The safety assessment for disposal of spent nuclear fuel canister in the Swedish bedrock should thoroughly address the time period after a containment failure. Such a failure could be expected as a result of corrosion damage or mechanical failure due to rock movement. This report mainly covers some issues connected to parameters used for radionuclide transport calculations in the areas of spent fuel performance (for fuel in contact with groundwater), radionuclide chemistry, and sorption and geosphere transport parameters. Some examples of topics that are elaborated in some detail include statistical treatment of measurement data (for sorption measurements), handling of uncertainties in speciation calculations, use of triangular distributions in safety assessment and physical processes in connection with spent fuel aging. The results emerged from discussions among international experts at a workshop, Lidingö, Sweden, May 2008.
The purpose of this work is providing an overview of ongoing work within the Swedish Nuclear Fuel and Waste Management Co. (SKB), to provide ideas and suggestions for methodology development and to develop review capability within the SSM.
The authors conclude that SKB’s treatment of uncertainty in speciation calculations has improved, but that additional efforts in the area of error propagation are recommended. In efforts to condense the scope of utilised thermodynamic databases, the authors recommend that exclusion criteria should be explicitly stated. In the area of sorption, there is a need for more thorough analysis of errors in order to establish uncertainty ranges. The most essential improvements concern dose-limiting nuclides (e.g. Ra-226). Triangular distributions are often featured in SKB safety assessment, but it is not clear that the use of such distributions is based on a firm understanding of its properties. Regarding fuel performance, while safety assessment parameters are supported by measurement data there is still a need for better understanding of the detailed reaction mechanisms and aging effects over very long time-scales.