 

 

 
 

Figure 23. Model with a latent variable removed. 

 
 

Figure 24. Model with new latent variables included.  

 

 
 

Figure 25. Model with more starting points, i.e. exogenous variables, e.g. if 

Teamwork and Usability are both used as starting points. 

 

 

 

 

Figure 26. Sub-models, e.g. Workload and Task Performance.  
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Figure 27. Model with alternative effect flow.  

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Model with another alternative effect flow.  
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9.5. Appendix E. Modelling test with data from a live 
ISV evaluation 

During 2017 the authors of the report got access to a dataset collected during a live 

ISV evaluation. The dataset from the live evaluation had many similarities to the 

dummy data set described above, but also some important differences, as the battery 

of measures had been further refined. The results from more than 90 measures were 

included in the dataset.  

 

A multitude of models was explored, where both the measurement model and the 

structural model were extensively varied, following the process described in the main 

report above. This was done to describe a model that would aggregate the ISV data 

into a SEM model that provided a first step towards a theoretical model of how the 

selected latent variables relate to each other. However, during the modelling of this 

live dataset, no theoretically interesting models, which also met SEM quality 

requirements, i.e. with adequate model fit, were identified by the authors of the report. 

Several reasons for this can be discussed:  

 

 Data distribution: as described earlier, a scientifically publishable SEM 

model needs to meet certain requirements concerning the data both in terms 

of their distribution and amount of data in relation to model complexity. For 

this dataset, the non-normality requirement for the manifest variables 

required for SEM modelling was not met, i.e. many of the variables in the 

live dataset exhibited skew and kurtosis values that departed from statistical 

normality. SEM is reasonably robust to non-normality in the data, but the 

deviations were quite large for some variables. In retrospect, this might not 

be surprising, provided that the live dataset not had been intended to be used 

for SEM modelling, but this was not evident before the modelling effort was 

initiated. By design, from the researchers that designed the ISV data 

collection, many of the measures were expected to produce highly skewed 

results. For the actual ISV is was a feature, as HEDs then could be defined 

and identified by low means for the specific measure. The reader should note 

that this not reduces the validity of the measures as a part of an ISV 

evaluation, but it reduces the possibility to use SEM to model the data. 

 Correlations between measures: The bivariate correlation analyses and 

factor analyses that were conducted before the actual SEM modelling 

exhibited low correlations between many of the individual measures and low 

factors intercorrelations. A comprehensive presentation of all these analyses 

between the 90 individual measures that were present in the live data will not 

be included in the present report to maintain report readability, but the 

interested reader can contact the report authors for further discussion. 

Due to the reasons summarised above, no theoretically interesting models, which also 

met SEM quality requirements could be specified. However, it is important to point 

out that this current inability to specify theoretically useful and scientifically 

publishable models during this modelling effort not casts any doubt on the general 

applicability of SEM as a statistical analysis method nor on the methodological 
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validity of the ISV evaluation methodology and ISV measures that was used during 

the live ISV evaluation. 
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